File: MathObject.cpp

package info (click to toggle)
webkit2gtk 2.6.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 115,572 kB
  • ctags: 216,388
  • sloc: cpp: 1,164,175; ansic: 18,422; perl: 16,884; python: 11,608; ruby: 9,409; xml: 8,376; asm: 4,765; yacc: 2,292; lex: 891; sh: 650; makefile: 79
file content (760 lines) | stat: -rw-r--r-- 30,884 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/*
 *  Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
 *  Copyright (C) 2007, 2008, 2013 Apple Inc. All Rights Reserved.
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 2 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, write to the Free Software
 *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 */

#include "config.h"
#include "MathObject.h"

#include "Lookup.h"
#include "ObjectPrototype.h"
#include "JSCInlines.h"
#include <time.h>
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
#include <wtf/RandomNumber.h>
#include <wtf/RandomNumberSeed.h>
#include <wtf/Vector.h>

namespace JSC {

STATIC_ASSERT_IS_TRIVIALLY_DESTRUCTIBLE(MathObject);

static EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncACosh(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncASinh(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncATanh(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncCbrt(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncCosh(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncExpm1(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncFround(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncHypot(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog1p(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog10(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncLog2(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSign(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSinh(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncTanh(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncTrunc(ExecState*);
static EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState*);

}

namespace JSC {

const ClassInfo MathObject::s_info = { "Math", &Base::s_info, 0, CREATE_METHOD_TABLE(MathObject) };

MathObject::MathObject(VM& vm, Structure* structure)
    : JSNonFinalObject(vm, structure)
{
}

void MathObject::finishCreation(VM& vm, JSGlobalObject* globalObject)
{
    Base::finishCreation(vm);
    ASSERT(inherits(info()));

    putDirectWithoutTransition(vm, Identifier(&vm, "E"), jsNumber(exp(1.0)), DontDelete | DontEnum | ReadOnly);
    putDirectWithoutTransition(vm, Identifier(&vm, "LN2"), jsNumber(log(2.0)), DontDelete | DontEnum | ReadOnly);
    putDirectWithoutTransition(vm, Identifier(&vm, "LN10"), jsNumber(log(10.0)), DontDelete | DontEnum | ReadOnly);
    putDirectWithoutTransition(vm, Identifier(&vm, "LOG2E"), jsNumber(1.0 / log(2.0)), DontDelete | DontEnum | ReadOnly);
    putDirectWithoutTransition(vm, Identifier(&vm, "LOG10E"), jsNumber(0.4342944819032518), DontDelete | DontEnum | ReadOnly);
    putDirectWithoutTransition(vm, Identifier(&vm, "PI"), jsNumber(piDouble), DontDelete | DontEnum | ReadOnly);
    putDirectWithoutTransition(vm, Identifier(&vm, "SQRT1_2"), jsNumber(sqrt(0.5)), DontDelete | DontEnum | ReadOnly);
    putDirectWithoutTransition(vm, Identifier(&vm, "SQRT2"), jsNumber(sqrt(2.0)), DontDelete | DontEnum | ReadOnly);

    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "abs"), 1, mathProtoFuncAbs, AbsIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "acos"), 1, mathProtoFuncACos, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "asin"), 1, mathProtoFuncASin, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "atan"), 1, mathProtoFuncATan, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "acosh"), 1, mathProtoFuncACosh, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "asinh"), 1, mathProtoFuncASinh, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "atanh"), 1, mathProtoFuncATanh, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "atan2"), 2, mathProtoFuncATan2, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "cbrt"), 1, mathProtoFuncCbrt, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "ceil"), 1, mathProtoFuncCeil, CeilIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "cos"), 1, mathProtoFuncCos, CosIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "cosh"), 1, mathProtoFuncCosh, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "exp"), 1, mathProtoFuncExp, ExpIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "expm1"), 1, mathProtoFuncExpm1, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "floor"), 1, mathProtoFuncFloor, FloorIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "fround"), 1, mathProtoFuncFround, FRoundIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "hypot"), 2, mathProtoFuncHypot, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log"), 1, mathProtoFuncLog, LogIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log10"), 1, mathProtoFuncLog10, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log1p"), 1, mathProtoFuncLog1p, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "log2"), 1, mathProtoFuncLog2, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "max"), 2, mathProtoFuncMax, MaxIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "min"), 2, mathProtoFuncMin, MinIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "pow"), 2, mathProtoFuncPow, PowIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "random"), 0, mathProtoFuncRandom, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "round"), 1, mathProtoFuncRound, RoundIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "sign"), 1, mathProtoFuncSign, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "sin"), 1, mathProtoFuncSin, SinIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "sinh"), 1, mathProtoFuncSinh, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "sqrt"), 1, mathProtoFuncSqrt, SqrtIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "tan"), 1, mathProtoFuncTan, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "tanh"), 1, mathProtoFuncTanh, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "trunc"), 1, mathProtoFuncTrunc, NoIntrinsic, DontEnum | Function);
    putDirectNativeFunctionWithoutTransition(vm, globalObject, Identifier(&vm, "imul"), 1, mathProtoFuncIMul, IMulIntrinsic, DontEnum | Function);
}

