File: RenderMultiColumnSet.cpp

package info (click to toggle)
webkitgtk 2.4.9-1~deb8u1
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 120,620 kB
  • ctags: 192,221
  • sloc: cpp: 1,034,319; ansic: 19,255; sh: 11,153; perl: 10,747; ruby: 8,592; asm: 4,378; python: 4,132; yacc: 2,072; lex: 350; makefile: 215; xml: 63
file content (722 lines) | stat: -rw-r--r-- 34,891 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
/*
 * Copyright (C) 2012 Apple Inc.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "RenderMultiColumnSet.h"

#include "PaintInfo.h"
#include "RenderLayer.h"
#include "RenderMultiColumnFlowThread.h"

namespace WebCore {

RenderMultiColumnSet::RenderMultiColumnSet(RenderFlowThread& flowThread, PassRef<RenderStyle> style)
    : RenderRegionSet(flowThread.document(), std::move(style), flowThread)
    , m_computedColumnCount(1)
    , m_computedColumnWidth(0)
    , m_computedColumnHeight(0)
    , m_maxColumnHeight(RenderFlowThread::maxLogicalHeight())
    , m_minSpaceShortage(RenderFlowThread::maxLogicalHeight())
    , m_minimumColumnHeight(0)
{
}

LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const
{
    RenderBlockFlow* multicolBlock = toRenderBlockFlow(parent());
    LayoutUnit contentLogicalTop = logicalTop() - multicolBlock->borderAndPaddingBefore();

    height -= contentLogicalTop;
    return std::max(height, LayoutUnit::fromPixel(1)); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created.
}

LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const
{
    LayoutUnit portionLogicalTop = (isHorizontalWritingMode() ? flowThreadPortionRect().y() : flowThreadPortionRect().x());
    unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns);
    return portionLogicalTop + columnIndex * computedColumnHeight();
}

void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight)
{
    m_computedColumnHeight = newHeight;
    if (m_computedColumnHeight > m_maxColumnHeight)
        m_computedColumnHeight = m_maxColumnHeight;
    // FIXME: the height may also be affected by the enclosing pagination context, if any.
}

unsigned RenderMultiColumnSet::findRunWithTallestColumns() const
{
    unsigned indexWithLargestHeight = 0;
    LayoutUnit largestHeight;
    LayoutUnit previousOffset;
    size_t runCount = m_contentRuns.size();
    ASSERT(runCount);
    for (size_t i = 0; i < runCount; i++) {
        const ContentRun& run = m_contentRuns[i];
        LayoutUnit height = run.columnLogicalHeight(previousOffset);
        if (largestHeight < height) {
            largestHeight = height;
            indexWithLargestHeight = i;
        }
        previousOffset = run.breakOffset();
    }
    return indexWithLargestHeight;
}

void RenderMultiColumnSet::distributeImplicitBreaks()
{
    unsigned breakCount = forcedBreaksCount();

#ifndef NDEBUG
    // There should be no implicit breaks assumed at this point.
    for (unsigned i = 0; i < breakCount; i++)
        ASSERT(!m_contentRuns[i].assumedImplicitBreaks());
#endif // NDEBUG

    // There will always be at least one break, since the flow thread reports a "forced break" at
    // end of content.
    ASSERT(breakCount >= 1);

    // If there is room for more breaks (to reach the used value of column-count), imagine that we
    // insert implicit breaks at suitable locations. At any given time, the content run with the
    // currently tallest columns will get another implicit break "inserted", which will increase its
    // column count by one and shrink its columns' height. Repeat until we have the desired total
    // number of breaks. The largest column height among the runs will then be the initial column
    // height for the balancer to use.
    while (breakCount < m_computedColumnCount) {
        unsigned index = findRunWithTallestColumns();
        m_contentRuns[index].assumeAnotherImplicitBreak();
        breakCount++;
    }
}

