File: RenderGrid.cpp

package info (click to toggle)
webkit2gtk 2.6.2%2Bdfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 115,572 kB
  • ctags: 216,388
  • sloc: cpp: 1,164,175; ansic: 18,422; perl: 16,884; python: 11,608; ruby: 9,409; xml: 8,376; asm: 4,765; yacc: 2,292; lex: 891; sh: 650; makefile: 79
file content (986 lines) | stat: -rw-r--r-- 46,603 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/*
 * Copyright (C) 2011 Apple Inc. All rights reserved.
 * Copyright (C) 2013, 2014 Igalia S.L.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "RenderGrid.h"

#if ENABLE(CSS_GRID_LAYOUT)

#include "GridCoordinate.h"
#include "GridResolvedPosition.h"
#include "LayoutRepainter.h"
#include "RenderLayer.h"
#include "RenderView.h"
#include <wtf/NeverDestroyed.h>

namespace WebCore {

static const int infinity = -1;

class GridTrack {
public:
    GridTrack()
        : m_usedBreadth(0)
        , m_maxBreadth(0)
    {
    }

    void growUsedBreadth(LayoutUnit growth)
    {
        ASSERT(growth >= 0);
        m_usedBreadth += growth;
    }
    LayoutUnit usedBreadth() const { return m_usedBreadth; }

    void growMaxBreadth(LayoutUnit growth)
    {
        if (m_maxBreadth == infinity)
            m_maxBreadth = m_usedBreadth + growth;
        else
            m_maxBreadth += growth;
    }
    LayoutUnit maxBreadthIfNotInfinite() const
    {
        return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
    }

    LayoutUnit m_usedBreadth;
    LayoutUnit m_maxBreadth;
};

struct GridTrackForNormalization {
    GridTrackForNormalization(const GridTrack& track, double flex)
        : m_track(&track)
        , m_flex(flex)
        , m_normalizedFlexValue(track.m_usedBreadth / flex)
    {
    }

    const GridTrack* m_track;
    double m_flex;
    LayoutUnit m_normalizedFlexValue;
};

class RenderGrid::GridIterator {
    WTF_MAKE_NONCOPYABLE(GridIterator);
public:
    // |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
    // GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
    GridIterator(const Vector<Vector<Vector<RenderBox*, 1>>>& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex, size_t varyingTrackIndex = 0)
        : m_grid(grid)
        , m_direction(direction)
        , m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex)
        , m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex)
        , m_childIndex(0)
    {
        ASSERT(m_rowIndex < m_grid.size());
        ASSERT(m_columnIndex < m_grid[0].size());
    }

    RenderBox* nextGridItem()
    {
        if (!m_grid.size())
            return 0;

        size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
        const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
        for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
            const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex];
            if (m_childIndex < children.size())
                return children[m_childIndex++];

            m_childIndex = 0;
        }
        return 0;
    }

    bool isEmptyAreaEnough(size_t rowSpan, size_t columnSpan) const
    {
        // Ignore cells outside current grid as we will grow it later if needed.
        size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size());
        size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size());

        // This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
        for (size_t row = m_rowIndex; row < maxRows; ++row) {
            for (size_t column = m_columnIndex; column < maxColumns; ++column) {
                const Vector<RenderBox*>& children = m_grid[row][column];
                if (!children.isEmpty())
                    return false;
            }
        }

        return true;
    }

    std::unique_ptr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan)
    {
        ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);

        if (m_grid.isEmpty())
            return nullptr;

        size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
        size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;

        size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
        const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
        for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
            if (isEmptyAreaEnough(rowSpan, columnSpan)) {
                std::unique_ptr<GridCoordinate> result = std::make_unique<GridCoordinate>(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1));
                // Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
                ++varyingTrackIndex;
                return result;
            }
        }
        return nullptr;
    }

private:
    const Vector<Vector<Vector<RenderBox*, 1>>>& m_grid;
    GridTrackSizingDirection m_direction;
    size_t m_rowIndex;
    size_t m_columnIndex;
    size_t m_childIndex;
};

class RenderGrid::GridSizingData {
    WTF_MAKE_NONCOPYABLE(GridSizingData);
public:
    GridSizingData(size_t gridColumnCount, size_t gridRowCount)
        : columnTracks(gridColumnCount)
        , rowTracks(gridRowCount)
    {
    }