// ------------------------------ Functions --------------------------------

EncodedJSValue JSC_HOST_CALL mathProtoFuncAbs(ExecState* exec)
{
    return JSValue::encode(jsNumber(fabs(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncACos(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(acos(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncASin(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(asin(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncATan(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(atan(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncATan2(ExecState* exec)
{
    double arg0 = exec->argument(0).toNumber(exec);
    double arg1 = exec->argument(1).toNumber(exec);
    return JSValue::encode(jsDoubleNumber(atan2(arg0, arg1)));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncCeil(ExecState* exec)
{
    return JSValue::encode(jsNumber(ceil(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncCos(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(cos(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncExp(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(exp(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncFloor(ExecState* exec)
{
    return JSValue::encode(jsNumber(floor(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncHypot(ExecState* exec)
{
    unsigned argsCount = exec->argumentCount();
    double max = 0;
    Vector<double, 8> args;
    args.reserveInitialCapacity(argsCount);
    for (unsigned i = 0; i < argsCount; ++i) {
        args.uncheckedAppend(exec->uncheckedArgument(i).toNumber(exec));
        if (exec->hadException())
            return JSValue::encode(jsNull());
        if (std::isinf(args[i]))
            return JSValue::encode(jsDoubleNumber(+std::numeric_limits<double>::infinity()));
        max = std::max(fabs(args[i]), max);
    }
    if (!max)
        max = 1;
    // Kahan summation algorithm significantly reduces the numerical error in the total obtained.
    double sum = 0;
    double compensation = 0;
    for (double argument : args) {
        double scaledArgument = argument / max;
        double summand = scaledArgument * scaledArgument - compensation;
        double preliminary = sum + summand;
        compensation = (preliminary - sum) - summand;
        sum = preliminary;
    }
    return JSValue::encode(jsDoubleNumber(sqrt(sum) * max));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncLog(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(log(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncMax(ExecState* exec)
{
    unsigned argsCount = exec->argumentCount();
    double result = -std::numeric_limits<double>::infinity();
    for (unsigned k = 0; k < argsCount; ++k) {
        double val = exec->uncheckedArgument(k).toNumber(exec);
        if (std::isnan(val)) {
            result = PNaN;
        } else if (val > result || (!val && !result && !std::signbit(val)))
            result = val;
    }
    return JSValue::encode(jsNumber(result));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncMin(ExecState* exec)
{
    unsigned argsCount = exec->argumentCount();
    double result = +std::numeric_limits<double>::infinity();
    for (unsigned k = 0; k < argsCount; ++k) {
        double val = exec->uncheckedArgument(k).toNumber(exec);
        if (std::isnan(val)) {
            result = PNaN;
        } else if (val < result || (!val && !result && std::signbit(val)))
            result = val;
    }
    return JSValue::encode(jsNumber(result));
}

#if PLATFORM(IOS) && CPU(ARM_THUMB2)

static double fdlibmPow(double x, double y);

static ALWAYS_INLINE bool isDenormal(double x)
{
        static const uint64_t signbit = 0x8000000000000000ULL;
        static const uint64_t minNormal = 0x0001000000000000ULL;
        return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 < minNormal - 1;
}

static ALWAYS_INLINE bool isEdgeCase(double x)
{
        static const uint64_t signbit = 0x8000000000000000ULL;
        static const uint64_t infinity = 0x7fffffffffffffffULL;
        return (bitwise_cast<uint64_t>(x) & ~signbit) - 1 >= infinity - 1;
}

static ALWAYS_INLINE double mathPow(double x, double y)
{
    if (!isDenormal(x) && !isDenormal(y)) {
        double libmResult = pow(x,y);
        if (libmResult || isEdgeCase(x) || isEdgeCase(y))
            return libmResult;
    }
    return fdlibmPow(x,y);
}