LayoutUnit RenderMultiColumnSet::calculateBalancedHeight(bool initial) const
{
    if (initial) {
        // Start with the lowest imaginable column height.
        unsigned index = findRunWithTallestColumns();
        LayoutUnit startOffset = index > 0 ? m_contentRuns[index - 1].breakOffset() : LayoutUnit::fromPixel(0);
        return std::max<LayoutUnit>(m_contentRuns[index].columnLogicalHeight(startOffset), m_minimumColumnHeight);
    }

    if (columnCount() <= computedColumnCount()) {
        // With the current column height, the content fits without creating overflowing columns. We're done.
        return m_computedColumnHeight;
    }

    if (forcedBreaksCount() > 1 && forcedBreaksCount() >= computedColumnCount()) {
        // Too many forced breaks to allow any implicit breaks. Initial balancing should already
        // have set a good height. There's nothing more we should do.
        return m_computedColumnHeight;
    }

    // If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest
    // amount of space shortage found during layout.

    ASSERT(m_minSpaceShortage > 0); // We should never _shrink_ the height!
    ASSERT(m_minSpaceShortage != RenderFlowThread::maxLogicalHeight()); // If this happens, we probably have a bug.
    if (m_minSpaceShortage == RenderFlowThread::maxLogicalHeight())
        return m_computedColumnHeight; // So bail out rather than looping infinitely.

    return m_computedColumnHeight + m_minSpaceShortage;
}

void RenderMultiColumnSet::clearForcedBreaks()
{
    m_contentRuns.clear();
}

void RenderMultiColumnSet::addForcedBreak(LayoutUnit offsetFromFirstPage)
{
    if (!toRenderBlockFlow(parent())->multiColumnFlowThread()->requiresBalancing())
        return;
    if (!m_contentRuns.isEmpty() && offsetFromFirstPage <= m_contentRuns.last().breakOffset())
        return;
    // Append another item as long as we haven't exceeded used column count. What ends up in the
    // overflow area shouldn't affect column balancing.
    if (m_contentRuns.size() < m_computedColumnCount)
        m_contentRuns.append(ContentRun(offsetFromFirstPage));
}

bool RenderMultiColumnSet::recalculateBalancedHeight(bool initial)
{
    ASSERT(toRenderBlockFlow(parent())->multiColumnFlowThread()->requiresBalancing());

    LayoutUnit oldColumnHeight = m_computedColumnHeight;
    if (initial)
        distributeImplicitBreaks();
    LayoutUnit newColumnHeight = calculateBalancedHeight(initial);
    setAndConstrainColumnHeight(newColumnHeight);

    // After having calculated an initial column height, the multicol container typically needs at
    // least one more layout pass with a new column height, but if a height was specified, we only
    // need to do this if we think that we need less space than specified. Conversely, if we
    // determined that the columns need to be as tall as the specified height of the container, we
    // have already laid it out correctly, and there's no need for another pass.

    if (m_computedColumnHeight == oldColumnHeight)
        return false; // No change. We're done.

    m_minSpaceShortage = RenderFlowThread::maxLogicalHeight();
    clearForcedBreaks();
    return true; // Need another pass.
}

void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage)
{
    if (spaceShortage >= m_minSpaceShortage)
        return;

    // The space shortage is what we use as our stretch amount. We need a positive number here in
    // order to get anywhere.
    ASSERT(spaceShortage > 0);

    m_minSpaceShortage = spaceShortage;
}

void RenderMultiColumnSet::updateLogicalWidth()
{
    RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
    setComputedColumnWidthAndCount(parentBlock->multiColumnFlowThread()->columnWidth(), parentBlock->multiColumnFlowThread()->columnCount()); // FIXME: This will eventually vary if we are contained inside regions.
    