    Vector<GridTrack> columnTracks;
    Vector<GridTrack> rowTracks;
    Vector<size_t> contentSizedTracksIndex;

    // Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
    Vector<LayoutUnit> distributeTrackVector;
    Vector<GridTrack*> filteredTracks;
};

RenderGrid::RenderGrid(Element& element, PassRef<RenderStyle> style)
    : RenderBlock(element, WTF::move(style), 0)
    , m_orderIterator(*this)
{
    // All of our children must be block level.
    setChildrenInline(false);
}

RenderGrid::~RenderGrid()
{
}

void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
    ASSERT(needsLayout());

    if (!relayoutChildren && simplifiedLayout())
        return;

    // FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
    // It would be nice to refactor some of the duplicate code.
    LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
    LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());

    preparePaginationBeforeBlockLayout(relayoutChildren);

    LayoutSize previousSize = size();

    setLogicalHeight(0);
    updateLogicalWidth();

    layoutGridItems();

    LayoutUnit oldClientAfterEdge = clientLogicalBottom();
    updateLogicalHeight();

    if (size() != previousSize)
        relayoutChildren = true;

    layoutPositionedObjects(relayoutChildren || isRoot());

    computeOverflow(oldClientAfterEdge);
    statePusher.pop();

    updateLayerTransform();

    // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
    // we overflow or not.
    updateScrollInfoAfterLayout();

    repainter.repaintAfterLayout();

    clearNeedsLayout();
}

void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
    const_cast<RenderGrid*>(this)->placeItemsOnGrid();

    GridSizingData sizingData(gridColumnCount(), gridRowCount());
    LayoutUnit availableLogicalSpace = 0;
    const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);

    for (size_t i = 0; i < sizingData.columnTracks.size(); ++i) {
        LayoutUnit minTrackBreadth = sizingData.columnTracks[i].m_usedBreadth;
        LayoutUnit maxTrackBreadth = sizingData.columnTracks[i].m_maxBreadth;
        maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);

        minLogicalWidth += minTrackBreadth;
        maxLogicalWidth += maxTrackBreadth;

        // FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
    }

    const_cast<RenderGrid*>(this)->clearGrid();
}

void RenderGrid::computePreferredLogicalWidths()
{
    ASSERT(preferredLogicalWidthsDirty());

    m_minPreferredLogicalWidth = 0;
    m_maxPreferredLogicalWidth = 0;

    // FIXME: We don't take our own logical width into account. Once we do, we need to make sure
    // we apply (and test the interaction with) min-width / max-width.

    computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);

    LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
    m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
    m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;

    setPreferredLogicalWidthsDirty(false);
}

void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
    LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
    computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
}

bool RenderGrid::gridElementIsShrinkToFit()
{
    return isFloatingOrOutOfFlowPositioned();
}

void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
    Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
    Vector<size_t> flexibleSizedTracksIndex;
    sizingData.contentSizedTracksIndex.shrink(0);

    // 1. Initialize per Grid track variables.
    for (size_t i = 0; i < tracks.size(); ++i) {
        GridTrack& track = tracks[i];
        const GridTrackSize& trackSize = gridTrackSize(direction, i);
        const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
        const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();

        track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
        track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.m_usedBreadth);

        track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);

        if (trackSize.isContentSized())
            sizingData.contentSizedTracksIndex.append(i);
        if (trackSize.maxTrackBreadth().isFlex())
            flexibleSizedTracksIndex.append(i);
    }

    // 2. Resolve content-based TrackSizingFunctions.
    if (!sizingData.contentSizedTracksIndex.isEmpty())
        resolveContentBasedTrackSizingFunctions(direction, sizingData);

    for (size_t i = 0; i < tracks.size(); ++i) {
        ASSERT(tracks[i].m_maxBreadth != infinity);
        availableLogicalSpace -= tracks[i].m_usedBreadth;
    }

    const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style().logicalHeight().isAuto() : gridElementIsShrinkToFit();

    if (!hasUndefinedRemainingSpace && availableLogicalSpace <= 0)
        return;