#else

ALWAYS_INLINE double mathPow(double x, double y)
{
    return pow(x, y);
}

#endif

EncodedJSValue JSC_HOST_CALL mathProtoFuncPow(ExecState* exec)
{
    // ECMA 15.8.2.1.13

    double arg = exec->argument(0).toNumber(exec);
    double arg2 = exec->argument(1).toNumber(exec);

    if (std::isnan(arg2))
        return JSValue::encode(jsNaN());
    if (std::isinf(arg2) && fabs(arg) == 1)
        return JSValue::encode(jsNaN());
    return JSValue::encode(jsNumber(mathPow(arg, arg2)));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncRandom(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(exec->lexicalGlobalObject()->weakRandomNumber()));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncRound(ExecState* exec)
{
    double arg = exec->argument(0).toNumber(exec);
    double integer = ceil(arg);
    return JSValue::encode(jsNumber(integer - (integer - arg > 0.5)));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncSign(ExecState* exec)
{
    double arg = exec->argument(0).toNumber(exec);
    if (std::isnan(arg))
        return JSValue::encode(jsNaN());
    if (!arg)
        return JSValue::encode(std::signbit(arg) ? jsNumber(-0.0) : jsNumber(0));
    return JSValue::encode(jsNumber(std::signbit(arg) ? -1 : 1));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncSin(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(sin(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncSqrt(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(sqrt(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncTan(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(tan(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncIMul(ExecState* exec)
{
    int32_t left = exec->argument(0).toInt32(exec);
    if (exec->hadException())
        return JSValue::encode(jsNull());
    int32_t right = exec->argument(1).toInt32(exec);
    return JSValue::encode(jsNumber(left * right));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncACosh(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(acosh(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncASinh(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(asinh(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncATanh(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(atanh(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncCbrt(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(cbrt(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncCosh(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(cosh(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncExpm1(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(expm1(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncFround(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(static_cast<float>(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncLog1p(ExecState* exec)
{
    double value = exec->argument(0).toNumber(exec);
    if (value == 0)
        return JSValue::encode(jsDoubleNumber(value));
    return JSValue::encode(jsDoubleNumber(log1p(value)));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncLog10(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(log10(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncLog2(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(log2(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncSinh(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(sinh(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncTanh(ExecState* exec)
{
    return JSValue::encode(jsDoubleNumber(tanh(exec->argument(0).toNumber(exec))));
}

EncodedJSValue JSC_HOST_CALL mathProtoFuncTrunc(ExecState*exec)
{
    return JSValue::encode(jsNumber(exec->argument(0).toIntegerPreserveNaN(exec)));
}


#if PLATFORM(IOS) && CPU(ARM_THUMB2)

// The following code is taken from netlib.org:
//   http://www.netlib.org/fdlibm/fdlibm.h
//   http://www.netlib.org/fdlibm/e_pow.c
//   http://www.netlib.org/fdlibm/s_scalbn.c
//
// And was originally distributed under the following license:

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunSoft, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */
/*
 * ====================================================
 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
 *
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

/* __ieee754_pow(x,y) return x**y
 *
 *              n
 * Method:  Let x =  2   * (1+f)
 *    1. Compute and return log2(x) in two pieces:
 *        log2(x) = w1 + w2,
 *       where w1 has 53-24 = 29 bit trailing zeros.
 *    2. Perform y*log2(x) = n+y' by simulating muti-precision 
 *       arithmetic, where |y'|<=0.5.
 *    3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *    1.  (anything) ** 0  is 1
 *    2.  (anything) ** 1  is itself
 *    3.  (anything) ** NAN is NAN
 *    4.  NAN ** (anything except 0) is NAN
 *    5.  +-(|x| > 1) **  +INF is +INF
 *    6.  +-(|x| > 1) **  -INF is +0
 *    7.  +-(|x| < 1) **  +INF is +0
 *    8.  +-(|x| < 1) **  -INF is +INF
 *    9.  +-1         ** +-INF is NAN
 *    10. +0 ** (+anything except 0, NAN)               is +0
 *    11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *    12. +0 ** (-anything except 0, NAN)               is +INF
 *    13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *    14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *    15. +INF ** (+anything except 0,NAN) is +INF
 *    16. +INF ** (-anything except 0,NAN) is +0
 *    17. -INF ** (anything)  = -0 ** (-anything)
 *    18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *    19. (-anything except 0 and inf) ** (non-integer) is NAN
 *
 * Accuracy:
 *    pow(x,y) returns x**y nearly rounded. In particular
 *            pow(integer,integer)
 *    always returns the correct integer provided it is 
 *    representable.
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following 
 * constants. The decimal values may be used, provided that the 
 * compiler will convert from decimal to binary accurately enough 
 * to produce the hexadecimal values shown.
 */

