1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "common_audio/smoothing_filter.h"
#include <math.h>
#include <cmath>
#include "rtc_base/checks.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
SmoothingFilterImpl::SmoothingFilterImpl(int init_time_ms)
: init_time_ms_(init_time_ms),
// Duing the initalization time, we use an increasing alpha. Specifically,
// alpha(n) = exp(-powf(init_factor_, n)),
// where |init_factor_| is chosen such that
// alpha(init_time_ms_) = exp(-1.0f / init_time_ms_),
init_factor_(init_time_ms_ == 0
? 0.0f
: powf(init_time_ms_, -1.0f / init_time_ms_)),
// |init_const_| is to a factor to help the calculation during
// initialization phase.
init_const_(init_time_ms_ == 0
? 0.0f
: init_time_ms_ -
powf(init_time_ms_, 1.0f - 1.0f / init_time_ms_)) {
UpdateAlpha(init_time_ms_);
}
SmoothingFilterImpl::~SmoothingFilterImpl() = default;
void SmoothingFilterImpl::AddSample(float sample) {
const int64_t now_ms = rtc::TimeMillis();
if (!init_end_time_ms_) {
// This is equivalent to assuming the filter has been receiving the same
// value as the first sample since time -infinity.
state_ = last_sample_ = sample;
init_end_time_ms_ = now_ms + init_time_ms_;
last_state_time_ms_ = now_ms;
return;
}
ExtrapolateLastSample(now_ms);
last_sample_ = sample;
}
absl::optional<float> SmoothingFilterImpl::GetAverage() {
if (!init_end_time_ms_) {
// |init_end_time_ms_| undefined since we have not received any sample.
return absl::nullopt;
}
ExtrapolateLastSample(rtc::TimeMillis());
return state_;
}
bool SmoothingFilterImpl::SetTimeConstantMs(int time_constant_ms) {
if (!init_end_time_ms_ || last_state_time_ms_ < *init_end_time_ms_) {
return false;
}
UpdateAlpha(time_constant_ms);
return true;
}
void SmoothingFilterImpl::UpdateAlpha(int time_constant_ms) {
alpha_ = time_constant_ms == 0 ? 0.0f : std::exp(-1.0f / time_constant_ms);
}
void SmoothingFilterImpl::ExtrapolateLastSample(int64_t time_ms) {
RTC_DCHECK_GE(time_ms, last_state_time_ms_);
RTC_DCHECK(init_end_time_ms_);
float multiplier = 0.0f;
if (time_ms <= *init_end_time_ms_) {
// Current update is to be made during initialization phase.
// We update the state as if the |alpha| has been increased according
// alpha(n) = exp(-powf(init_factor_, n)),
// where n is the time (in millisecond) since the first sample received.
// With algebraic derivation as shown in the Appendix, we can find that the
// state can be updated in a similar manner as if alpha is a constant,
// except for a different multiplier.
if (init_time_ms_ == 0) {
// This means |init_factor_| = 0.
multiplier = 0.0f;
} else if (init_time_ms_ == 1) {
// This means |init_factor_| = 1.
multiplier = std::exp(last_state_time_ms_ - time_ms);
} else {
multiplier = std::exp(
-(powf(init_factor_, last_state_time_ms_ - *init_end_time_ms_) -
powf(init_factor_, time_ms - *init_end_time_ms_)) /
init_const_);
}
} else {
if (last_state_time_ms_ < *init_end_time_ms_) {
// The latest state update was made during initialization phase.
// We first extrapolate to the initialization time.
ExtrapolateLastSample(*init_end_time_ms_);
// Then extrapolate the rest by the following.
}
multiplier = powf(alpha_, time_ms - last_state_time_ms_);
}
state_ = multiplier * state_ + (1.0f - multiplier) * last_sample_;
last_state_time_ms_ = time_ms;
}
} // namespace webrtc
// Appendix: derivation of extrapolation during initialization phase.
// (LaTeX syntax)
// Assuming
// \begin{align}
// y(n) &= \alpha_{n-1} y(n-1) + \left(1 - \alpha_{n-1}\right) x(m) \\*
// &= \left(\prod_{i=m}^{n-1} \alpha_i\right) y(m) +
// \left(1 - \prod_{i=m}^{n-1} \alpha_i \right) x(m)
// \end{align}
// Taking $\alpha_{n} = \exp(-\gamma^n)$, $\gamma$ denotes init\_factor\_, the
// multiplier becomes
// \begin{align}
// \prod_{i=m}^{n-1} \alpha_i
// &= \exp\left(-\sum_{i=m}^{n-1} \gamma^i \right) \\*
// &= \begin{cases}
// \exp\left(-\frac{\gamma^m - \gamma^n}{1 - \gamma} \right)
// & \gamma \neq 1 \\*
// m-n & \gamma = 1
// \end{cases}
// \end{align}
// We know $\gamma = T^{-\frac{1}{T}}$, where $T$ denotes init\_time\_ms\_. Then
// $1 - \gamma$ approaches zero when $T$ increases. This can cause numerical
// difficulties. We multiply $T$ (if $T > 0$) to both numerator and denominator
// in the fraction. See.
// \begin{align}
// \frac{\gamma^m - \gamma^n}{1 - \gamma}
// &= \frac{T^\frac{T-m}{T} - T^\frac{T-n}{T}}{T - T^{1-\frac{1}{T}}}
// \end{align}
|