1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
|
/*
* Copyright (C) 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RenderMultiColumnSet.h"
#include "PaintInfo.h"
#include "RenderLayer.h"
#include "RenderMultiColumnFlowThread.h"
namespace WebCore {
RenderMultiColumnSet::RenderMultiColumnSet(RenderFlowThread& flowThread, PassRef<RenderStyle> style)
: RenderRegionSet(flowThread.document(), std::move(style), flowThread)
, m_computedColumnCount(1)
, m_computedColumnWidth(0)
, m_computedColumnHeight(0)
, m_maxColumnHeight(RenderFlowThread::maxLogicalHeight())
, m_minSpaceShortage(RenderFlowThread::maxLogicalHeight())
, m_minimumColumnHeight(0)
{
}
LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const
{
RenderBlockFlow* multicolBlock = toRenderBlockFlow(parent());
LayoutUnit contentLogicalTop = logicalTop() - multicolBlock->borderAndPaddingBefore();
height -= contentLogicalTop;
return std::max(height, LayoutUnit::fromPixel(1)); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created.
}
LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const
{
LayoutUnit portionLogicalTop = (isHorizontalWritingMode() ? flowThreadPortionRect().y() : flowThreadPortionRect().x());
unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns);
return portionLogicalTop + columnIndex * computedColumnHeight();
}
void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight)
{
m_computedColumnHeight = newHeight;
if (m_computedColumnHeight > m_maxColumnHeight)
m_computedColumnHeight = m_maxColumnHeight;
// FIXME: the height may also be affected by the enclosing pagination context, if any.
}
unsigned RenderMultiColumnSet::findRunWithTallestColumns() const
{
unsigned indexWithLargestHeight = 0;
LayoutUnit largestHeight;
LayoutUnit previousOffset;
size_t runCount = m_contentRuns.size();
ASSERT(runCount);
for (size_t i = 0; i < runCount; i++) {
const ContentRun& run = m_contentRuns[i];
LayoutUnit height = run.columnLogicalHeight(previousOffset);
if (largestHeight < height) {
largestHeight = height;
indexWithLargestHeight = i;
}
previousOffset = run.breakOffset();
}
return indexWithLargestHeight;
}
void RenderMultiColumnSet::distributeImplicitBreaks()
{
unsigned breakCount = forcedBreaksCount();
#ifndef NDEBUG
// There should be no implicit breaks assumed at this point.
for (unsigned i = 0; i < breakCount; i++)
ASSERT(!m_contentRuns[i].assumedImplicitBreaks());
#endif // NDEBUG
// There will always be at least one break, since the flow thread reports a "forced break" at
// end of content.
ASSERT(breakCount >= 1);
// If there is room for more breaks (to reach the used value of column-count), imagine that we
// insert implicit breaks at suitable locations. At any given time, the content run with the
// currently tallest columns will get another implicit break "inserted", which will increase its
// column count by one and shrink its columns' height. Repeat until we have the desired total
// number of breaks. The largest column height among the runs will then be the initial column
// height for the balancer to use.
while (breakCount < m_computedColumnCount) {
unsigned index = findRunWithTallestColumns();
m_contentRuns[index].assumeAnotherImplicitBreak();
breakCount++;
}
}
LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const
{
if (initial) {
// Start with the lowest imaginable column height.
unsigned index = findRunWithTallestColumns();
LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : LayoutUnit::fromPixel(0);
return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight);
}
if (columnCount() <= computedColumnCount()) {
// With the current column height, the content fits without creating overflowing columns. We're done.
return m_computedColumnHeight;
}
if (forcedBreaksCount() > 1 && forcedBreaksCount() >= computedColumnCount()) {
// Too many forced breaks to allow any implicit breaks. Initial balancing should already
// have set a good height. There's nothing more we should do.
return m_computedColumnHeight;
}
// If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest
// amount of space shortage found during layout.
ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height!