    // FIXME: When we add regions support, we'll start it off at the width of the multi-column
    // block in that particular region.
    setLogicalWidth(parentBox()->contentLogicalWidth());
}

void RenderMultiColumnSet::prepareForLayout()
{
    RenderBlockFlow* multicolBlock = toRenderBlockFlow(parent());
    const RenderStyle& multicolStyle = multicolBlock->style();

    // Set box logical top.
    ASSERT(!previousSiblingBox() || !previousSiblingBox()->isRenderMultiColumnSet()); // FIXME: multiple set not implemented; need to examine previous set to calculate the correct logical top.
    setLogicalTop(multicolBlock->borderAndPaddingBefore());

    // Set box width.
    updateLogicalWidth();

    if (multicolBlock->multiColumnFlowThread()->requiresBalancing()) {
        // Set maximum column height. We will not stretch beyond this.
        m_maxColumnHeight = RenderFlowThread::maxLogicalHeight();
        if (!multicolStyle.logicalHeight().isAuto()) {
            m_maxColumnHeight = multicolBlock->computeContentLogicalHeight(multicolStyle.logicalHeight());
            if (m_maxColumnHeight == -1)
                m_maxColumnHeight = RenderFlowThread::maxLogicalHeight();
        }
        if (!multicolStyle.logicalMaxHeight().isUndefined()) {
            LayoutUnit logicalMaxHeight = multicolBlock->computeContentLogicalHeight(multicolStyle.logicalMaxHeight());
            if (logicalMaxHeight != -1 && m_maxColumnHeight > logicalMaxHeight)
                m_maxColumnHeight = logicalMaxHeight;
        }
        m_maxColumnHeight = heightAdjustedForSetOffset(m_maxColumnHeight);
        m_computedColumnHeight = 0; // Restart balancing.
    } else
        setAndConstrainColumnHeight(heightAdjustedForSetOffset(multicolBlock->multiColumnFlowThread()->columnHeightAvailable()));

    clearForcedBreaks();

    // Nuke previously stored minimum column height. Contents may have changed for all we know.
    m_minimumColumnHeight = 0;
}

void RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const
{
    computedValues.m_extent = m_computedColumnHeight;
    computedValues.m_position = logicalTop;
}

LayoutUnit RenderMultiColumnSet::columnGap() const
{
    // FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just
    // go to the parent block to get the gap.
    RenderBlockFlow* parentBlock = toRenderBlockFlow(parent());
    if (parentBlock->style().hasNormalColumnGap())
        return parentBlock->style().fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
    return parentBlock->style().columnGap();
}

unsigned RenderMultiColumnSet::columnCount() const
{
    // We must always return a value of 1 or greater. Column count = 0 is a meaningless situation,
    // and will confuse and cause problems in other parts of the code.
    if (!computedColumnHeight())
        return 1;

    // Our portion rect determines our column count. We have as many columns as needed to fit all the content.
    LayoutUnit logicalHeightInColumns = flowThread()->isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width();
    if (!logicalHeightInColumns)
        return 1;
    
    unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight());
    ASSERT(count >= 1);
    return count;
}

LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const
{
    LayoutUnit colLogicalWidth = computedColumnWidth();
    LayoutUnit colLogicalHeight = computedColumnHeight();
    LayoutUnit colLogicalTop = borderAndPaddingBefore();
    LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft();
    LayoutUnit colGap = columnGap();
    
    RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
    bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
    bool progressionInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
    
    if (progressionInline) {
        if (style().isLeftToRightDirection() ^ progressionReversed)
            colLogicalLeft += index * (colLogicalWidth + colGap);
        else
            colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap);
    } else {
        if (!progressionReversed)
            colLogicalTop += index * (colLogicalHeight + colGap);
        else
            colLogicalTop += contentLogicalHeight() - colLogicalHeight - index * (colLogicalHeight + colGap);
    }
    
    if (isHorizontalWritingMode())
        return LayoutRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight);
    return LayoutRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth);
}

unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const
{
    LayoutRect portionRect(flowThreadPortionRect());

    // Handle the offset being out of range.
    LayoutUnit flowThreadLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x();
    if (offset < flowThreadLogicalTop)
        return 0;
    // If we're laying out right now, we cannot constrain against some logical bottom, since it
    // isn't known yet. Otherwise, just return the last column if we're past the logical bottom.
    if (mode == ClampToExistingColumns) {
        LayoutUnit flowThreadLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX();
        if (offset >= flowThreadLogicalBottom)
            return columnCount() - 1;
    }

