1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
* Copyright (C) 2013 Igalia S.L. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderGrid.h"
#include "GridCoordinate.h"
#include "LayoutRepainter.h"
#include "NotImplemented.h"
#include "RenderLayer.h"
#include "RenderView.h"
namespace WebCore {
static const int infinity = -1;
class GridTrack {
public:
GridTrack()
: m_usedBreadth(0)
, m_maxBreadth(0)
{
}
void growUsedBreadth(LayoutUnit growth)
{
ASSERT(growth >= 0);
m_usedBreadth += growth;
}
LayoutUnit usedBreadth() const { return m_usedBreadth; }
void growMaxBreadth(LayoutUnit growth)
{
if (m_maxBreadth == infinity)
m_maxBreadth = m_usedBreadth + growth;
else
m_maxBreadth += growth;
}
LayoutUnit maxBreadthIfNotInfinite() const
{
return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
}
LayoutUnit m_usedBreadth;
LayoutUnit m_maxBreadth;
};
struct GridTrackForNormalization {
GridTrackForNormalization(const GridTrack& track, double flex)
: m_track(&track)
, m_flex(flex)
, m_normalizedFlexValue(track.m_usedBreadth / flex)
{
}
const GridTrack* m_track;
double m_flex;
LayoutUnit m_normalizedFlexValue;
};
class RenderGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const Vector<Vector<Vector<RenderBox*, 1>>>& grid, TrackSizingDirection direction, size_t fixedTrackIndex)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? 0 : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : 0)
, m_childIndex(0)
{
ASSERT(m_rowIndex < m_grid.size());
ASSERT(m_columnIndex < m_grid[0].size());
}
RenderBox* nextGridItem()
{
if (!m_grid.size())
return 0;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return 0;
}
PassOwnPtr<GridCoordinate> nextEmptyGridArea()
{
if (m_grid.isEmpty())
return nullptr;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const Vector<RenderBox*>& children = m_grid[m_rowIndex][m_columnIndex];
if (children.isEmpty()) {
OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex), GridSpan(m_columnIndex, m_columnIndex)));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result.release();
}
}
return nullptr;
}
private:
const Vector<Vector<Vector<RenderBox*, 1>>>& m_grid;
TrackSizingDirection m_direction;
size_t m_rowIndex;
size_t m_columnIndex;
size_t m_childIndex;
};
class RenderGrid::GridSizingData {
WTF_MAKE_NONCOPYABLE(GridSizingData);
public:
GridSizingData(size_t gridColumnCount, size_t gridRowCount)
: columnTracks(gridColumnCount)
, rowTracks(gridRowCount)
{
}
Vector<GridTrack> columnTracks;
Vector<GridTrack> rowTracks;
Vector<size_t> contentSizedTracksIndex;
// Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
Vector<LayoutUnit> distributeTrackVector;
Vector<GridTrack*> filteredTracks;
};
RenderGrid::RenderGrid(Element& element, PassRef<RenderStyle> style)
: RenderBlock(element, std::move(style), 0)
, m_orderIterator(*this)
{
// All of our children must be block level.
setChildrenInline(false);
}
RenderGrid::~RenderGrid()
{
}
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
// FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
// It would be nice to refactor some of the duplicate code.
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
LayoutStateMaintainer statePusher(view(), *this, locationOffset(), hasTransform() || hasReflection() || style().isFlippedBlocksWritingMode());
prepareShapesAndPaginationBeforeBlockLayout(relayoutChildren);
LayoutSize previousSize = size();
setLogicalHeight(0);
updateLogicalWidth();
layoutGridItems();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
updateShapesAfterBlockLayout();
computeOverflow(oldClientAfterEdge);
statePusher.pop();
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
updateScrollInfoAfterLayout();
repainter.repaintAfterLayout();
clearNeedsLayout();
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const_cast<RenderGrid*>(this)->placeItemsOnGrid();
GridSizingData sizingData(gridColumnCount(), gridRowCount());
LayoutUnit availableLogicalSpace = 0;
const_cast<RenderGrid*>(this)->computedUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);
for (size_t i = 0; i < sizingData.columnTracks.size(); ++i) {
LayoutUnit minTrackBreadth = sizingData.columnTracks[i].m_usedBreadth;
LayoutUnit maxTrackBreadth = sizingData.columnTracks[i].m_maxBreadth;
maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);
minLogicalWidth += minTrackBreadth;
maxLogicalWidth += maxTrackBreadth;
// FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
}
const_cast<RenderGrid*>(this)->clearGrid();
}
void RenderGrid::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
// FIXME: We don't take our own logical width into account. Once we do, we need to make sure
// we apply (and test the interaction with) min-width / max-width.