ASSERT(m_minSpaceShortage != RenderFlowThread::maxLogicalHeight()); // If this happens, we probably have a bug.
if (m_minSpaceShortage == RenderFlowThread::maxLogicalHeight())
return m_computedColumnHeight; // So bail out rather than looping infinitely.
return m_computedColumnHeight + m_minSpaceShortage;
}
void RenderMultiColumnSet::clearForcedBreaks()
{
m_contentRuns.clear();
}
void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage)
{
if (!toRenderBlockFlow(parent())->multiColumnFlowThread()->requiresBalancing())
return;
if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset())
return;
// Append another item as long as we haven't exceeded used column count. What ends up in the
// overflow area shouldn't affect column balancing.
if (m_contentRuns.size() < m_computedColumnCount)
m_contentRuns.append(ContentRun(offsetFromFirstPage));
}
bool RenderMultiColumnSet::recalculateBalancedHeight(bool initial)
{
ASSERT(toRenderBlockFlow(parent())->multiColumnFlowThread()->requiresBalancing());
LayoutUnit oldColumnHeight = m_computedColumnHeight;
if (initial)
distributeImplicitBreaks();
LayoutUnit newColumnHeight = calculateBalancedHeight(initial);
setAndConstrainColumnHeight(newColumnHeight);
// After having calculated an initial column height, the multicol container typically needs at
// least one more layout pass with a new column height, but if a height was specified, we only
// need to do this if we think that we need less space than specified. Conversely, if we
// determined that the columns need to be as tall as the specified height of the container, we
// have already laid it out correctly, and there's no need for another pass.
if (m_computedColumnHeight == oldColumnHeight)
return false; // No change. We're done.
m_minSpaceShortage = RenderFlowThread::maxLogicalHeight();
clearForcedBreaks();
return true; // Need another pass.
}
void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage)
{
if (spaceShortage >= m_minSpaceShortage)
return;
// The space shortage is what we use as our stretch amount. We need a positive number here in
// order to get anywhere.
ASSERT(spaceShortage > 0);
m_minSpaceShortage = spaceShortage;
}
void RenderMultiColumnSet::updateLogicalWidth()
{
RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
setComputedColumnWidthAndCount(parentBlock->multiColumnFlowThread()->columnWidth(), parentBlock->multiColumnFlowThread()->columnCount()); // FIXME: This will eventually vary if we are contained inside regions.
// FIXME: When we add regions support, we'll start it off at the width of the multi-column
// block in that particular region.
setLogicalWidth(parentBox()->contentLogicalWidth());
}
void RenderMultiColumnSet::prepareForLayout()
{
RenderBlockFlow* multicolBlock = toRenderBlockFlow(parent());
const RenderStyle& multicolStyle = multicolBlock->style();
// Set box logical top.
ASSERT(!previousSiblingBox() || !previousSiblingBox()->isRenderMultiColumnSet()); // FIXME: multiple set not implemented; need to examine previous set to calculate the correct logical top.
setLogicalTop(multicolBlock->borderAndPaddingBefore());
// Set box width.
updateLogicalWidth();
if (multicolBlock->multiColumnFlowThread()->requiresBalancing()) {
// Set maximum column height. We will not stretch beyond this.
m_maxColumnHeight = RenderFlowThread::maxLogicalHeight();
if (!multicolStyle.logicalHeight().isAuto()) {
m_maxColumnHeight = multicolBlock->computeContentLogicalHeight(multicolStyle.logicalHeight());
if (m_maxColumnHeight == -1)
m_maxColumnHeight = RenderFlowThread::maxLogicalHeight();
}
if (!multicolStyle.logicalMaxHeight().isUndefined()) {
LayoutUnit logicalMaxHeight = multicolBlock->computeContentLogicalHeight(multicolStyle.logicalMaxHeight());
if (logicalMaxHeight != -1 && m_maxColumnHeight > logicalMaxHeight)
m_maxColumnHeight = logicalMaxHeight;
}
m_maxColumnHeight = heightAdjustedForSetOffset(m_maxColumnHeight);
m_computedColumnHeight = 0; // Restart balancing.