    // 3. Grow all Grid tracks in GridTracks from their UsedBreadth up to their MaxBreadth value until
    // availableLogicalSpace (RemainingSpace in the specs) is exhausted.
    const size_t tracksSize = tracks.size();
    if (!hasUndefinedRemainingSpace) {
        Vector<GridTrack*> tracksForDistribution(tracksSize);
        for (size_t i = 0; i < tracksSize; ++i)
            tracksForDistribution[i] = tracks.data() + i;

        distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, sizingData, availableLogicalSpace);
    } else {
        for (size_t i = 0; i < tracksSize; ++i)
            tracks[i].m_usedBreadth = tracks[i].m_maxBreadth;
    }

    if (flexibleSizedTracksIndex.isEmpty())
        return;

    // 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
    double normalizedFractionBreadth = 0;
    if (!hasUndefinedRemainingSpace)
        normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, availableLogicalSpace);
    else {
        for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
            const size_t trackIndex = flexibleSizedTracksIndex[i];
            const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
            normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].m_usedBreadth / trackSize.maxTrackBreadth().flex());
        }

        for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
            GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
            while (RenderBox* gridItem = iterator.nextGridItem()) {
                const GridCoordinate coordinate = cachedGridCoordinate(*gridItem);
                const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;

                // Do not include already processed items.
                if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1])
                    continue;

                double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(*gridItem, direction, sizingData.columnTracks));
                normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth);
            }
        }
    }

    for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
        const size_t trackIndex = flexibleSizedTracksIndex[i];
        const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);

        tracks[trackIndex].m_usedBreadth = std::max<LayoutUnit>(tracks[trackIndex].m_usedBreadth, normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
    }
}

LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const
{
    if (gridLength.isFlex())
        return 0;

    const Length& trackLength = gridLength.length();
    ASSERT(!trackLength.isAuto());
    if (trackLength.isSpecified())
        return computeUsedBreadthOfSpecifiedLength(direction, trackLength);

    ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
    return 0;
}

LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
{
    if (gridLength.isFlex())
        return usedBreadth;

    const Length& trackLength = gridLength.length();
    ASSERT(!trackLength.isAuto());
    if (trackLength.isSpecified()) {
        LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
        ASSERT(computedBreadth != infinity);
        return computedBreadth;
    }

    ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
    return infinity;
}

LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const
{
    ASSERT(trackLength.isSpecified());
    return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style().logicalHeight()));
}

double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit availableLogicalSpace) const
{
    // |availableLogicalSpace| already accounts for the used breadths so no need to remove it here.

    Vector<GridTrackForNormalization> tracksForNormalization;
    for (auto position : tracksSpan) {
        const GridTrackSize& trackSize = gridTrackSize(direction, position.toInt());
        if (!trackSize.maxTrackBreadth().isFlex())
            continue;

        tracksForNormalization.append(GridTrackForNormalization(tracks[position.toInt()], trackSize.maxTrackBreadth().flex()));
    }

    // The function is not called if we don't have <flex> grid tracks
    ASSERT(!tracksForNormalization.isEmpty());

    std::sort(tracksForNormalization.begin(), tracksForNormalization.end(),
              [](const GridTrackForNormalization& track1, const GridTrackForNormalization& track2) {
                  return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
              });

