1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
/*
* Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com)
* Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "BitmapImage.h"
#include "FloatRect.h"
#include "GraphicsContext.h"
#include "ImageBuffer.h"
#include "ImageObserver.h"
#include "IntRect.h"
#include "MIMETypeRegistry.h"
#include "Timer.h"
#include <wtf/CurrentTime.h>
#include <wtf/Vector.h>
#include <wtf/text/WTFString.h>
#if PLATFORM(IOS)
#include <limits>
#endif
namespace WebCore {
BitmapImage::BitmapImage(ImageObserver* observer)
: Image(observer)
, m_minimumSubsamplingLevel(0)
, m_imageOrientation(OriginTopLeft)
, m_shouldRespectImageOrientation(false)
, m_currentFrame(0)
, m_repetitionCount(cAnimationNone)
, m_repetitionCountStatus(Unknown)
, m_repetitionsComplete(0)
, m_desiredFrameStartTime(0)
, m_decodedSize(0)
, m_decodedPropertiesSize(0)
, m_frameCount(0)
#if PLATFORM(IOS)
// FIXME: We should expose a setting to enable/disable progressive loading remove the PLATFORM(IOS)-guard.
, m_progressiveLoadChunkTime(0)
, m_progressiveLoadChunkCount(0)
, m_allowSubsampling(true)
#else
, m_allowSubsampling(false)
#endif
, m_isSolidColor(false)
, m_checkedForSolidColor(false)
, m_animationFinished(false)
, m_allDataReceived(false)
, m_haveSize(false)
, m_sizeAvailable(false)
, m_hasUniformFrameSize(true)
, m_haveFrameCount(false)
, m_cachedImage(0)
{
}
BitmapImage::~BitmapImage()
{
invalidatePlatformData();
stopAnimation();
}
bool BitmapImage::haveFrameAtIndex(size_t index)
{
if (index >= frameCount())
return false;
if (index >= m_frames.size())
return false;
return m_frames[index].m_frame;
}
bool BitmapImage::hasSingleSecurityOrigin() const
{
return true;
}
void BitmapImage::destroyDecodedData(bool destroyAll)
{
unsigned frameBytesCleared = 0;
const size_t clearBeforeFrame = destroyAll ? m_frames.size() : m_currentFrame;
// Because we can advance frames without always needing to decode the actual
// bitmap data, |m_currentFrame| may be larger than m_frames.size();
// make sure not to walk off the end of the container in this case.
for (size_t i = 0; i < std::min(clearBeforeFrame, m_frames.size()); ++i) {
// The underlying frame isn't actually changing (we're just trying to
// save the memory for the framebuffer data), so we don't need to clear
// the metadata.
unsigned frameBytes = m_frames[i].m_frameBytes;
if (m_frames[i].clear(false))
frameBytesCleared += frameBytes;
}
destroyMetadataAndNotify(frameBytesCleared);
m_source.clear(destroyAll, clearBeforeFrame, data(), m_allDataReceived);
return;
}
void BitmapImage::destroyDecodedDataIfNecessary(bool destroyAll)
{
// Animated images over a certain size are considered large enough that we'll only hang on
// to one frame at a time.
#if PLATFORM(IOS)
const unsigned largeAnimationCutoff = 2097152;
#else
const unsigned largeAnimationCutoff = 5242880;
#endif
// If we have decoded frames but there is no encoded data, we shouldn't destroy
// the decoded image since we won't be able to reconstruct it later.