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
setPreferredLogicalWidthsDirty(false);
}
void RenderGrid::computedUsedBreadthOfGridTracks(TrackSizingDirection direction, GridSizingData& sizingData)
{
LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
computedUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
}
void RenderGrid::computedUsedBreadthOfGridTracks(TrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
sizingData.contentSizedTracksIndex.shrink(0);
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.m_usedBreadth);
track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);
if (trackSize.isContentSized())
sizingData.contentSizedTracksIndex.append(i);
}
if (!sizingData.contentSizedTracksIndex.isEmpty())
resolveContentBasedTrackSizingFunctions(direction, sizingData);
for (size_t i = 0; i < tracks.size(); ++i) {
ASSERT(tracks[i].m_maxBreadth != infinity);
availableLogicalSpace -= tracks[i].m_usedBreadth;
}
if (availableLogicalSpace <= 0)
return;
const size_t tracksSize = tracks.size();
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i)
tracksForDistribution[i] = tracks.data() + i;
distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, sizingData, availableLogicalSpace);
// 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
// FIXME: Handle the case where RemainingSpace is not defined.
double normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, direction, availableLogicalSpace);
for (size_t i = 0; i < tracksSize; ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
if (!trackSize.maxTrackBreadth().isFlex())
continue;
tracks[i].m_usedBreadth = std::max<LayoutUnit>(tracks[i].m_usedBreadth, normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
}
}
LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(TrackSizingDirection direction, const GridLength& gridLength) const
{
if (gridLength.isFlex())
return 0;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage())
return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return 0;
}
LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(TrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
{
if (gridLength.isFlex())
return usedBreadth;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage()) {
LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(computedBreadth != infinity);
return computedBreadth;
}
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return infinity;
}
LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(TrackSizingDirection direction, const Length& trackLength) const
{
// FIXME: We still need to support calc() here (https://webkit.org/b/103761).
ASSERT(trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage());
return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style().logicalHeight()));
}
double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, TrackSizingDirection direction, LayoutUnit availableLogicalSpace) const
{
// |availableLogicalSpace| already accounts for the used breadths so no need to remove it here.
Vector<GridTrackForNormalization> tracksForNormalization;
for (size_t i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
if (!trackSize.maxTrackBreadth().isFlex())
continue;
tracksForNormalization.append(GridTrackForNormalization(tracks[i], trackSize.maxTrackBreadth().flex()));
}
// FIXME: Ideally we shouldn't come here without any <flex> grid track.
if (tracksForNormalization.isEmpty())
return LayoutUnit();
std::sort(tracksForNormalization.begin(), tracksForNormalization.end(),
[](const GridTrackForNormalization& track1, const GridTrackForNormalization& track2) {
return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
});
// These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
// to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
// fit into availableLogicalSpaceIgnoringFractionTracks.
double accumulatedFractions = 0;
LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
LayoutUnit availableLogicalSpaceIgnoringFractionTracks = availableLogicalSpace;
for (size_t i = 0; i < tracksForNormalization.size(); ++i) {
const GridTrackForNormalization& track = tracksForNormalization[i];
if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
// If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
// will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
break;
fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
}
accumulatedFractions += track.m_flex;
// This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
availableLogicalSpaceIgnoringFractionTracks += track.m_track->m_usedBreadth;
}
return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
}
const GridTrackSize& RenderGrid::gridTrackSize(TrackSizingDirection direction, size_t i) const
{
const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style().gridColumns() : style().gridRows();
if (i >= trackStyles.size())
return (direction == ForColumns) ? style().gridAutoColumns() : style().gridAutoRows();
return trackStyles[i];
}
size_t RenderGrid::explicitGridColumnCount() const
{
return style().gridColumns().size();
}
size_t RenderGrid::explicitGridRowCount() const
{
return style().gridRows().size();
}
size_t RenderGrid::explicitGridSizeForSide(GridPositionSide side) const
{
return (side == ColumnStartSide || side == ColumnEndSide) ? explicitGridColumnCount() : explicitGridRowCount();
}
LayoutUnit RenderGrid::logicalContentHeightForChild(RenderBox* child, Vector<GridTrack>& columnTracks)
{
if (child->style().logicalHeight().isPercent())
child->setNeedsLayout(MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(gridAreaBreadthForChild(child, ForColumns, columnTracks));
// If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
child->setOverrideContainingBlockContentLogicalHeight(-1);
child->layoutIfNeeded();
return child->logicalHeight();
}
LayoutUnit RenderGrid::minContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return 0;
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(*child);
}
return logicalContentHeightForChild(child, columnTracks);
}
LayoutUnit RenderGrid::maxContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return LayoutUnit();
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(*child);
}
return logicalContentHeightForChild(child, columnTracks);
}
void RenderGrid::resolveContentBasedTrackSizingFunctions(TrackSizingDirection direction, GridSizingData& sizingData)
{
// FIXME: Split the grid tracks into groups that doesn't overlap a <flex> grid track.