    // These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
    // to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
    // fit into availableLogicalSpaceIgnoringFractionTracks.
    double accumulatedFractions = 0;
    LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
    LayoutUnit availableLogicalSpaceIgnoringFractionTracks = availableLogicalSpace;

    for (size_t i = 0; i < tracksForNormalization.size(); ++i) {
        const GridTrackForNormalization& track = tracksForNormalization[i];
        if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
            // If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
            // will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
            if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
                break;

            fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
        }

        accumulatedFractions += track.m_flex;
        // This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
        availableLogicalSpaceIgnoringFractionTracks += track.m_track->m_usedBreadth;
    }

    return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
}

const GridTrackSize& RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const
{
    const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style().gridColumns() : style().gridRows();
    if (i >= trackStyles.size())
        return (direction == ForColumns) ? style().gridAutoColumns() : style().gridAutoRows();

    const GridTrackSize& trackSize = trackStyles[i];
    // If the logical width/height of the grid container is indefinite, percentage values are treated as <auto>.
    if (trackSize.isPercentage()) {
        Length logicalSize = direction == ForColumns ? style().logicalWidth() : style().logicalHeight();
        if (logicalSize.isIntrinsicOrAuto()) {
            static NeverDestroyed<GridTrackSize> autoTrackSize(Auto);
            return autoTrackSize.get();
        }
    }

    return trackSize;
}

LayoutUnit RenderGrid::logicalContentHeightForChild(RenderBox& child, Vector<GridTrack>& columnTracks)
{
    LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child.hasOverrideContainingBlockLogicalWidth() ? child.overrideContainingBlockContentLogicalWidth() : LayoutUnit();
    LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
    if (child.style().logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth)
        child.setNeedsLayout(MarkOnlyThis);

    child.setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
    // If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
    // what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
    child.setOverrideContainingBlockContentLogicalHeight(-1);
    child.layoutIfNeeded();
    return child.logicalHeight() + child.marginLogicalHeight();
}

LayoutUnit RenderGrid::minContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
    bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
    // FIXME: Properly support orthogonal writing mode.
    if (hasOrthogonalWritingMode)
        return 0;

    if (direction == ForColumns) {
        // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
        // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
        return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
    }

    return logicalContentHeightForChild(child, columnTracks);
}

LayoutUnit RenderGrid::maxContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
    bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
    // FIXME: Properly support orthogonal writing mode.
    if (hasOrthogonalWritingMode)
        return LayoutUnit();

    if (direction == ForColumns) {
        // FIXME: It's unclear if we should return the intrinsic width or the preferred width.
        // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
        return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child);
    }

    return logicalContentHeightForChild(child, columnTracks);
}

class GridItemWithSpan {
public:
    GridItemWithSpan(RenderBox& gridItem, GridCoordinate coordinate, GridTrackSizingDirection direction)
        : m_gridItem(gridItem)
        , m_coordinate(coordinate)
    {
        const GridSpan& span = (direction == ForRows) ? coordinate.rows : coordinate.columns;
        m_span = span.resolvedFinalPosition.toInt() - span.resolvedInitialPosition.toInt() + 1;
    }

    RenderBox& gridItem() const { return m_gridItem; }
    GridCoordinate coordinate() const { return m_coordinate; }

    bool operator<(const GridItemWithSpan other) const
    {
        return m_span < other.m_span;
    }

private:
    std::reference_wrapper<RenderBox> m_gridItem;
    GridCoordinate m_coordinate;
    size_t m_span;
};

void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
    // FIXME: Split the grid tracks into groups that doesn't overlap a <flex> grid track.

    for (size_t i = 0; i < sizingData.contentSizedTracksIndex.size(); ++i) {
        GridIterator iterator(m_grid, direction, sizingData.contentSizedTracksIndex[i]);
        HashSet<RenderBox*> itemsSet;
        Vector<GridItemWithSpan> itemsSortedByIncreasingSpan;

        while (RenderBox* gridItem = iterator.nextGridItem()) {
            if (itemsSet.add(gridItem).isNewEntry)
                itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, cachedGridCoordinate(*gridItem), direction));
        }
        std::stable_sort(itemsSortedByIncreasingSpan.begin(), itemsSortedByIncreasingSpan.end());

        for (auto& itemWithSpan : itemsSortedByIncreasingSpan) {
            resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
            resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
            resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
            resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
        }

        GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[i] : sizingData.rowTracks[i];
        if (track.m_maxBreadth == infinity)
            track.m_maxBreadth = track.m_usedBreadth;
    }
}

void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, GridItemWithSpan& gridItemWithSpan, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction)
{
    const GridCoordinate& coordinate = gridItemWithSpan.coordinate();
    const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
    const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition;

    sizingData.filteredTracks.shrink(0);
    for (GridResolvedPosition trackIndex = initialTrackPosition; trackIndex <= finalTrackPosition; ++trackIndex) {
        const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex.toInt());
        if (!(trackSize.*filterFunction)())
            continue;

        GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex.toInt()] : sizingData.rowTracks[trackIndex.toInt()];
        sizingData.filteredTracks.append(&track);
    }

    if (sizingData.filteredTracks.isEmpty())
        return;

    LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItemWithSpan.gridItem(), direction, sizingData.columnTracks);
    for (GridResolvedPosition trackPositionForSpace = initialTrackPosition; trackPositionForSpace <= finalTrackPosition; ++trackPositionForSpace) {
        GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPositionForSpace.toInt()] : sizingData.rowTracks[trackPositionForSpace.toInt()];
        additionalBreadthSpace -= (track.*trackGetter)();
    }

    // FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|.
    distributeSpaceToTracks(sizingData.filteredTracks, &sizingData.filteredTracks, trackGetter, trackGrowthFunction, sizingData, additionalBreadthSpace);
}

static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
    return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
}

void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
    std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);

    size_t tracksSize = tracks.size();
    sizingData.distributeTrackVector.resize(tracksSize);

    for (size_t i = 0; i < tracksSize; ++i) {
        GridTrack& track = *tracks[i];
        LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
        LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
        LayoutUnit growthShare = std::max(LayoutUnit(), std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth));
        // We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
        sizingData.distributeTrackVector[i] = trackBreadth + growthShare;
        availableLogicalSpace -= growthShare;
    }

    if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) {
        tracksSize = tracksForGrowthAboveMaxBreadth->size();
        for (size_t i = 0; i < tracksSize; ++i) {
            LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i);
            sizingData.distributeTrackVector[i] += growthShare;
            availableLogicalSpace -= growthShare;
        }
    }

    for (size_t i = 0; i < tracksSize; ++i) {
        LayoutUnit growth = sizingData.distributeTrackVector[i] - (tracks[i]->*trackGetter)();
        if (growth >= 0)
            (tracks[i]->*trackGrowthFunction)(growth);
    }
}

#ifndef NDEBUG
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
    for (size_t i = 0; i < tracks.size(); ++i) {
        const GridTrackSize& trackSize = gridTrackSize(direction, i);
        const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
        if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
            return false;
    }
    return true;
}
#endif

void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex)
{
    const size_t oldRowCount = gridRowCount();
    if (maximumRowIndex >= oldRowCount) {
        m_grid.grow(maximumRowIndex + 1);
        for (size_t row = oldRowCount; row < gridRowCount(); ++row)
            m_grid[row].grow(gridColumnCount());
    }

    if (maximumColumnIndex >= gridColumnCount()) {
        for (size_t row = 0; row < gridRowCount(); ++row)
            m_grid[row].grow(maximumColumnIndex + 1);
    }
}

void RenderGrid::insertItemIntoGrid(RenderBox& child, const GridCoordinate& coordinate)
{
    ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt());

    for (auto row : coordinate.rows) {
        for (auto column : coordinate.columns)
            m_grid[row.toInt()][column.toInt()].append(&child);
    }
    m_gridItemCoordinate.set(&child, coordinate);
}

void RenderGrid::placeItemsOnGrid()
{
    ASSERT(!gridWasPopulated());
    ASSERT(m_gridItemCoordinate.isEmpty());

    populateExplicitGridAndOrderIterator();

    Vector<RenderBox*> autoMajorAxisAutoGridItems;
    Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
    for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
        // FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
        // positions to not match the author's intent. The specification is unclear on what should be done in this case.
        std::unique_ptr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForRows);
        std::unique_ptr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForColumns);
        if (!rowPositions || !columnPositions) {
            GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
            if (!majorAxisPositions)
                autoMajorAxisAutoGridItems.append(child);
            else
                specifiedMajorAxisAutoGridItems.append(child);
            continue;
        }
        insertItemIntoGrid(*child, GridCoordinate(*rowPositions, *columnPositions));
    }