    // Just divide by the column height to determine the correct column.
    return static_cast<float>(offset - flowThreadLogicalTop) / computedColumnHeight();
}

LayoutRect RenderMultiColumnSet::flowThreadPortionRectAt(unsigned index) const
{
    LayoutRect portionRect = flowThreadPortionRect();
    if (isHorizontalWritingMode())
        portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight());
    else
        portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height());
    return portionRect;
}

LayoutRect RenderMultiColumnSet::flowThreadPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap)
{
    // This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are
    // unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column
    // gap along interior edges.
    //
    // In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of
    // the last column. This applies only to the true first column and last column across all column sets.
    //
    // FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting
    // mode that understands not to paint contents from a previous column in the overflow area of a following column.
    // This problem applies to regions and pages as well and is not unique to columns.
    
    RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
    bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
    
    bool isFirstColumn = !index;
    bool isLastColumn = index == colCount - 1;
    bool isLeftmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isFirstColumn : isLastColumn;
    bool isRightmostColumn = style().isLeftToRightDirection() ^ progressionReversed ? isLastColumn : isFirstColumn;

    // Calculate the overflow rectangle, based on the flow thread's, clipped at column logical
    // top/bottom unless it's the first/last column.
    LayoutRect overflowRect = overflowRectForFlowThreadPortion(portionRect, isFirstColumn && isFirstRegion(), isLastColumn && isLastRegion(), VisualOverflow);

    // Avoid overflowing into neighboring columns, by clipping in the middle of adjacent column
    // gaps. Also make sure that we avoid rounding errors.
    if (isHorizontalWritingMode()) {
        if (!isLeftmostColumn)
            overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2);
        if (!isRightmostColumn)
            overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2);
    } else {
        if (!isLeftmostColumn)
            overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2);
        if (!isRightmostColumn)
            overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2);
    }
    return overflowRect;
}

void RenderMultiColumnSet::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
    if (style().visibility() != VISIBLE)
        return;

    RenderBlock::paintObject(paintInfo, paintOffset);

    // FIXME: Right now we're only painting in the foreground phase.
    // Columns should technically respect phases and allow for background/float/foreground overlap etc., just like
    // RenderBlocks do. Note this is a pretty minor issue, since the old column implementation clipped columns
    // anyway, thus making it impossible for them to overlap one another. It's also really unlikely that the columns
    // would overlap another block.
    if (!m_flowThread || !isValid() || (paintInfo.phase != PaintPhaseForeground && paintInfo.phase != PaintPhaseSelection))
        return;

    paintColumnRules(paintInfo, paintOffset);
}

void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
    if (paintInfo.context->paintingDisabled())
        return;

    RenderMultiColumnFlowThread* flowThread = toRenderBlockFlow(parent())->multiColumnFlowThread();
    const RenderStyle& blockStyle = parent()->style();
    const Color& ruleColor = blockStyle.visitedDependentColor(CSSPropertyWebkitColumnRuleColor);
    bool ruleTransparent = blockStyle.columnRuleIsTransparent();
    EBorderStyle ruleStyle = blockStyle.columnRuleStyle();
    LayoutUnit ruleThickness = blockStyle.columnRuleWidth();
    LayoutUnit colGap = columnGap();
    bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent;
    if (!renderRule)
        return;

    unsigned colCount = columnCount();
    if (colCount <= 1)
        return;

    bool antialias = shouldAntialiasLines(paintInfo.context);

    if (flowThread->progressionIsInline()) {
        bool leftToRight = style().isLeftToRightDirection() ^ flowThread->progressionIsReversed();
        LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth();
        LayoutUnit ruleAdd = logicalLeftOffsetForContent();
        LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth();
        LayoutUnit inlineDirectionSize = computedColumnWidth();
        BoxSide boxSide = isHorizontalWritingMode()
            ? leftToRight ? BSLeft : BSRight
            : leftToRight ? BSTop : BSBottom;

        for (unsigned i = 0; i < colCount; i++) {
            // Move to the next position.
            if (leftToRight) {
                ruleLogicalLeft += inlineDirectionSize + colGap / 2;
                currLogicalLeftOffset += inlineDirectionSize + colGap;
            } else {
                ruleLogicalLeft -= (inlineDirectionSize + colGap / 2);
                currLogicalLeftOffset -= (inlineDirectionSize + colGap);
            }