if (!data() && m_frames.size())
return;
unsigned allFrameBytes = 0;
for (size_t i = 0; i < m_frames.size(); ++i)
allFrameBytes += m_frames[i].m_frameBytes;
if (allFrameBytes > largeAnimationCutoff)
destroyDecodedData(destroyAll);
}
void BitmapImage::destroyMetadataAndNotify(unsigned frameBytesCleared)
{
m_isSolidColor = false;
m_checkedForSolidColor = false;
invalidatePlatformData();
ASSERT(m_decodedSize >= frameBytesCleared);
m_decodedSize -= frameBytesCleared;
if (frameBytesCleared > 0) {
frameBytesCleared += m_decodedPropertiesSize;
m_decodedPropertiesSize = 0;
}
if (frameBytesCleared && imageObserver())
imageObserver()->decodedSizeChanged(this, -safeCast<int>(frameBytesCleared));
}
void BitmapImage::cacheFrame(size_t index, SubsamplingLevel subsamplingLevel, ImageFrameCaching frameCaching)
{
size_t numFrames = frameCount();
ASSERT(m_decodedSize == 0 || numFrames > 1);
if (m_frames.size() < numFrames)
m_frames.grow(numFrames);
if (frameCaching == CacheMetadataAndFrame) {
m_frames[index].m_frame = m_source.createFrameAtIndex(index, subsamplingLevel);
m_frames[index].m_subsamplingLevel = subsamplingLevel;
if (numFrames == 1 && m_frames[index].m_frame)
checkForSolidColor();
}
m_frames[index].m_orientation = m_source.orientationAtIndex(index);
m_frames[index].m_haveMetadata = true;
m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index);
if (repetitionCount(false) != cAnimationNone)
m_frames[index].m_duration = m_source.frameDurationAtIndex(index);
m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index);
m_frames[index].m_frameBytes = m_source.frameBytesAtIndex(index, subsamplingLevel);
const IntSize frameSize(index ? m_source.frameSizeAtIndex(index, subsamplingLevel) : m_size);
if (!subsamplingLevel && frameSize != m_size)
m_hasUniformFrameSize = false;
if (m_frames[index].m_frame) {
int deltaBytes = safeCast<int>(m_frames[index].m_frameBytes);
m_decodedSize += deltaBytes;
// The fully-decoded frame will subsume the partially decoded data used
// to determine image properties.
deltaBytes -= m_decodedPropertiesSize;
m_decodedPropertiesSize = 0;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
}
void BitmapImage::didDecodeProperties() const
{
if (m_decodedSize)
return;
size_t updatedSize = m_source.bytesDecodedToDetermineProperties();
if (m_decodedPropertiesSize == updatedSize)
return;
int deltaBytes = updatedSize - m_decodedPropertiesSize;
#if !ASSERT_DISABLED
bool overflow = updatedSize > m_decodedPropertiesSize && deltaBytes < 0;
bool underflow = updatedSize < m_decodedPropertiesSize && deltaBytes > 0;
ASSERT(!overflow && !underflow);
#endif
m_decodedPropertiesSize = updatedSize;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, deltaBytes);
}
void BitmapImage::updateSize(ImageOrientationDescription description) const
{
if (!m_sizeAvailable || m_haveSize)
return;
m_size = m_source.size(description);
m_sizeRespectingOrientation = m_source.size(ImageOrientationDescription(RespectImageOrientation, description.imageOrientation()));
m_imageOrientation = static_cast<unsigned>(description.imageOrientation());
m_shouldRespectImageOrientation = static_cast<unsigned>(description.respectImageOrientation());
m_haveSize = true;
determineMinimumSubsamplingLevel();
didDecodeProperties();
}
FloatSize BitmapImage::size() const
{
updateSize();
return m_size;
}
IntSize BitmapImage::sizeRespectingOrientation(ImageOrientationDescription description) const
{
updateSize(description);
return m_sizeRespectingOrientation;
}
bool BitmapImage::getHotSpot(IntPoint& hotSpot) const
{
bool result = m_source.getHotSpot(hotSpot);
didDecodeProperties();
return result;
}
bool BitmapImage::dataChanged(bool allDataReceived)
{
// Because we're modifying the current frame, clear its (now possibly
// inaccurate) metadata as well.
#if !PLATFORM(IOS)
// Clear all partially-decoded frames. For most image formats, there is only
// one frame, but at least GIF and ICO can have more. With GIFs, the frames
// come in order and we ask to decode them in order, waiting to request a
// subsequent frame until the prior one is complete. Given that we clear
// incomplete frames here, this means there is at most one incomplete frame
// (even if we use destroyDecodedData() -- since it doesn't reset the
// metadata), and it is after all the complete frames.
//
// With ICOs, on the other hand, we may ask for arbitrary frames at
// different times (e.g. because we're displaying a higher-resolution image
// in the content area and using a lower-resolution one for the favicon),
// and the frames aren't even guaranteed to appear in the file in the same
// order as in the directory, so an arbitrary number of the frames might be
// incomplete (if we ask for frames for which we've not yet reached the
// start of the frame data), and any or none of them might be the particular
// frame affected by appending new data here. Thus we have to clear all the
// incomplete frames to be safe.
unsigned frameBytesCleared = 0;
for (size_t i = 0; i < m_frames.size(); ++i) {
// NOTE: Don't call frameIsCompleteAtIndex() here, that will try to
// decode any uncached (i.e. never-decoded or
// cleared-on-a-previous-pass) frames!
unsigned frameBytes = m_frames[i].m_frameBytes;
if (m_frames[i].m_haveMetadata && !m_frames[i].m_isComplete)
frameBytesCleared += (m_frames[i].clear(true) ? frameBytes : 0);
}
destroyMetadataAndNotify(frameBytesCleared);
#else
// FIXME: why is this different for iOS?