    ASSERT(gridRowCount() >= style().gridRows().size());
    ASSERT(gridColumnCount() >= style().gridColumns().size());

    // FIXME: Implement properly "stack" value in auto-placement algorithm.
    if (style().isGridAutoFlowAlgorithmStack()) {
        // If we did collect some grid items, they won't be placed thus never laid out.
        ASSERT(!autoMajorAxisAutoGridItems.size());
        ASSERT(!specifiedMajorAxisAutoGridItems.size());
        return;
    }

    placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
    placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
}

void RenderGrid::populateExplicitGridAndOrderIterator()
{
    OrderIteratorPopulator populator(m_orderIterator);
    size_t maximumRowIndex = std::max<size_t>(1, style().gridRows().size());
    size_t maximumColumnIndex = std::max<size_t>(1, style().gridColumns().size());

    for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
        populator.collectChild(*child);

        // This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
        std::unique_ptr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForRows);
        std::unique_ptr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *child, ForColumns);

        // |positions| is 0 if we need to run the auto-placement algorithm.
        if (rowPositions)
            maximumRowIndex = std::max(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt());
        else {
            // Grow the grid for items with a definite row span, getting the largest such span.
            GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *child, ForRows, GridResolvedPosition(0));
            maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt());
        }

        if (columnPositions)
            maximumColumnIndex = std::max(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt());
        else {
            // Grow the grid for items with a definite column span, getting the largest such span.
            GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *child, ForColumns, GridResolvedPosition(0));
            maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt());
        }
    }

    m_grid.grow(maximumRowIndex);
    for (size_t i = 0; i < m_grid.size(); ++i)
        m_grid[i].grow(maximumColumnIndex);
}

std::unique_ptr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
{
    GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
    const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
    GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection));
    return std::make_unique<GridCoordinate>(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions);
}

void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
    for (auto& autoGridItem : autoGridItems) {
        std::unique_ptr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), *autoGridItem, autoPlacementMajorAxisDirection());
        GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), *autoGridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));

        GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt());
        std::unique_ptr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan());
        if (!emptyGridArea)
            emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItem, autoPlacementMajorAxisDirection(), *majorAxisPositions);
        insertItemIntoGrid(*autoGridItem, *emptyGridArea);
    }
}

void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
    AutoPlacementCursor autoPlacementCursor = {0, 0};
    bool isGridAutoFlowDense = style().isGridAutoFlowAlgorithmDense();

    for (auto& autoGridItem : autoGridItems) {
        placeAutoMajorAxisItemOnGrid(*autoGridItem, autoPlacementCursor);

        if (isGridAutoFlowDense) {
            autoPlacementCursor.first = 0;
            autoPlacementCursor.second = 0;
        }
    }
}

void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox& gridItem, AutoPlacementCursor& autoPlacementCursor)
{
    std::unique_ptr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(style(), gridItem, autoPlacementMinorAxisDirection());
    ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(style(), gridItem, autoPlacementMajorAxisDirection()));
    GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0));

    const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
    size_t majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
    size_t minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;

    std::unique_ptr<GridCoordinate> emptyGridArea;
    if (minorAxisPositions) {
        // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
        if (minorAxisPositions->resolvedInitialPosition.toInt() < minorAxisAutoPlacementCursor)
            majorAxisAutoPlacementCursor++;

        if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
            GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt(), majorAxisAutoPlacementCursor);
            emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan());
        }

        if (!emptyGridArea)
            emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions);
    } else {
        GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(style(), gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));

        for (size_t majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
            GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
            emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());

            if (emptyGridArea) {
                // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
                GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition;
                const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
                if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis)
                    break;

                // Discard empty grid area as it does not fit in the minor axis direction.
                // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
                emptyGridArea = nullptr;
            }

            // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
            minorAxisAutoPlacementCursor = 0;
        }

        if (!emptyGridArea)
            emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
    }

    insertItemIntoGrid(gridItem, *emptyGridArea);
    autoPlacementCursor.first = emptyGridArea->rows.resolvedInitialPosition.toInt();
    autoPlacementCursor.second = emptyGridArea->columns.resolvedInitialPosition.toInt();
}

GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
    return style().isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}

GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
    return style().isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}

void RenderGrid::clearGrid()
{
    m_grid.clear();
    m_gridItemCoordinate.clear();
}

void RenderGrid::layoutGridItems()
{
    placeItemsOnGrid();

    GridSizingData sizingData(gridColumnCount(), gridRowCount());
    computeUsedBreadthOfGridTracks(ForColumns, sizingData);
    ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
    computeUsedBreadthOfGridTracks(ForRows, sizingData);
    ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));

    populateGridPositions(sizingData);

    for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
        // Because the grid area cannot be styled, we don't need to adjust
        // the grid breadth to account for 'box-sizing'.
        LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
        LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();

        LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(*child, ForColumns, sizingData.columnTracks);
        LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(*child, ForRows, sizingData.rowTracks);
        if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight()))
            child->setNeedsLayout(MarkOnlyThis);

        child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
        child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);

        LayoutRect oldChildRect = child->frameRect();

        // FIXME: Grid items should stretch to fill their cells. Once we
        // implement grid-{column,row}-align, we can also shrink to fit. For
        // now, just size as if we were a regular child.
        child->layoutIfNeeded();

        child->setLogicalLocation(findChildLogicalPosition(*child, sizingData));

        // If the child moved, we have to repaint it as well as any floating/positioned
        // descendants. An exception is if we need a layout. In this case, we know we're going to
        // repaint ourselves (and the child) anyway.
        if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
            child->repaintDuringLayoutIfMoved(oldChildRect);
    }

    for (size_t i = 0; i < sizingData.rowTracks.size(); ++i)
        setLogicalHeight(logicalHeight() + sizingData.rowTracks[i].m_usedBreadth);

    // min / max logical height is handled in updateLogicalHeight().
    setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
    clearGrid();
}

GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox& gridItem) const
{
    ASSERT(m_gridItemCoordinate.contains(&gridItem));
    return m_gridItemCoordinate.get(&gridItem);
}

LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
    const GridCoordinate& coordinate = cachedGridCoordinate(child);
    const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
    LayoutUnit gridAreaBreadth = 0;
    for (auto trackPosition : span)
        gridAreaBreadth += tracks[trackPosition.toInt()].m_usedBreadth;
    return gridAreaBreadth;
}

void RenderGrid::populateGridPositions(const GridSizingData& sizingData)
{
    m_columnPositions.resizeToFit(sizingData.columnTracks.size() + 1);
    m_columnPositions[0] = borderAndPaddingStart();
    for (size_t i = 0; i < m_columnPositions.size() - 1; ++i)
        m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].m_usedBreadth;

    m_rowPositions.resizeToFit(sizingData.rowTracks.size() + 1);
    m_rowPositions[0] = borderAndPaddingBefore();
    for (size_t i = 0; i < m_rowPositions.size() - 1; ++i)
        m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].m_usedBreadth;
}

LayoutPoint RenderGrid::findChildLogicalPosition(RenderBox& child, const GridSizingData& sizingData)
{
    const GridCoordinate& coordinate = cachedGridCoordinate(child);
    ASSERT_UNUSED(sizingData, coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size());
    ASSERT_UNUSED(sizingData, coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size());

    // The grid items should be inside the grid container's border box, that's why they need to be shifted.
    return LayoutPoint(m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()] + marginStartForChild(child), m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()] + marginBeforeForChild(child));
}

void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect)
{
    for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next())
        paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect);
}

const char* RenderGrid::renderName() const
{
    if (isFloating())
        return "RenderGrid (floating)";
    if (isOutOfFlowPositioned())
        return "RenderGrid (positioned)";
    if (isAnonymous())
        return "RenderGrid (generated)";
    if (isRelPositioned())
        return "RenderGrid (relative positioned)";
    return "RenderGrid";
}

} // namespace WebCore

#endif /* ENABLE(CSS_GRID_LAYOUT) */