1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011, 2013 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashMap_h
#define WTF_HashMap_h
#include <initializer_list>
#include <wtf/HashTable.h>
#include <wtf/IteratorRange.h>
namespace WTF {
template<typename T> struct KeyValuePairKeyExtractor {
static const typename T::KeyType& extract(const T& p) { return p.key; }
};
template<typename KeyArg, typename MappedArg, typename HashArg = typename DefaultHash<KeyArg>::Hash,
typename KeyTraitsArg = HashTraits<KeyArg>, typename MappedTraitsArg = HashTraits<MappedArg>>
class HashMap final {
WTF_MAKE_FAST_ALLOCATED;
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
struct KeyValuePairTraits : KeyValuePairHashTraits<KeyTraits, MappedTraits> {
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const typename KeyValuePairHashTraits<KeyTraits, MappedTraits>::TraitType& value)
{
return isHashTraitsEmptyValue<KeyTraits>(value.key);
}
};
public:
typedef typename KeyTraits::TraitType KeyType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename KeyValuePairTraits::TraitType KeyValuePairType;
private:
typedef typename MappedTraits::PeekType MappedPeekType;
typedef HashArg HashFunctions;
typedef HashTable<KeyType, KeyValuePairType, KeyValuePairKeyExtractor<KeyValuePairType>,
HashFunctions, KeyValuePairTraits, KeyTraits> HashTableType;
class HashMapKeysProxy;
class HashMapValuesProxy;
public:
typedef HashTableIteratorAdapter<HashTableType, KeyValuePairType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, KeyValuePairType> const_iterator;
typedef typename HashTableType::AddResult AddResult;
public:
HashMap()
{
}
HashMap(std::initializer_list<KeyValuePairType> initializerList)
{
for (const auto& keyValuePair : initializerList)
add(keyValuePair.key, keyValuePair.value);
}
void swap(HashMap&);
int size() const;
int capacity() const;
bool isEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
IteratorRange<typename iterator::Keys> keys() { return makeIteratorRange(begin().keys(), end().keys()); }
const IteratorRange<typename const_iterator::Keys> keys() const { return makeIteratorRange(begin().keys(), end().keys()); }
IteratorRange<typename iterator::Values> values() { return makeIteratorRange(begin().values(), end().values()); }
const IteratorRange<typename const_iterator::Values> values() const { return makeIteratorRange(begin().values(), end().values()); }
iterator find(const KeyType&);
const_iterator find(const KeyType&) const;
bool contains(const KeyType&) const;
MappedPeekType get(const KeyType&) const;
// Replaces the value but not the key if the key is already present.
// Return value includes both an iterator to the key location,
// and an isNewEntry boolean that's true if a new entry was added.
template<typename V> AddResult set(const KeyType&, V&&);
template<typename V> AddResult set(KeyType&&, V&&);
// Does nothing if the key is already present.
// Return value includes both an iterator to the key location,
// and an isNewEntry boolean that's true if a new entry was added.
template<typename V> AddResult add(const KeyType&, V&&);
template<typename V> AddResult add(KeyType&&, V&&);
// Same as add(), but aggressively inlined.
template<typename V> AddResult fastAdd(const KeyType&, V&&);
template<typename V> AddResult fastAdd(KeyType&&, V&&);
bool remove(const KeyType&);
bool remove(iterator);
template<typename Functor>
void removeIf(const Functor& functor);
void clear();
MappedType take(const KeyType&); // efficient combination of get with remove
// An alternate version of find() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion. HashTranslator
// must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
template<typename HashTranslator, typename T> iterator find(const T&);
template<typename HashTranslator, typename T> const_iterator find(const T&) const;
template<typename HashTranslator, typename T> bool contains(const T&) const;
// An alternate version of add() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion if the object is already
// in the table. HashTranslator must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
// static translate(ValueType&, const T&, unsigned hashCode);
template<typename HashTranslator, typename K, typename V> AddResult add(K&&, V&&);
void checkConsistency() const;
static bool isValidKey(const KeyType&);
private:
template<typename K, typename V>
AddResult inlineSet(K&&, V&&);
template<typename K, typename V>
AddResult inlineAdd(K&&, V&&);
HashTableType m_impl;
};
template<typename ValueTraits, typename HashFunctions>
struct HashMapTranslator {
template<typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); }
template<typename T, typename U, typename V> static void translate(T& location, U&& key, V&& mapped)
{
location.key = std::forward<U>(key);
location.value = std::forward<V>(mapped);
}
};
template<typename ValueTraits, typename Translator>
struct HashMapTranslatorAdapter {
template<typename T> static unsigned hash(const T& key) { return Translator::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a, b); }
template<typename T, typename U, typename V> static void translate(T& location, U&& key, V&& mapped, unsigned hashCode)
{
Translator::translate(location.key, key, hashCode);
location.value = std::forward<V>(mapped);
}
};
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::swap(HashMap& other)
{
m_impl.swap(other.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<T, U, V, W, X>::size() const
{
return m_impl.size();
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<T, U, V, W, X>::capacity() const
{
return m_impl.capacity();
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::isEmpty() const
{
return m_impl.isEmpty();
}
template<typename T, typename U, typename V, typename W, typename X>
inline auto HashMap<T, U, V, W, X>::begin() -> iterator
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline auto HashMap<T, U, V, W, X>::end() -> iterator
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline auto HashMap<T, U, V, W, X>::begin() const -> const_iterator
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline auto HashMap<T, U, V, W, X>::end() const -> const_iterator
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline auto HashMap<T, U, V, W, X>::find(const KeyType& key) -> iterator
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline auto HashMap<T, U, V, W, X>::find(const KeyType& key) const -> const_iterator
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::contains(const KeyType& key) const
{
return m_impl.contains(key);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::iterator
HashMap<T, U, V, W, X>::find(const TYPE& value)
{
return m_impl.template find<HashMapTranslatorAdapter<KeyValuePairTraits, HashTranslator>>(value);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::find(const TYPE& value) const
{
return m_impl.template find<HashMapTranslatorAdapter<KeyValuePairTraits, HashTranslator>>(value);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename HashTranslator, typename TYPE>
inline bool HashMap<T, U, V, W, X>::contains(const TYPE& value) const
{
return m_impl.template contains<HashMapTranslatorAdapter<KeyValuePairTraits, HashTranslator>>(value);
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename K, typename V>
auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::inlineSet(K&& key, V&& value) -> AddResult
{
AddResult result = inlineAdd(std::forward<K>(key), std::forward<V>(value));
if (!result.isNewEntry) {
// The inlineAdd call above found an existing hash table entry; we need to set the mapped value.