int deltaBytes = 0;
if (!m_frames.isEmpty()) {
int bytes = m_frames[m_frames.size() - 1].m_frameBytes;
if (m_frames[m_frames.size() - 1].clear(true)) {
deltaBytes += bytes;
deltaBytes += m_decodedPropertiesSize;
m_decodedPropertiesSize = 0;
}
}
destroyMetadataAndNotify(deltaBytes);
#endif
// Feed all the data we've seen so far to the image decoder.
m_allDataReceived = allDataReceived;
#if PLATFORM(IOS)
// FIXME: We should expose a setting to enable/disable progressive loading and make this
// code conditional on it. Then we can remove the PLATFORM(IOS)-guard.
static const double chunkLoadIntervals[] = {0, 1, 3, 6, 15};
double interval = chunkLoadIntervals[std::min(m_progressiveLoadChunkCount, static_cast<uint16_t>(4))];
bool needsUpdate = false;
if (currentTime() - m_progressiveLoadChunkTime > interval) { // The first time through, the chunk time will be 0 and the image will get an update.
needsUpdate = true;
m_progressiveLoadChunkTime = currentTime();
ASSERT(m_progressiveLoadChunkCount <= std::numeric_limits<uint16_t>::max());
++m_progressiveLoadChunkCount;
}
if (needsUpdate || allDataReceived)
m_source.setData(data(), allDataReceived);
#else
m_source.setData(data(), allDataReceived);
#endif
m_haveFrameCount = false;
m_hasUniformFrameSize = true;
return isSizeAvailable();
}
String BitmapImage::filenameExtension() const
{
return m_source.filenameExtension();
}
size_t BitmapImage::frameCount()
{
if (!m_haveFrameCount) {
m_frameCount = m_source.frameCount();
// If decoder is not initialized yet, m_source.frameCount() returns 0.
if (m_frameCount) {
didDecodeProperties();
m_haveFrameCount = true;
}
}
return m_frameCount;
}
bool BitmapImage::isSizeAvailable()
{
if (m_sizeAvailable)
return true;
m_sizeAvailable = m_source.isSizeAvailable();
didDecodeProperties();
return m_sizeAvailable;
}
bool BitmapImage::ensureFrameIsCached(size_t index, ImageFrameCaching frameCaching)
{
if (index >= frameCount())
return false;
if (index >= m_frames.size()
|| (frameCaching == CacheMetadataAndFrame && !m_frames[index].m_frame)
|| (frameCaching == CacheMetadataOnly && !m_frames[index].m_haveMetadata))
cacheFrame(index, 0, frameCaching);
return true;
}
PassNativeImagePtr BitmapImage::frameAtIndex(size_t index, float presentationScaleHint)
{
if (index >= frameCount())
return nullptr;
SubsamplingLevel subsamplingLevel = std::min(m_source.subsamplingLevelForScale(presentationScaleHint), m_minimumSubsamplingLevel);
// We may have cached a frame with a higher subsampling level, in which case we need to
// re-decode with a lower level.
if (index < m_frames.size() && m_frames[index].m_frame && subsamplingLevel < m_frames[index].m_subsamplingLevel) {
// If the image is already cached, but at too small a size, re-decode a larger version.
int sizeChange = -m_frames[index].m_frameBytes;
m_frames[index].clear(true);
invalidatePlatformData();
m_decodedSize += sizeChange;
if (imageObserver())
imageObserver()->decodedSizeChanged(this, sizeChange);
}
// If we haven't fetched a frame yet, do so.
if (index >= m_frames.size() || !m_frames[index].m_frame)
cacheFrame(index, subsamplingLevel, CacheMetadataAndFrame);
return m_frames[index].m_frame;
}
bool BitmapImage::frameIsCompleteAtIndex(size_t index)
{
if (!ensureFrameIsCached(index, CacheMetadataOnly))
return false;
return m_frames[index].m_isComplete;
}
float BitmapImage::frameDurationAtIndex(size_t index)
{
if (!ensureFrameIsCached(index, CacheMetadataOnly))
return 0;
return m_frames[index].m_duration;
}
PassNativeImagePtr BitmapImage::nativeImageForCurrentFrame()
{
return frameAtIndex(currentFrame());
}
bool BitmapImage::frameHasAlphaAtIndex(size_t index)
{
if (!ensureFrameIsCached(index, CacheMetadataOnly))
return true;
if (m_frames[index].m_haveMetadata)
return m_frames[index].m_hasAlpha;
return m_source.frameHasAlphaAtIndex(index);
}
bool BitmapImage::currentFrameKnownToBeOpaque()
{
return !frameHasAlphaAtIndex(currentFrame());
}
ImageOrientation BitmapImage::frameOrientationAtIndex(size_t index)
{
if (!ensureFrameIsCached(index, CacheMetadataOnly))
return DefaultImageOrientation;
if (m_frames[index].m_haveMetadata)
return m_frames[index].m_orientation;
return m_source.orientationAtIndex(index);
}
#if !ASSERT_DISABLED
bool BitmapImage::notSolidColor()
{
return size().width() != 1 || size().height() != 1 || frameCount() > 1;
}
#endif
int BitmapImage::repetitionCount(bool imageKnownToBeComplete)
{
if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) {
// Snag the repetition count. If |imageKnownToBeComplete| is false, the
// repetition count may not be accurate yet for GIFs; in this case the
// decoder will default to cAnimationLoopOnce, and we'll try and read
// the count again once the whole image is decoded.