            // Now paint the column rule.
            if (i < colCount - 1) {
                LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft();
                LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth();
                LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd;
                LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness;
                IntRect pixelSnappedRuleRect = pixelSnappedIntRectFromEdges(ruleLeft, ruleTop, ruleRight, ruleBottom);
                drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
            }
            
            ruleLogicalLeft = currLogicalLeftOffset;
        }
    } else {
        bool topToBottom = !style().isFlippedBlocksWritingMode() ^ flowThread->progressionIsReversed();
        LayoutUnit ruleLeft = isHorizontalWritingMode() ? LayoutUnit() : colGap / 2 - colGap - ruleThickness / 2;
        LayoutUnit ruleWidth = isHorizontalWritingMode() ? contentWidth() : ruleThickness;
        LayoutUnit ruleTop = isHorizontalWritingMode() ? colGap / 2 - colGap - ruleThickness / 2 : LayoutUnit();
        LayoutUnit ruleHeight = isHorizontalWritingMode() ? ruleThickness : contentHeight();
        LayoutRect ruleRect(ruleLeft, ruleTop, ruleWidth, ruleHeight);

        if (!topToBottom) {
            if (isHorizontalWritingMode())
                ruleRect.setY(height() - ruleRect.maxY());
            else
                ruleRect.setX(width() - ruleRect.maxX());
        }

        ruleRect.moveBy(paintOffset);

        BoxSide boxSide = isHorizontalWritingMode() ? topToBottom ? BSTop : BSBottom : topToBottom ? BSLeft : BSRight;

        LayoutSize step(0, topToBottom ? computedColumnHeight() + colGap : -(computedColumnHeight() + colGap));
        if (!isHorizontalWritingMode())
            step = step.transposedSize();

        for (unsigned i = 1; i < colCount; i++) {
            ruleRect.move(step);
            IntRect pixelSnappedRuleRect = pixelSnappedIntRect(ruleRect);
            drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
        }
    }
}

void RenderMultiColumnSet::repaintFlowThreadContent(const LayoutRect& repaintRect, bool immediate)
{
    // Figure out the start and end columns and only check within that range so that we don't walk the
    // entire column set. Put the repaint rect into flow thread coordinates by flipping it first.
    LayoutRect flowThreadRepaintRect(repaintRect);
    flowThread()->flipForWritingMode(flowThreadRepaintRect);
    
    // Now we can compare this rect with the flow thread portions owned by each column. First let's
    // just see if the repaint rect intersects our flow thread portion at all.
    LayoutRect clippedRect(flowThreadRepaintRect);
    clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
    if (clippedRect.isEmpty())
        return;
    
    // Now we know we intersect at least one column. Let's figure out the logical top and logical
    // bottom of the area we're repainting.
    LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? flowThreadRepaintRect.y() : flowThreadRepaintRect.x();
    LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? flowThreadRepaintRect.maxY() : flowThreadRepaintRect.maxX()) - 1;
    
    unsigned startColumn = columnIndexAtOffset(repaintLogicalTop);
    unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom);
    
    LayoutUnit colGap = columnGap();
    unsigned colCount = columnCount();
    for (unsigned i = startColumn; i <= endColumn; i++) {
        LayoutRect colRect = columnRectAt(i);
        
        // Get the portion of the flow thread that corresponds to this column.
        LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);

        // Now get the overflow rect that corresponds to the column.
        LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);

        // Do a repaint for this specific column.
        repaintFlowThreadContentRectangle(repaintRect, immediate, flowThreadPortion, colRect.location(), &flowThreadOverflowPortion);
    }
}

LayoutUnit RenderMultiColumnSet::initialBlockOffsetForPainting() const
{
    RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
    bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
    bool progressionIsInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
    