for (size_t i = 0; i < sizingData.contentSizedTracksIndex.size(); ++i) {
GridIterator iterator(m_grid, direction, sizingData.contentSizedTracksIndex[i]);
while (RenderBox* gridItem = iterator.nextGridItem()) {
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, gridItem, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
}
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[i] : sizingData.rowTracks[i];
if (track.m_maxBreadth == infinity)
track.m_maxBreadth = track.m_usedBreadth;
}
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(TrackSizingDirection direction, GridSizingData& sizingData, RenderBox* gridItem, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction)
{
const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
const size_t initialTrackIndex = (direction == ForColumns) ? coordinate.columns.initialPositionIndex : coordinate.rows.initialPositionIndex;
const size_t finalTrackIndex = (direction == ForColumns) ? coordinate.columns.finalPositionIndex : coordinate.rows.finalPositionIndex;
sizingData.filteredTracks.shrink(0);
for (size_t trackIndex = initialTrackIndex; trackIndex <= finalTrackIndex; ++trackIndex) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
if (!(trackSize.*filterFunction)())
continue;
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
sizingData.filteredTracks.append(&track);
}
if (sizingData.filteredTracks.isEmpty())
return;
LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItem, direction, sizingData.columnTracks);
for (size_t trackIndexForSpace = initialTrackIndex; trackIndexForSpace <= finalTrackIndex; ++trackIndexForSpace) {
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndexForSpace] : sizingData.rowTracks[trackIndexForSpace];
additionalBreadthSpace -= (track.*trackGetter)();
}
// FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|.
distributeSpaceToTracks(sizingData.filteredTracks, &sizingData.filteredTracks, trackGetter, trackGrowthFunction, sizingData, additionalBreadthSpace);
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
}
void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
size_t tracksSize = tracks.size();
sizingData.distributeTrackVector.resize(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
LayoutUnit growthShare = std::max(LayoutUnit(), std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth));
// We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
sizingData.distributeTrackVector[i] = trackBreadth + growthShare;
availableLogicalSpace -= growthShare;
}
if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) {
tracksSize = tracksForGrowthAboveMaxBreadth->size();
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i);
sizingData.distributeTrackVector[i] += growthShare;
availableLogicalSpace -= growthShare;
}
}
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growth = sizingData.distributeTrackVector[i] - (tracks[i]->*trackGetter)();
if (growth >= 0)
(tracks[i]->*trackGrowthFunction)(growth);
}
}
#ifndef NDEBUG
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(TrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
for (size_t i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
return false;
}
return true;
}
#endif
void RenderGrid::growGrid(TrackSizingDirection direction)
{
if (direction == ForColumns) {
const size_t oldColumnSize = m_grid[0].size();
for (size_t row = 0; row < m_grid.size(); ++row)
m_grid[row].grow(oldColumnSize + 1);
} else {
const size_t oldRowSize = m_grid.size();
m_grid.grow(oldRowSize + 1);
m_grid[oldRowSize].grow(m_grid[0].size());
}
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, const GridCoordinate& coordinate)
{
for (size_t row = coordinate.rows.initialPositionIndex; row <= coordinate.rows.finalPositionIndex; ++row) {
for (size_t column = coordinate.columns.initialPositionIndex; column <= coordinate.columns.finalPositionIndex; ++column)
m_grid[row][column].append(child);
}
m_gridItemCoordinate.set(child, coordinate);
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, size_t rowTrack, size_t columnTrack)
{
const GridSpan& rowSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForRows, rowTrack);
const GridSpan& columnSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForColumns, columnTrack);
insertItemIntoGrid(child, GridCoordinate(rowSpan, columnSpan));
}
void RenderGrid::placeItemsOnGrid()
{
ASSERT(!gridWasPopulated());
ASSERT(m_gridItemCoordinate.isEmpty());
populateExplicitGridAndOrderIterator();
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
GridAutoFlow autoFlow = style().gridAutoFlow();
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
// FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
// positions to not match the author's intent. The specification is unclear on what should be done in this case.