m_repetitionCount = m_source.repetitionCount();
didDecodeProperties();
m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain;
}
return m_repetitionCount;
}
bool BitmapImage::shouldAnimate()
{
return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver());
}
void BitmapImage::startAnimation(CatchUpAnimation catchUpIfNecessary)
{
if (m_frameTimer || !shouldAnimate() || frameCount() <= 1)
return;
// If we aren't already animating, set now as the animation start time.
const double time = monotonicallyIncreasingTime();
if (!m_desiredFrameStartTime)
m_desiredFrameStartTime = time;
// Don't advance the animation to an incomplete frame.
size_t nextFrame = (m_currentFrame + 1) % frameCount();
if (!m_allDataReceived && !frameIsCompleteAtIndex(nextFrame))
return;
// Don't advance past the last frame if we haven't decoded the whole image
// yet and our repetition count is potentially unset. The repetition count
// in a GIF can potentially come after all the rest of the image data, so
// wait on it.
if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1))
return;
// Determine time for next frame to start. By ignoring paint and timer lag
// in this calculation, we make the animation appear to run at its desired
// rate regardless of how fast it's being repainted.
const double currentDuration = frameDurationAtIndex(m_currentFrame);
m_desiredFrameStartTime += currentDuration;
#if !PLATFORM(IOS)
// When an animated image is more than five minutes out of date, the
// user probably doesn't care about resyncing and we could burn a lot of
// time looping through frames below. Just reset the timings.
const double cAnimationResyncCutoff = 5 * 60;
if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff)
m_desiredFrameStartTime = time + currentDuration;
#else
// Maintaining frame-to-frame delays is more important than
// maintaining absolute animation timing, so reset the timings each frame.
m_desiredFrameStartTime = time + currentDuration;
#endif
// The image may load more slowly than it's supposed to animate, so that by
// the time we reach the end of the first repetition, we're well behind.
// Clamp the desired frame start time in this case, so that we don't skip
// frames (or whole iterations) trying to "catch up". This is a tradeoff:
// It guarantees users see the whole animation the second time through and
// don't miss any repetitions, and is closer to what other browsers do; on
// the other hand, it makes animations "less accurate" for pages that try to
// sync an image and some other resource (e.g. audio), especially if users
// switch tabs (and thus stop drawing the animation, which will pause it)
// during that initial loop, then switch back later.
if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time)
m_desiredFrameStartTime = time;
if (catchUpIfNecessary == DoNotCatchUp || time < m_desiredFrameStartTime) {
// Haven't yet reached time for next frame to start; delay until then.
m_frameTimer = std::make_unique<Timer<BitmapImage>>(this, &BitmapImage::advanceAnimation);
m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.));
} else {
// We've already reached or passed the time for the next frame to start.
// See if we've also passed the time for frames after that to start, in
// case we need to skip some frames entirely. Remember not to advance
// to an incomplete frame.
for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) {
// Should we skip the next frame?
double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame);
if (time < frameAfterNextStartTime)
break;
// Yes; skip over it without notifying our observers.
if (!internalAdvanceAnimation(true))
return;
m_desiredFrameStartTime = frameAfterNextStartTime;
nextFrame = frameAfterNext;
}
// Draw the next frame immediately. Note that m_desiredFrameStartTime
// may be in the past, meaning the next time through this function we'll
// kick off the next advancement sooner than this frame's duration would
// suggest.
if (internalAdvanceAnimation(false)) {
// The image region has been marked dirty, but once we return to our
// caller, draw() will clear it, and nothing will cause the
// animation to advance again. We need to start the timer for the
// next frame running, or the animation can hang. (Compare this
// with when advanceAnimation() is called, and the region is dirtied
// while draw() is not in the callstack, meaning draw() gets called
// to update the region and thus startAnimation() is reached again.)