#define __HI(x) *(1+(int*)&x)
#define __LO(x) *(int*)&x

static const double
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
zero    =  0.0,
one    =  1.0,
two    =  2.0,
two53    =  9007199254740992.0,    /* 0x43400000, 0x00000000 */
huge    =  1.0e300,
tiny    =  1.0e-300,
        /* for scalbn */
two54   =  1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
twom54  =  5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
    /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/

inline double fdlibmScalbn (double x, int n)
{
    int  k,hx,lx;
    hx = __HI(x);
    lx = __LO(x);
        k = (hx&0x7ff00000)>>20;        /* extract exponent */
        if (k==0) {                /* 0 or subnormal x */
            if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
        x *= two54; 
        hx = __HI(x);
        k = ((hx&0x7ff00000)>>20) - 54; 
            if (n< -50000) return tiny*x;     /*underflow*/
        }
        if (k==0x7ff) return x+x;        /* NaN or Inf */
        k = k+n; 
        if (k >  0x7fe) return huge*copysign(huge,x); /* overflow  */
        if (k > 0)                 /* normal result */
        {__HI(x) = (hx&0x800fffff)|(k<<20); return x;}
        if (k <= -54) {
            if (n > 50000)     /* in case integer overflow in n+k */
        return huge*copysign(huge,x);    /*overflow*/
        else return tiny*copysign(tiny,x);     /*underflow*/
        }
        k += 54;                /* subnormal result */
        __HI(x) = (hx&0x800fffff)|(k<<20);
        return x*twom54;
}

double fdlibmPow(double x, double y)
{
    double z,ax,z_h,z_l,p_h,p_l;
    double y1,t1,t2,r,s,t,u,v,w;
    int i0,i1,i,j,k,yisint,n;
    int hx,hy,ix,iy;
    unsigned lx,ly;

    i0 = ((*(int*)&one)>>29)^1; i1=1-i0;
    hx = __HI(x); lx = __LO(x);
    hy = __HI(y); ly = __LO(y);
    ix = hx&0x7fffffff;  iy = hy&0x7fffffff;

    /* y==zero: x**0 = 1 */
    if((iy|ly)==0) return one;     

    /* +-NaN return x+y */
    if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
       iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0))) 
        return x+y;    

    /* determine if y is an odd int when x < 0
     * yisint = 0    ... y is not an integer
     * yisint = 1    ... y is an odd int
     * yisint = 2    ... y is an even int
     */
    yisint  = 0;
    if(hx<0) {    
        if(iy>=0x43400000) yisint = 2; /* even integer y */
        else if(iy>=0x3ff00000) {
        k = (iy>>20)-0x3ff;       /* exponent */
        if(k>20) {
            j = ly>>(52-k);
            if(static_cast<unsigned>(j<<(52-k))==ly) yisint = 2-(j&1);
        } else if(ly==0) {
            j = iy>>(20-k);
            if((j<<(20-k))==iy) yisint = 2-(j&1);
        }
        }        
    } 

    /* special value of y */
    if(ly==0) {     
        if (iy==0x7ff00000) {    /* y is +-inf */
            if(((ix-0x3ff00000)|lx)==0)
            return  y - y;    /* inf**+-1 is NaN */
            else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
            return (hy>=0)? y: zero;
            else            /* (|x|<1)**-,+inf = inf,0 */
            return (hy<0)?-y: zero;
        } 
        if(iy==0x3ff00000) {    /* y is  +-1 */
        if(hy<0) return one/x; else return x;
        }
        if(hy==0x40000000) return x*x; /* y is  2 */
        if(hy==0x3fe00000) {    /* y is  0.5 */
        if(hx>=0)    /* x >= +0 */
        return sqrt(x);    
        }
    }

    ax   = fabs(x);
    /* special value of x */
    if(lx==0) {
        if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
        z = ax;            /*x is +-0,+-inf,+-1*/
        if(hy<0) z = one/z;    /* z = (1/|x|) */
        if(hx<0) {
            if(((ix-0x3ff00000)|yisint)==0) {
            z = (z-z)/(z-z); /* (-1)**non-int is NaN */
            } else if(yisint==1) 
            z = -z;        /* (x<0)**odd = -(|x|**odd) */
        }
        return z;
        }
    }
    
    n = (hx>>31)+1;

    /* (x<0)**(non-int) is NaN */
    if((n|yisint)==0) return (x-x)/(x-x);

    s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
    if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */

    /* |y| is huge */
    if(iy>0x41e00000) { /* if |y| > 2**31 */
        if(iy>0x43f00000){    /* if |y| > 2**64, must o/uflow */
        if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
        if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
        }
    /* over/underflow if x is not close to one */
        if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
        if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
    /* now |1-x| is tiny <= 2**-20, suffice to compute 
       log(x) by x-x^2/2+x^3/3-x^4/4 */
        t = ax-one;        /* t has 20 trailing zeros */
        w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
        u = ivln2_h*t;    /* ivln2_h has 21 sig. bits */
        v = t*ivln2_l-w*ivln2;
        t1 = u+v;
        __LO(t1) = 0;
        t2 = v-(t1-u);
    } else {
        double ss,s2,s_h,s_l,t_h,t_l;
        n = 0;
    /* take care subnormal number */
        if(ix<0x00100000)
        {ax *= two53; n -= 53; ix = __HI(ax); }
        n  += ((ix)>>20)-0x3ff;
        j  = ix&0x000fffff;
    /* determine interval */
        ix = j|0x3ff00000;        /* normalize ix */
        if(j<=0x3988E) k=0;        /* |x|<sqrt(3/2) */
        else if(j<0xBB67A) k=1;    /* |x|<sqrt(3)   */
        else {k=0;n+=1;ix -= 0x00100000;}
        __HI(ax) = ix;

    /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
        u = ax-bp[k];        /* bp[0]=1.0, bp[1]=1.5 */
        v = one/(ax+bp[k]);
        ss = u*v;
        s_h = ss;
        __LO(s_h) = 0;
    /* t_h=ax+bp[k] High */
        t_h = zero;
        __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18); 
        t_l = ax - (t_h-bp[k]);
        s_l = v*((u-s_h*t_h)-s_h*t_l);
    /* compute log(ax) */
        s2 = ss*ss;
        r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
        r += s_l*(s_h+ss);
        s2  = s_h*s_h;
        t_h = 3.0+s2+r;
        __LO(t_h) = 0;
        t_l = r-((t_h-3.0)-s2);
    /* u+v = ss*(1+...) */
        u = s_h*t_h;
        v = s_l*t_h+t_l*ss;
    /* 2/(3log2)*(ss+...) */
        p_h = u+v;
        __LO(p_h) = 0;
        p_l = v-(p_h-u);
        z_h = cp_h*p_h;        /* cp_h+cp_l = 2/(3*log2) */
        z_l = cp_l*p_h+p_l*cp+dp_l[k];
    /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
        t = (double)n;
        t1 = (((z_h+z_l)+dp_h[k])+t);
        __LO(t1) = 0;
        t2 = z_l-(((t1-t)-dp_h[k])-z_h);
    }

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
    y1  = y;
    __LO(y1) = 0;
    p_l = (y-y1)*t1+y*t2;
    p_h = y1*t1;
    z = p_l+p_h;
    j = __HI(z);
    i = __LO(z);
    if (j>=0x40900000) {                /* z >= 1024 */
        if(((j-0x40900000)|i)!=0)            /* if z > 1024 */
        return s*huge*huge;            /* overflow */
        else {
        if(p_l+ovt>z-p_h) return s*huge*huge;    /* overflow */
        }
    } else if((j&0x7fffffff)>=0x4090cc00 ) {    /* z <= -1075 */
        if(((j-0xc090cc00)|i)!=0)         /* z < -1075 */
        return s*tiny*tiny;        /* underflow */
        else {
        if(p_l<=z-p_h) return s*tiny*tiny;    /* underflow */
        }
    }
    /*
     * compute 2**(p_h+p_l)
     */
    i = j&0x7fffffff;
    k = (i>>20)-0x3ff;
    n = 0;
    if(i>0x3fe00000) {        /* if |z| > 0.5, set n = [z+0.5] */
        n = j+(0x00100000>>(k+1));
        k = ((n&0x7fffffff)>>20)-0x3ff;    /* new k for n */
        t = zero;
        __HI(t) = (n&~(0x000fffff>>k));
        n = ((n&0x000fffff)|0x00100000)>>(20-k);
        if(j<0) n = -n;
        p_h -= t;
    } 
    t = p_l+p_h;
    __LO(t) = 0;
    u = t*lg2_h;
    v = (p_l-(t-p_h))*lg2+t*lg2_l;
    z = u+v;
    w = v-(z-u);
    t  = z*z;
    t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
    r  = (z*t1)/(t1-two)-(w+z*w);
    z  = one-(r-z);
    j  = __HI(z);
    j += (n<<20);
    if((j>>20)<=0) z = fdlibmScalbn(z,n);    /* subnormal output */
    else __HI(z) += (n<<20);
    return s*z;
}

#endif

} // namespace JSC