OwnPtr<GridSpan> rowPositions = resolveGridPositionsFromStyle(child, ForRows);
OwnPtr<GridSpan> columnPositions = resolveGridPositionsFromStyle(child, ForColumns);
if (!rowPositions || !columnPositions) {
GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
if (!majorAxisPositions)
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
insertItemIntoGrid(child, GridCoordinate(*rowPositions, *columnPositions));
}
ASSERT(gridRowCount() >= style().gridRows().size());
ASSERT(gridColumnCount() >= style().gridColumns().size());
if (autoFlow == AutoFlowNone) {
// If we did collect some grid items, they won't be placed thus never laid out.
ASSERT(!autoMajorAxisAutoGridItems.size());
ASSERT(!specifiedMajorAxisAutoGridItems.size());
return;
}
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
}
void RenderGrid::populateExplicitGridAndOrderIterator()
{
// FIXME: We should find a way to share OrderValues's initialization code with RenderFlexibleBox.
OrderIterator::OrderValues orderValues;
size_t maximumRowIndex = std::max<size_t>(1, explicitGridRowCount());
size_t maximumColumnIndex = std::max<size_t>(1, explicitGridColumnCount());
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// Avoid growing the vector for the common-case default value of 0. This optimizes the most common case which is
// one or a few values with the default order 0
int order = child->style().order();
if (orderValues.isEmpty() || orderValues.last() != order)
orderValues.append(order);
// This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
OwnPtr<GridSpan> rowPositions = resolveGridPositionsFromStyle(child, ForRows);
OwnPtr<GridSpan> columnPositions = resolveGridPositionsFromStyle(child, ForColumns);
// |positions| is 0 if we need to run the auto-placement algorithm. Our estimation ignores
// this case as the auto-placement algorithm will grow the grid as needed.
if (rowPositions)
maximumRowIndex = std::max(maximumRowIndex, rowPositions->finalPositionIndex + 1);
if (columnPositions)
maximumColumnIndex = std::max(maximumColumnIndex, columnPositions->finalPositionIndex + 1);
}
m_grid.grow(maximumRowIndex);
for (size_t i = 0; i < m_grid.size(); ++i)
m_grid[i].grow(maximumColumnIndex);
m_orderIterator.setOrderValues(std::move(orderValues));
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i) {
OwnPtr<GridSpan> majorAxisPositions = resolveGridPositionsFromStyle(autoGridItems[i], autoPlacementMajorAxisDirection());
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->initialPositionIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
continue;
}
growGrid(autoPlacementMinorAxisDirection());
OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea();
ASSERT(emptyGridArea);
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i)
placeAutoMajorAxisItemOnGrid(autoGridItems[i]);
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox* gridItem)
{
OwnPtr<GridSpan> minorAxisPositions = resolveGridPositionsFromStyle(gridItem, autoPlacementMinorAxisDirection());
ASSERT(!resolveGridPositionsFromStyle(gridItem, autoPlacementMajorAxisDirection()));
size_t minorAxisIndex = 0;
if (minorAxisPositions) {
minorAxisIndex = minorAxisPositions->initialPositionIndex;
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
} else {
const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
for (size_t majorAxisIndex = 0; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
}
}
// We didn't find an empty grid area so we need to create an extra major axis line and insert our gridItem in it.