// NOTE: For large images with slow or heavily-loaded systems,
// throwing away data as we go (see destroyDecodedData()) means we
// can spend so much time re-decoding data above that by the time we
// reach here we're behind again. If we let startAnimation() run
// the catch-up code again, we can get long delays without painting
// as we race the timer, or even infinite recursion. In this
// situation the best we can do is to simply change frames as fast
// as possible, so force startAnimation() to set a zero-delay timer
// and bail out if we're not caught up.
startAnimation(DoNotCatchUp);
}
}
}
void BitmapImage::stopAnimation()
{
// This timer is used to animate all occurrences of this image. Don't invalidate
// the timer unless all renderers have stopped drawing.
m_frameTimer = nullptr;
}
void BitmapImage::resetAnimation()
{
stopAnimation();
m_currentFrame = 0;
m_repetitionsComplete = 0;
m_desiredFrameStartTime = 0;
m_animationFinished = false;
// For extremely large animations, when the animation is reset, we just throw everything away.
destroyDecodedDataIfNecessary(true);
}
void BitmapImage::drawPattern(GraphicsContext* ctxt, const FloatRect& tileRect, const AffineTransform& transform,
const FloatPoint& phase, ColorSpace styleColorSpace, CompositeOperator op, const FloatRect& destRect, BlendMode blendMode)
{
if (tileRect.isEmpty())
return;
if (!ctxt->drawLuminanceMask()) {
Image::drawPattern(ctxt, tileRect, transform, phase, styleColorSpace, op, destRect, blendMode);
return;
}
if (!m_cachedImage) {
std::unique_ptr<ImageBuffer> buffer = ImageBuffer::create(expandedIntSize(tileRect.size()));
ASSERT(buffer.get());
ImageObserver* observer = imageObserver();
ASSERT(observer);
// Temporarily reset image observer, we don't want to receive any changeInRect() calls due to this relayout.
setImageObserver(0);
draw(buffer->context(), tileRect, tileRect, styleColorSpace, op, blendMode, ImageOrientationDescription());
setImageObserver(observer);
buffer->convertToLuminanceMask();
m_cachedImage = buffer->copyImage(DontCopyBackingStore, Unscaled);
m_cachedImage->setSpaceSize(spaceSize());
setImageObserver(observer);
}
ctxt->setDrawLuminanceMask(false);
m_cachedImage->drawPattern(ctxt, tileRect, transform, phase, styleColorSpace, op, destRect, blendMode);
}
void BitmapImage::advanceAnimation(Timer<BitmapImage>&)
{
internalAdvanceAnimation(false);
// At this point the image region has been marked dirty, and if it's
// onscreen, we'll soon make a call to draw(), which will call
// startAnimation() again to keep the animation moving.
}
bool BitmapImage::internalAdvanceAnimation(bool skippingFrames)
{
// Stop the animation.
stopAnimation();
++m_currentFrame;
bool advancedAnimation = true;
bool destroyAll = false;
if (m_currentFrame >= frameCount()) {
++m_repetitionsComplete;
// Get the repetition count again. If we weren't able to get a
// repetition count before, we should have decoded the whole image by
// now, so it should now be available.
// Note that we don't need to special-case cAnimationLoopOnce here
// because it is 0 (see comments on its declaration in ImageSource.h).
if (repetitionCount(true) != cAnimationLoopInfinite && m_repetitionsComplete > m_repetitionCount) {
m_animationFinished = true;
m_desiredFrameStartTime = 0;
--m_currentFrame;
advancedAnimation = false;
} else {
m_currentFrame = 0;
destroyAll = true;
}
}
destroyDecodedDataIfNecessary(destroyAll);
// We need to draw this frame if we advanced to it while not skipping, or if
// while trying to skip frames we hit the last frame and thus had to stop.
if (skippingFrames != advancedAnimation)
imageObserver()->animationAdvanced(this);
return advancedAnimation;
}
bool BitmapImage::mayFillWithSolidColor()
{
if (!m_checkedForSolidColor && frameCount() > 0) {
checkForSolidColor();
// WINCE PORT: checkForSolidColor() doesn't set m_checkedForSolidColor until
// it gets enough information to make final decision.
#if !OS(WINCE)
ASSERT(m_checkedForSolidColor);
#endif
}
return m_isSolidColor && !m_currentFrame;
}
Color BitmapImage::solidColor() const
{
return m_solidColor;
}
bool BitmapImage::canAnimate()
{
return shouldAnimate() && frameCount() > 1;
}
}
|