} else
setAndConstrainColumnHeight(heightAdjustedForSetOffset(multicolBlock->multiColumnFlowThread()->columnHeightAvailable()));
clearForcedBreaks();
// Nuke previously stored minimum column height. Contents may have changed for all we know.
m_minimumColumnHeight = 0;
}
void RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const
{
computedValues.m_extent = m_computedColumnHeight;
computedValues.m_position = logicalTop;
}
LayoutUnit RenderMultiColumnSet::columnGap() const
{
// FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just
// go to the parent block to get the gap.
RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
if (parentBlock->style().hasNormalColumnGap())
return parentBlock->style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
return parentBlock->style().columnGap();
}
unsigned RenderMultiColumnSet::columnCount() const
{
// We must always return a value of 1 or greater. Column count = 0 is a meaningless situation,
// and will confuse and cause problems in other parts of the code.
if (!computedColumnHeight())
return 1;
// Our portion rect determines our column count. We have as many columns as needed to fit all the content.
LayoutUnit logicalHeightInColumns = flowThread()->isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width();
if (!logicalHeightInColumns)
return 1;
unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight());
ASSERT(count >= 1);
return count;
}
LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const
{
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutUnit colLogicalHeight = computedColumnHeight();
LayoutUnit colLogicalTop = borderAndPaddingBefore();
LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft();
LayoutUnit colGap = columnGap();
RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
bool progressionInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
if (progressionInline) {
if (style().isLeftToRightDirection() ^ progressionReversed)
colLogicalLeft += index * (colLogicalWidth + colGap);
else
colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap);
} else {
if (!progressionReversed)
colLogicalTop += index * (colLogicalHeight + colGap);
else
colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap);
}
if (isHorizontalWritingMode())
return LayoutRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight);
return LayoutRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth);
}
unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const
{
LayoutRect portionRect(flowThreadPortionRect());
// Handle the offset being out of range.
LayoutUnit flowThreadLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x();
if (offset < flowThreadLogicalTop)
return 0;
// If we're laying out right now, we cannot constrain against some logical bottom, since it
// isn't known yet. Otherwise, just return the last column if we're past the logical bottom.
if (mode == ClampToExistingColumns) {
LayoutUnit flowThreadLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX();
if (offset >= flowThreadLogicalBottom)
return columnCount() - 1;
}
// Just divide by the column height to determine the correct column.
return static_cast<float>(offset - flowThreadLogicalTop) / computedColumnHeight();
}
LayoutRect RenderMultiColumnSet::flowThreadPortionRectAt(unsigned index) const
{
LayoutRect portionRect = flowThreadPortionRect();
if (isHorizontalWritingMode())
portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight());
else
portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height());
return portionRect;
}
LayoutRect RenderMultiColumnSet::flowThreadPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap)
{
// This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are
// unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column
// gap along interior edges.
//
// In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of
// the last column. This applies only to the true first column and last column across all column sets.
//
// FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting
// mode that understands not to paint contents from a previous column in the overflow area of a following column.
// This problem applies to regions and pages as well and is not unique to columns.
RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
bool isFirstColumn = !index;
bool isLastColumn = index == colCount - 1;
bool isLeftmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isFirstColumn : isLastColumn;
bool isRightmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isLastColumn : isFirstColumn;
// Calculate the overflow rectangle, based on the flow thread's, clipped at column logical
// top/bottom unless it's the first/last column.
LayoutRect overflowRect = overflowRectForFlowThreadPortion(portionRect, isFirstColumn && isFirstRegion(), isLastColumn && isLastRegion(), VisualOverflow);
// Avoid overflowing into neighboring columns, by clipping in the middle of adjacent column
// gaps. Also make sure that we avoid rounding errors.
if (isHorizontalWritingMode()) {
if (!isLeftmostColumn)
overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2);
if (!isRightmostColumn)
overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2);
} else {
if (!isLeftmostColumn)
overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2);
if (!isRightmostColumn)
overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2);
}
return overflowRect;
}
void RenderMultiColumnSet::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (style().visibility() != VISIBLE)
return;
RenderBlock::paintObject(paintInfo, paintOffset);
// FIXME: Right now we're only painting in the foreground phase.