const size_t columnIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? m_grid[0].size() : minorAxisIndex;
const size_t rowIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? minorAxisIndex : m_grid.size();
growGrid(autoPlacementMajorAxisDirection());
insertItemIntoGrid(gridItem, rowIndex, columnIndex);
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
GridAutoFlow flow = style().gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForColumns : ForRows;
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
GridAutoFlow flow = style().gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForRows : ForColumns;
}
void RenderGrid::clearGrid()
{
m_grid.clear();
m_gridItemCoordinate.clear();
}
void RenderGrid::layoutGridItems()
{
placeItemsOnGrid();
GridSizingData sizingData(gridColumnCount(), gridRowCount());
computedUsedBreadthOfGridTracks(ForColumns, sizingData);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
computedUsedBreadthOfGridTracks(ForRows, sizingData);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, sizingData.columnTracks);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(child, ForRows, sizingData.rowTracks);
if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && (child->hasRelativeLogicalHeight() || child->hasViewportPercentageLogicalHeight())))
child->setNeedsLayout(MarkOnlyThis);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
LayoutRect oldChildRect = child->frameRect();
// FIXME: Grid items should stretch to fill their cells. Once we
// implement grid-{column,row}-align, we can also shrink to fit. For
// now, just size as if we were a regular child.
child->layoutIfNeeded();
child->setLogicalLocation(findChildLogicalPosition(child, sizingData));
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldChildRect);
}
for (size_t i = 0; i < sizingData.rowTracks.size(); ++i)
setLogicalHeight(logicalHeight() + sizingData.rowTracks[i].m_usedBreadth);
// FIXME: We should handle min / max logical height.
setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
clearGrid();
}
GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox* gridItem) const
{
ASSERT(m_gridItemCoordinate.contains(gridItem));
return m_gridItemCoordinate.get(gridItem);
}
GridSpan RenderGrid::resolveGridPositionsFromAutoPlacementPosition(const RenderBox*, TrackSizingDirection, size_t initialPosition) const
{
// FIXME: We don't support spanning with auto positions yet. Once we do, this is wrong. Also we should make
// sure the grid can accomodate the new item as we only grow 1 position in a given direction.
return GridSpan(initialPosition, initialPosition);
}
PassOwnPtr<GridSpan> RenderGrid::resolveGridPositionsFromStyle(const RenderBox* gridItem, TrackSizingDirection direction) const
{
const GridPosition& initialPosition = (direction == ForColumns) ? gridItem->style().gridItemColumnStart() : gridItem->style().gridItemRowStart();
const GridPositionSide initialPositionSide = (direction == ForColumns) ? ColumnStartSide : RowStartSide;
const GridPosition& finalPosition = (direction == ForColumns) ? gridItem->style().gridItemColumnEnd() : gridItem->style().gridItemRowEnd();
const GridPositionSide finalPositionSide = (direction == ForColumns) ? ColumnEndSide : RowEndSide;
// We should NEVER see both spans as they should have been handled during style resolve.
ASSERT(!initialPosition.isSpan() || !finalPosition.isSpan());
if (initialPosition.shouldBeResolvedAgainstOppositePosition() && finalPosition.shouldBeResolvedAgainstOppositePosition()) {
if (style().gridAutoFlow() == AutoFlowNone)
return adoptPtr(new GridSpan(0, 0));
// We can't get our grid positions without running the auto placement algorithm.
return nullptr;
}
if (initialPosition.shouldBeResolvedAgainstOppositePosition()) {
// Infer the position from the final position ('auto / 1' or 'span 2 / 3' case).
const size_t finalResolvedPosition = resolveGridPositionFromStyle(finalPosition, finalPositionSide);
return resolveGridPositionAgainstOppositePosition(finalResolvedPosition, initialPosition, initialPositionSide);
}
if (finalPosition.shouldBeResolvedAgainstOppositePosition()) {
// Infer our position from the initial position ('1 / auto' or '3 / span 2' case).
const size_t initialResolvedPosition = resolveGridPositionFromStyle(initialPosition, initialPositionSide);
return resolveGridPositionAgainstOppositePosition(initialResolvedPosition, finalPosition, finalPositionSide);
}
size_t resolvedInitialPosition = resolveGridPositionFromStyle(initialPosition, initialPositionSide);
size_t resolvedFinalPosition = resolveGridPositionFromStyle(finalPosition, finalPositionSide);
// If 'grid-row-end' specifies a line at or before that specified by 'grid-row-start', it computes to 'span 1'.
if (resolvedFinalPosition < resolvedInitialPosition)
resolvedFinalPosition = resolvedInitialPosition;
return adoptPtr(new GridSpan(resolvedInitialPosition, resolvedFinalPosition));
}
inline static size_t adjustGridPositionForRowEndColumnEndSide(size_t resolvedPosition)
{
return resolvedPosition ? resolvedPosition - 1 : 0;
}
static size_t adjustGridPositionForSide(size_t resolvedPosition, RenderGrid::GridPositionSide side)
{
// An item finishing on the N-th line belongs to the N-1-th cell.