result.iterator->value = std::forward<V>(value);
}
return result;
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename K, typename V>
ALWAYS_INLINE auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::inlineAdd(K&& key, V&& value) -> AddResult
{
return m_impl.template add<HashMapTranslator<KeyValuePairTraits, HashFunctions>>(std::forward<K>(key), std::forward<V>(value));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename T>
auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::set(const KeyType& key, T&& mapped) -> AddResult
{
return inlineSet(key, std::forward<T>(mapped));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename T>
auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::set(KeyType&& key, T&& mapped) -> AddResult
{
return inlineSet(WTF::move(key), std::forward<T>(mapped));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename HashTranslator, typename K, typename V>
auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::add(K&& key, V&& value) -> AddResult
{
return m_impl.template addPassingHashCode<HashMapTranslatorAdapter<KeyValuePairTraits, HashTranslator>>(std::forward<K>(key), std::forward<V>(value));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename T>
auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::add(const KeyType& key, T&& mapped) -> AddResult
{
return inlineAdd(key, std::forward<T>(mapped));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename T>
auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::add(KeyType&& key, T&& mapped) -> AddResult
{
return inlineAdd(WTF::move(key), std::forward<T>(mapped));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename T>
ALWAYS_INLINE auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::fastAdd(const KeyType& key, T&& mapped) -> AddResult
{
return inlineAdd(key, std::forward<T>(mapped));
}
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
template<typename T>
ALWAYS_INLINE auto HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::fastAdd(KeyType&& key, T&& mapped) -> AddResult
{
return inlineAdd(WTF::move(key), std::forward<T>(mapped));
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
auto HashMap<T, U, V, W, MappedTraits>::get(const KeyType& key) const -> MappedPeekType
{
KeyValuePairType* entry = const_cast<HashTableType&>(m_impl).lookup(key);
if (!entry)
return MappedTraits::peek(MappedTraits::emptyValue());
return MappedTraits::peek(entry->value);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::remove(iterator it)
{
if (it.m_impl == m_impl.end())
return false;
m_impl.internalCheckTableConsistency();
m_impl.removeWithoutEntryConsistencyCheck(it.m_impl);
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename Functor>
inline void HashMap<T, U, V, W, X>::removeIf(const Functor& functor)
{
m_impl.removeIf(functor);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::remove(const KeyType& key)
{
return remove(find(key));
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::clear()
{
m_impl.clear();
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
auto HashMap<T, U, V, W, MappedTraits>::take(const KeyType& key) -> MappedType
{
iterator it = find(key);
if (it == end())
return MappedTraits::emptyValue();
MappedType value = WTF::move(it->value);
remove(it);
return value;
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::checkConsistency() const
{
m_impl.checkTableConsistency();
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::isValidKey(const KeyType& key)
{
if (KeyTraits::isDeletedValue(key))
return false;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (key == KeyTraits::emptyValue())
return false;
} else {
if (isHashTraitsEmptyValue<KeyTraits>(key))
return false;
}
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
bool operator==(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b)
{
if (a.size() != b.size())
return false;
typedef typename HashMap<T, U, V, W, X>::const_iterator const_iterator;
const_iterator end = a.end();
const_iterator notFound = b.end();
for (const_iterator it = a.begin(); it != end; ++it) {
const_iterator bPos = b.find(it->key);
if (bPos == notFound || it->value != bPos->value)
return false;
}
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool operator!=(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b)
{
return !(a == b);
}
template<typename T, typename U, typename V, typename W, typename X, typename Y>
inline void copyKeysToVector(const HashMap<T, U, V, W, X>& collection, Y& vector)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator::Keys iterator;
vector.resize(collection.size());
iterator it = collection.begin().keys();
iterator end = collection.end().keys();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
template<typename T, typename U, typename V, typename W, typename X, typename Y>
inline void copyValuesToVector(const HashMap<T, U, V, W, X>& collection, Y& vector)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator::Values iterator;
vector.resize(collection.size());
iterator it = collection.begin().values();
iterator end = collection.end().values();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
} // namespace WTF
using WTF::HashMap;
#include <wtf/RefPtrHashMap.h>
#endif /* WTF_HashMap_h */
|