// Columns should technically respect phases and allow for background/float/foreground overlap etc., just like
// RenderBlocks do. Note this is a pretty minor issue, since the old column implementation clipped columns
// anyway, thus making it impossible for them to overlap one another. It's also really unlikely that the columns
// would overlap another block.
if (!m_flowThread || !isValid() || (paintInfo.phase != PaintPhaseForeground && paintInfo.phase != PaintPhaseSelection))
return;
paintColumnRules(paintInfo, paintOffset);
}
void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (paintInfo.context->paintingDisabled())
return;
RenderMultiColumnFlowThread* flowThread = toRenderBlockFlow(parent())->multiColumnFlowThread();
const RenderStyle& blockStyle = parent()->style();
const Color& ruleColor = blockStyle.visitedDependentColor(CSSPropertyWebkitColumnRuleColor);
bool ruleTransparent = blockStyle.columnRuleIsTransparent();
EBorderStyle ruleStyle = blockStyle.columnRuleStyle();
LayoutUnit ruleThickness = blockStyle.columnRuleWidth();
LayoutUnit colGap = columnGap();
bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent;
if (!renderRule)
return;
unsigned colCount = columnCount();
if (colCount <= 1)
return;
bool antialias = shouldAntialiasLines(paintInfo.context);
if (flowThread->progressionIsInline()) {
bool leftToRight = style().isLeftToRightDirection() ^ flowThread->progressionIsReversed();
LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit ruleAdd = logicalLeftOffsetForContent();
LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit inlineDirectionSize = computedColumnWidth();
BoxSide boxSide = isHorizontalWritingMode()
? leftToRight ? BSLeft : BSRight
: leftToRight ? BSTop : BSBottom;
for (unsigned i = 0; i < colCount; i++) {
// Move to the next position.
if (leftToRight) {
ruleLogicalLeft += inlineDirectionSize + colGap / 2;
currLogicalLeftOffset += inlineDirectionSize + colGap;
} else {
ruleLogicalLeft -= (inlineDirectionSize + colGap / 2);
currLogicalLeftOffset -= (inlineDirectionSize + colGap);
}
// Now paint the column rule.
if (i < colCount - 1) {
LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft();
LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth();
LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd;
LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness;
IntRect pixelSnappedRuleRect = pixelSnappedIntRectFromEdges(ruleLeft, ruleTop, ruleRight, ruleBottom);
drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
}
ruleLogicalLeft = currLogicalLeftOffset;
}
} else {
bool topToBottom = !style().isFlippedBlocksWritingMode() ^ flowThread->progressionIsReversed();
LayoutUnit ruleLeft = isHorizontalWritingMode() ? LayoutUnit() : colGap / 2 - colGap - ruleThickness / 2;
LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness;
LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 : LayoutUnit();
LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight();
LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight);
if (!topToBottom) {
if (isHorizontalWritingMode())
ruleRect.setY(height() - ruleRect.maxY());
else
ruleRect.setX(width() - ruleRect.maxX());
}
ruleRect.moveBy(paintOffset);
BoxSide boxSide = isHorizontalWritingMode() ? topToBottom ? BSTop : BSBottom : topToBottom ? BSLeft : BSRight;
LayoutSize step(0, topToBottom ? computedColumnHeight() + colGap : -(computedColumnHeight() + colGap));
if (!isHorizontalWritingMode())
step = step.transposedSize();
for (unsigned i = 1; i < colCount; i++) {
ruleRect.move(step);
IntRect pixelSnappedRuleRect = pixelSnappedIntRect(ruleRect);
drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
}
}
}
void RenderMultiColumnSet::repaintFlowThreadContent(const LayoutRect& repaintRect, bool immediate)
{
// Figure out the start and end columns and only check within that range so that we don't walk the
// entire column set. Put the repaint rect into flow thread coordinates by flipping it first.
LayoutRect flowThreadRepaintRect(repaintRect);
flowThread()->flipForWritingMode(flowThreadRepaintRect);
// Now we can compare this rect with the flow thread portions owned by each column. First let's
// just see if the repaint rect intersects our flow thread portion at all.