if (side == RenderGrid::ColumnEndSide || side == RenderGrid::RowEndSide)
return adjustGridPositionForRowEndColumnEndSide(resolvedPosition);
return resolvedPosition;
}
size_t RenderGrid::resolveNamedGridLinePositionFromStyle(const GridPosition& position, GridPositionSide side) const
{
ASSERT(!position.namedGridLine().isNull());
const NamedGridLinesMap& gridLinesNames = (side == ColumnStartSide || side == ColumnEndSide) ? style().namedGridColumnLines() : style().namedGridRowLines();
NamedGridLinesMap::const_iterator it = gridLinesNames.find(position.namedGridLine());
if (it == gridLinesNames.end()) {
if (position.isPositive())
return 0;
const size_t lastLine = explicitGridSizeForSide(side);
return adjustGridPositionForSide(lastLine, side);
}
size_t namedGridLineIndex;
if (position.isPositive())
namedGridLineIndex = std::min<size_t>(position.integerPosition(), it->value.size()) - 1;
else
namedGridLineIndex = std::max<int>(it->value.size() - abs(position.integerPosition()), 0);
return adjustGridPositionForSide(it->value[namedGridLineIndex], side);
}
size_t RenderGrid::resolveGridPositionFromStyle(const GridPosition& position, GridPositionSide side) const
{
switch (position.type()) {
case ExplicitPosition: {
ASSERT(position.integerPosition());
if (!position.namedGridLine().isNull())
return resolveNamedGridLinePositionFromStyle(position, side);
// Handle <integer> explicit position.
if (position.isPositive())
return adjustGridPositionForSide(position.integerPosition() - 1, side);
size_t resolvedPosition = abs(position.integerPosition()) - 1;
const size_t endOfTrack = explicitGridSizeForSide(side);
// Per http://lists.w3.org/Archives/Public/www-style/2013Mar/0589.html, we clamp negative value to the first line.
if (endOfTrack < resolvedPosition)
return 0;
return adjustGridPositionForSide(endOfTrack - resolvedPosition, side);
}
case NamedGridAreaPosition:
{
NamedGridAreaMap::const_iterator it = style().namedGridArea().find(position.namedGridLine());
// Unknown grid area should have been computed to 'auto' by now.
ASSERT(it != style().namedGridArea().end());
const GridCoordinate& gridAreaCoordinate = it->value;
switch (side) {
case ColumnStartSide:
return gridAreaCoordinate.columns.initialPositionIndex;
case ColumnEndSide:
return gridAreaCoordinate.columns.finalPositionIndex;
case RowStartSide:
return gridAreaCoordinate.rows.initialPositionIndex;
case RowEndSide:
return gridAreaCoordinate.rows.finalPositionIndex;
}
ASSERT_NOT_REACHED();
return 0;
}
case AutoPosition:
case SpanPosition:
// 'auto' and span depend on the opposite position for resolution (e.g. grid-row: auto / 1 or grid-column: span 3 / "myHeader").
ASSERT_NOT_REACHED();
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
PassOwnPtr<GridSpan> RenderGrid::resolveGridPositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, GridPositionSide side) const
{
if (position.isAuto())
return GridSpan::create(resolvedOppositePosition, resolvedOppositePosition);
ASSERT(position.isSpan());
ASSERT(position.spanPosition() > 0);
if (!position.namedGridLine().isNull()) {
// span 2 'c' -> we need to find the appropriate grid line before / after our opposite position.
return resolveNamedGridLinePositionAgainstOppositePosition(resolvedOppositePosition, position, side);
}
// 'span 1' is contained inside a single grid track regardless of the direction.
// That's why the CSS span value is one more than the offset we apply.
size_t positionOffset = position.spanPosition() - 1;
if (side == ColumnStartSide || side == RowStartSide) {
size_t initialResolvedPosition = std::max<int>(0, resolvedOppositePosition - positionOffset);
return GridSpan::create(initialResolvedPosition, resolvedOppositePosition);
}
return GridSpan::create(resolvedOppositePosition, resolvedOppositePosition + positionOffset);
}
PassOwnPtr<GridSpan> RenderGrid::resolveNamedGridLinePositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, GridPositionSide side) const
{
ASSERT(position.isSpan());
ASSERT(!position.namedGridLine().isNull());
// Negative positions are not allowed per the specification and should have been handled during parsing.