    LayoutUnit result = 0;
    if (!progressionIsInline && progressionReversed) {
        LayoutRect colRect = columnRectAt(0);
        result = isHorizontalWritingMode() ? colRect.y() : colRect.x();
        if (style().isFlippedBlocksWritingMode())
            result = -result;
    }
    return result;
}

void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect)
{
    // Let's start by introducing the different coordinate systems involved here. They are different
    // in how they deal with writing modes and columns. RenderLayer rectangles tend to be more
    // physical than the rectangles used in RenderObject & co.
    //
    // The two rectangles passed to this method are physical, except that we pretend that there's
    // only one long column (that's the flow thread). They are relative to the top left corner of
    // the flow thread. All rectangles being compared to the dirty rect also need to be in this
    // coordinate system.
    //
    // Then there's the output from this method - the stuff we put into the list of fragments. The
    // translationOffset point is the actual physical translation required to get from a location in
    // the flow thread to a location in some column. The paginationClip rectangle is in the same
    // coordinate system as the two rectangles passed to this method (i.e. physical, in flow thread
    // coordinates, pretending that there's only one long column).
    //
    // All other rectangles in this method are slightly less physical, when it comes to how they are
    // used with different writing modes, but they aren't really logical either. They are just like
    // RenderBox::frameRect(). More precisely, the sizes are physical, and the inline direction
    // coordinate is too, but the block direction coordinate is always "logical top". These
    // rectangles also pretend that there's only one long column, i.e. they are for the flow thread.
    //
    // To sum up: input and output from this method are "physical" RenderLayer-style rectangles and
    // points, while inside this method we mostly use the RenderObject-style rectangles (with the
    // block direction coordinate always being logical top).

    // Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in
    // a renderer, most rectangles are represented this way.
    LayoutRect layerBoundsInFlowThread(layerBoundingBox);
    flowThread()->flipForWritingMode(layerBoundsInFlowThread);

    // Now we can compare with the flow thread portions owned by each column. First let's
    // see if the rect intersects our flow thread portion at all.
    LayoutRect clippedRect(layerBoundsInFlowThread);
    clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
    if (clippedRect.isEmpty())
        return;
    
    // Now we know we intersect at least one column. Let's figure out the logical top and logical
    // bottom of the area we're checking.
    LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFlowThread.y() : layerBoundsInFlowThread.x();
    LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFlowThread.maxY() : layerBoundsInFlowThread.maxX()) - 1;
    
    // Figure out the start and end columns and only check within that range so that we don't walk the
    // entire column set.
    unsigned startColumn = columnIndexAtOffset(layerLogicalTop);
    unsigned endColumn = columnIndexAtOffset(layerLogicalBottom);
    
    LayoutUnit colLogicalWidth = computedColumnWidth();
    LayoutUnit colGap = columnGap();
    unsigned colCount = columnCount();
    
    RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
    bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
    bool progressionIsInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
    
    LayoutUnit initialBlockOffset = initialBlockOffsetForPainting();
    
    for (unsigned i = startColumn; i <= endColumn; i++) {
        // Get the portion of the flow thread that corresponds to this column.
        LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
        
        // Now get the overflow rect that corresponds to the column.
        LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);

        // In order to create a fragment we must intersect the portion painted by this column.
        LayoutRect clippedRect(layerBoundsInFlowThread);
        clippedRect.intersect(flowThreadOverflowPortion);
        if (clippedRect.isEmpty())
            continue;
        
        // We also need to intersect the dirty rect. We have to apply a translation and shift based off
        // our column index.
        LayoutPoint translationOffset;
        LayoutUnit inlineOffset = progressionIsInline ? i * (colLogicalWidth + colGap) : LayoutUnit();
        
        bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed;
        if (!leftToRight) {
            inlineOffset = -inlineOffset;
            if (progressionReversed)
                inlineOffset += contentLogicalWidth() - colLogicalWidth;
        }
        translationOffset.setX(inlineOffset);
        LayoutUnit blockOffset = initialBlockOffset + (isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x());
        if (!progressionIsInline) {
            if (!progressionReversed)
                blockOffset = i * colGap;
            else
                blockOffset -= i * (computedColumnHeight() + colGap);
        }
        if (isFlippedBlocksWritingMode(style().writingMode()))
            blockOffset = -blockOffset;
        translationOffset.setY(blockOffset);
        if (!isHorizontalWritingMode())
            translationOffset = translationOffset.transposedPoint();
        // FIXME: The translation needs to include the multicolumn set's content offset within the
        // multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets.