LayoutRect clippedRect(flowThreadRepaintRect);
clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
if (clippedRect.isEmpty())
return;
// Now we know we intersect at least one column. Let's figure out the logical top and logical
// bottom of the area we're repainting.
LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? flowThreadRepaintRect.y() : flowThreadRepaintRect.x();
LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? flowThreadRepaintRect.maxY() : flowThreadRepaintRect.maxX()) - 1;
unsigned startColumn = columnIndexAtOffset(repaintLogicalTop);
unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom);
LayoutUnit colGap = columnGap();
unsigned colCount = columnCount();
for (unsigned i = startColumn; i <= endColumn; i++) {
LayoutRect colRect = columnRectAt(i);
// Get the portion of the flow thread that corresponds to this column.
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
// Now get the overflow rect that corresponds to the column.
LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);
// Do a repaint for this specific column.
repaintFlowThreadContentRectangle(repaintRect, immediate, flowThreadPortion, colRect.location(), &flowThreadOverflowPortion);
}
}
LayoutUnit RenderMultiColumnSet::initialBlockOffsetForPainting() const
{
RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
bool progressionIsInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
LayoutUnit result = 0;
if (!progressionIsInline && progressionReversed) {
LayoutRect colRect = columnRectAt(0);
result = isHorizontalWritingMode() ? colRect.y() : colRect.x();
if (style().isFlippedBlocksWritingMode())
result = -result;
}
return result;
}
void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect)
{
// Let's start by introducing the different coordinate systems involved here. They are different
// in how they deal with writing modes and columns. RenderLayer rectangles tend to be more
// physical than the rectangles used in RenderObject & co.
//
// The two rectangles passed to this method are physical, except that we pretend that there's
// only one long column (that's the flow thread). They are relative to the top left corner of
// the flow thread. All rectangles being compared to the dirty rect also need to be in this
// coordinate system.
//
// Then there's the output from this method - the stuff we put into the list of fragments. The
// translationOffset point is the actual physical translation required to get from a location in
// the flow thread to a location in some column. The paginationClip rectangle is in the same
// coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread
// coordinates, pretending that there's only one long column).
//
// All other rectangles in this method are slightly less physical, when it comes to how they are
// used with different writing modes, but they aren't really logical either. They are just like
// RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction
// coordinate is too, but the block direction coordinate is always "logical top". These
// rectangles also pretend that there's only one long column, i.e. they are for the flow thread.
//
// To sum up: input and output from this method are "physical" RenderLayer-style rectangles and
// points, while inside this method we mostly use the RenderObject-style rectangles (with the
// block direction coordinate always being logical top).
// Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in
// a renderer, most rectangles are represented this way.
LayoutRect layerBoundsInFlowThread(layerBoundingBox);
flowThread()->flipForWritingMode(layerBoundsInFlowThread);
// Now we can compare with the flow thread portions owned by each column. First let's
// see if the rect intersects our flow thread portion at all.
LayoutRect clippedRect(layerBoundsInFlowThread);
clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
if (clippedRect.isEmpty())
return;
// Now we know we intersect at least one column. Let's figure out the logical top and logical
// bottom of the area we're checking.
LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFlowThread.y() : layerBoundsInFlowThread.x();
LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFlowThread.maxY() : layerBoundsInFlowThread.maxX()) - 1;
// Figure out the start and end columns and only check within that range so that we don't walk the
// entire column set.
unsigned startColumn = columnIndexAtOffset(layerLogicalTop);
unsigned endColumn = columnIndexAtOffset(layerLogicalBottom);
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutUnit colGap = columnGap();
unsigned colCount = columnCount();
RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
bool progressionIsInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
LayoutUnit initialBlockOffset = initialBlockOffsetForPainting();
for (unsigned i = startColumn; i <= endColumn; i++) {
// Get the portion of the flow thread that corresponds to this column.
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
// Now get the overflow rect that corresponds to the column.
LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);
// In order to create a fragment we must intersect the portion painted by this column.