ASSERT(position.spanPosition() > 0);
const NamedGridLinesMap& gridLinesNames = (side == ColumnStartSide || side == ColumnEndSide) ? style().namedGridColumnLines() : style().namedGridRowLines();
NamedGridLinesMap::const_iterator it = gridLinesNames.find(position.namedGridLine());
// If there is no named grid line of that name, we resolve the position to 'auto' (which is equivalent to 'span 1' in this case).
// See http://lists.w3.org/Archives/Public/www-style/2013Jun/0394.html.
if (it == gridLinesNames.end())
return GridSpan::create(resolvedOppositePosition, resolvedOppositePosition);
if (side == RowStartSide || side == ColumnStartSide)
return resolveRowStartColumnStartNamedGridLinePositionAgainstOppositePosition(resolvedOppositePosition, position, it->value);
return resolveRowEndColumnEndNamedGridLinePositionAgainstOppositePosition(resolvedOppositePosition, position, it->value);
}
PassOwnPtr<GridSpan> RenderGrid::resolveRowStartColumnStartNamedGridLinePositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, const Vector<size_t>& gridLines) const
{
// The grid line inequality needs to be strict (which doesn't match the after / end case) because |resolvedOppositePosition|
// is already converted to an index in our grid representation (ie one was removed from the grid line to account for the side).
// FIXME: This could be a binary search as |gridLines| is ordered.
int firstLineBeforeOppositePositionIndex = gridLines.size() - 1;
for (; firstLineBeforeOppositePositionIndex >= 0 && gridLines[firstLineBeforeOppositePositionIndex] > resolvedOppositePosition; --firstLineBeforeOppositePositionIndex) { }
size_t gridLineIndex = std::max<int>(0, firstLineBeforeOppositePositionIndex - position.spanPosition() + 1);
size_t resolvedGridLinePosition = gridLines[gridLineIndex];
if (resolvedGridLinePosition > resolvedOppositePosition)
resolvedGridLinePosition = resolvedOppositePosition;
return GridSpan::create(resolvedGridLinePosition, resolvedOppositePosition);
}
PassOwnPtr<GridSpan> RenderGrid::resolveRowEndColumnEndNamedGridLinePositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, const Vector<size_t>& gridLines) const
{
// FIXME: This could be a binary search as |gridLines| is ordered.
size_t firstLineAfterOppositePositionIndex = 0;
for (; firstLineAfterOppositePositionIndex < gridLines.size() && gridLines[firstLineAfterOppositePositionIndex] <= resolvedOppositePosition; ++firstLineAfterOppositePositionIndex) { }
size_t gridLineIndex = std::min(gridLines.size() - 1, firstLineAfterOppositePositionIndex + position.spanPosition() - 1);
size_t resolvedGridLinePosition = adjustGridPositionForRowEndColumnEndSide(gridLines[gridLineIndex]);
if (resolvedGridLinePosition < resolvedOppositePosition)
resolvedGridLinePosition = resolvedOppositePosition;
return GridSpan::create(resolvedOppositePosition, resolvedGridLinePosition);
}
LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox* child, TrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
LayoutUnit gridAreaBreadth = 0;
for (size_t trackIndex = span.initialPositionIndex; trackIndex <= span.finalPositionIndex; ++trackIndex)
gridAreaBreadth += tracks[trackIndex].m_usedBreadth;
return gridAreaBreadth;
}
LayoutPoint RenderGrid::findChildLogicalPosition(RenderBox* child, const GridSizingData& sizingData)
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutPoint offset(borderAndPaddingStart() + marginStartForChild(*child), borderAndPaddingBefore() + marginBeforeForChild(*child));
// FIXME: |columnTrack| and |rowTrack| should be smaller than our column / row count.
for (size_t i = 0; i < coordinate.columns.initialPositionIndex && i < sizingData.columnTracks.size(); ++i)
offset.setX(offset.x() + sizingData.columnTracks[i].m_usedBreadth);
for (size_t i = 0; i < coordinate.rows.initialPositionIndex && i < sizingData.rowTracks.size(); ++i)
offset.setY(offset.y() + sizingData.rowTracks[i].m_usedBreadth);
return offset;
}
void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset, PaintInfo& forChild, bool usePrintRect)
{
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next())
paintChild(*child, paintInfo, paintOffset, forChild, usePrintRect);
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace WebCore
|