        // Shift the dirty rect to be in flow thread coordinates with this translation applied.
        LayoutRect translatedDirtyRect(dirtyRect);
        translatedDirtyRect.moveBy(-translationOffset);
        
        // See if we intersect the dirty rect.
        clippedRect = layerBoundingBox;
        clippedRect.intersect(translatedDirtyRect);
        if (clippedRect.isEmpty())
            continue;
        
        // Something does need to paint in this column. Make a fragment now and supply the physical translation
        // offset and the clip rect for the column with that offset applied.
        LayerFragment fragment;
        fragment.paginationOffset = translationOffset;

        LayoutRect flippedFlowThreadOverflowPortion(flowThreadOverflowPortion);
        // Flip it into more a physical (RenderLayer-style) rectangle.
        flowThread()->flipForWritingMode(flippedFlowThreadOverflowPortion);
        fragment.paginationClip = flippedFlowThreadOverflowPortion;
        fragments.append(fragment);
    }
}

void RenderMultiColumnSet::adjustRegionBoundsFromFlowThreadPortionRect(const IntPoint& layerOffset, IntRect& regionBounds)
{
    LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerOffset.y() : layerOffset.x();
    unsigned startColumn = columnIndexAtOffset(layerLogicalTop);
    
    LayoutUnit colGap = columnGap();
    LayoutUnit colLogicalWidth = computedColumnWidth();
    
    LayoutRect flowThreadPortion = flowThreadPortionRectAt(startColumn);
    LayoutPoint translationOffset;
    
    RenderBlockFlow* parentFlow = toRenderBlockFlow(parent());
    bool progressionReversed = parentFlow->multiColumnFlowThread()->progressionIsReversed();
    bool progressionIsInline = parentFlow->multiColumnFlowThread()->progressionIsInline();
    
    LayoutUnit initialBlockOffset = initialBlockOffsetForPainting();
    
    LayoutUnit inlineOffset = progressionIsInline ? startColumn * (colLogicalWidth + colGap) : LayoutUnit();
    
    bool leftToRight = style().isLeftToRightDirection() ^ progressionReversed;
    if (!leftToRight) {
        inlineOffset = -inlineOffset;
        if (progressionReversed)
            inlineOffset += contentLogicalWidth() - colLogicalWidth;
    }
    translationOffset.setX(inlineOffset);
    LayoutUnit blockOffset = initialBlockOffset + (isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x());
    if (!progressionIsInline) {
        if (!progressionReversed)
            blockOffset = startColumn * colGap;
        else
            blockOffset -= startColumn * (computedColumnHeight() + colGap);
    }
    if (isFlippedBlocksWritingMode(style().writingMode()))
        blockOffset = -blockOffset;
    translationOffset.setY(blockOffset);
    
    if (!isHorizontalWritingMode())
        translationOffset = translationOffset.transposedPoint();

    // FIXME: The translation needs to include the multicolumn set's content offset within the
    // multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets.
    
    regionBounds.moveBy(roundedIntPoint(-translationOffset));
}

void RenderMultiColumnSet::addOverflowFromChildren()
{
    // FIXME: Need to do much better here.
    unsigned colCount = columnCount();
    if (!colCount)
        return;
    
    LayoutRect lastRect = columnRectAt(colCount - 1);
    addLayoutOverflow(lastRect);
    if (!hasOverflowClip())
        addVisualOverflow(lastRect);
}

const char* RenderMultiColumnSet::renderName() const
{    
    return "RenderMultiColumnSet";
}

}