LayoutRect clippedRect(layerBoundsInFlowThread);
clippedRect.intersect(flowThreadOverflowPortion);
if (clippedRect.isEmpty())
continue;
// We also need to intersect the dirty rect. We have to apply a translation and shift based off
// our column index.
LayoutPoint translationOffset;
LayoutUnit inlineOffset = progressionIsInline ? i * (colLogicalWidth + colGap) : LayoutUnit();
bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed;
if (!leftToRight) {
inlineOffset = -inlineOffset;
if (progressionReversed)
inlineOffset += contentLogicalWidth() - colLogicalWidth;
}
translationOffset.setX(inlineOffset);
LayoutUnit blockOffset = initialBlockOffset + (isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x());
if (!progressionIsInline) {
if (!progressionReversed)
blockOffset = i * colGap;
else
blockOffset -= i * (computedColumnHeight() + colGap);
}
if (isFlippedBlocksWritingMode(style().writingMode()))
blockOffset = -blockOffset;
translationOffset.setY(blockOffset);
if (!isHorizontalWritingMode())
translationOffset = translationOffset.transposedPoint();
// FIXME: The translation needs to include the multicolumn set's content offset within the
// multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets.
// Shift the dirty rect to be in flow thread coordinates with this translation applied.
LayoutRect translatedDirtyRect(dirtyRect);
translatedDirtyRect.moveBy(-translationOffset);
// See if we intersect the dirty rect.
clippedRect = layerBoundingBox;
clippedRect.intersect(translatedDirtyRect);
if (clippedRect.isEmpty())
continue;
// Something does need to paint in this column. Make a fragment now and supply the physical translation
// offset and the clip rect for the column with that offset applied.
LayerFragment fragment;
fragment.paginationOffset = translationOffset;
LayoutRect flippedFlowThreadOverflowPortion(flowThreadOverflowPortion);
// Flip it into more a physical (RenderLayer-style) rectangle.
flowThread()->flipForWritingMode(flippedFlowThreadOverflowPortion);
fragment.paginationClip = flippedFlowThreadOverflowPortion;
fragments.append(fragment);
}
}
void RenderMultiColumnSet::adjustRegionBoundsFromFlowThreadPortionRect(const IntPoint& layerOffset, IntRect& regionBounds)
{
LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerOffset.y() : layerOffset.x();
unsigned startColumn = columnIndexAtOffset(layerLogicalTop);
LayoutUnit colGap = columnGap();
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutRect flowThreadPortion = flowThreadPortionRectAt(startColumn);
LayoutPoint translationOffset;
RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
bool progressionIsInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
LayoutUnit initialBlockOffset = initialBlockOffsetForPainting();
LayoutUnit inlineOffset = progressionIsInline ? startColumn * (colLogicalWidth + colGap) : LayoutUnit();
bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed;
if (!leftToRight) {
inlineOffset = -inlineOffset;
if (progressionReversed)
inlineOffset += contentLogicalWidth() - colLogicalWidth;
}
translationOffset.setX(inlineOffset);
LayoutUnit blockOffset = initialBlockOffset + (isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x());
if (!progressionIsInline) {
if (!progressionReversed)
blockOffset = startColumn * colGap;
else
blockOffset -= startColumn * (computedColumnHeight() + colGap);
}
if (isFlippedBlocksWritingMode(style().writingMode()))
blockOffset = -blockOffset;
translationOffset.setY(blockOffset);
if (!isHorizontalWritingMode())
translationOffset = translationOffset.transposedPoint();
// FIXME: The translation needs to include the multicolumn set's content offset within the
// multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets.
regionBounds.moveBy(roundedIntPoint(-translationOffset));
}
void RenderMultiColumnSet::addOverflowFromChildren()
{
// FIXME: Need to do much better here.
unsigned colCount = columnCount();
if (!colCount)
return;
LayoutRect lastRect = columnRectAt(colCount - 1);
addLayoutOverflow(lastRect);
if (!hasOverflowClip())
addVisualOverflow(lastRect);
}
const char* RenderMultiColumnSet::renderName() const
{
return "RenderMultiColumnSet";
}
}
|