File: lpc_analysis.c

package info (click to toggle)
webrtc-audio-processing 1.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,112 kB
  • sloc: cpp: 50,766; ansic: 19,793; asm: 236; makefile: 4
file content (496 lines) | stat: -rw-r--r-- 17,688 bytes parent folder | download | duplicates (16)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include <math.h>
#include <string.h>

#include "modules/audio_coding/codecs/isac/main/source/lpc_analysis.h"
#include "modules/audio_coding/codecs/isac/main/source/settings.h"
#include "modules/audio_coding/codecs/isac/main/source/codec.h"
#include "modules/audio_coding/codecs/isac/main/source/entropy_coding.h"
#include "modules/audio_coding/codecs/isac/main/source/filter_functions.h"
#include "modules/audio_coding/codecs/isac/main/source/isac_vad.h"

/* window */
/* Matlab generation code:
 *  t = (1:256)/257; r = 1-(1-t).^.45; w = sin(r*pi).^3; w = w/sum(w); plot((1:256)/8, w); grid;
 *  for k=1:16, fprintf(1, '%.8f, ', w(k*16 + (-15:0))); fprintf(1, '\n'); end
 */
static const double kLpcCorrWindow[WINLEN] = {
  0.00000000, 0.00000001, 0.00000004, 0.00000010, 0.00000020,
  0.00000035, 0.00000055, 0.00000083, 0.00000118, 0.00000163,
  0.00000218, 0.00000283, 0.00000361, 0.00000453, 0.00000558, 0.00000679,
  0.00000817, 0.00000973, 0.00001147, 0.00001342, 0.00001558,
  0.00001796, 0.00002058, 0.00002344, 0.00002657, 0.00002997,
  0.00003365, 0.00003762, 0.00004190, 0.00004651, 0.00005144, 0.00005673,
  0.00006236, 0.00006837, 0.00007476, 0.00008155, 0.00008875,
  0.00009636, 0.00010441, 0.00011290, 0.00012186, 0.00013128,
  0.00014119, 0.00015160, 0.00016252, 0.00017396, 0.00018594, 0.00019846,
  0.00021155, 0.00022521, 0.00023946, 0.00025432, 0.00026978,
  0.00028587, 0.00030260, 0.00031998, 0.00033802, 0.00035674,
  0.00037615, 0.00039626, 0.00041708, 0.00043863, 0.00046092, 0.00048396,
  0.00050775, 0.00053233, 0.00055768, 0.00058384, 0.00061080,
  0.00063858, 0.00066720, 0.00069665, 0.00072696, 0.00075813,
  0.00079017, 0.00082310, 0.00085692, 0.00089164, 0.00092728, 0.00096384,
  0.00100133, 0.00103976, 0.00107914, 0.00111947, 0.00116077,
  0.00120304, 0.00124630, 0.00129053, 0.00133577, 0.00138200,
  0.00142924, 0.00147749, 0.00152676, 0.00157705, 0.00162836, 0.00168070,
  0.00173408, 0.00178850, 0.00184395, 0.00190045, 0.00195799,
  0.00201658, 0.00207621, 0.00213688, 0.00219860, 0.00226137,
  0.00232518, 0.00239003, 0.00245591, 0.00252284, 0.00259079, 0.00265977,
  0.00272977, 0.00280078, 0.00287280, 0.00294582, 0.00301984,
  0.00309484, 0.00317081, 0.00324774, 0.00332563, 0.00340446,
  0.00348421, 0.00356488, 0.00364644, 0.00372889, 0.00381220, 0.00389636,
  0.00398135, 0.00406715, 0.00415374, 0.00424109, 0.00432920,
  0.00441802, 0.00450754, 0.00459773, 0.00468857, 0.00478001,
  0.00487205, 0.00496464, 0.00505775, 0.00515136, 0.00524542, 0.00533990,
  0.00543476, 0.00552997, 0.00562548, 0.00572125, 0.00581725,
  0.00591342, 0.00600973, 0.00610612, 0.00620254, 0.00629895,
  0.00639530, 0.00649153, 0.00658758, 0.00668341, 0.00677894, 0.00687413,
  0.00696891, 0.00706322, 0.00715699, 0.00725016, 0.00734266,
  0.00743441, 0.00752535, 0.00761540, 0.00770449, 0.00779254,
  0.00787947, 0.00796519, 0.00804963, 0.00813270, 0.00821431, 0.00829437,
  0.00837280, 0.00844949, 0.00852436, 0.00859730, 0.00866822,
  0.00873701, 0.00880358, 0.00886781, 0.00892960, 0.00898884,
  0.00904542, 0.00909923, 0.00915014, 0.00919805, 0.00924283, 0.00928436,
  0.00932252, 0.00935718, 0.00938821, 0.00941550, 0.00943890,
  0.00945828, 0.00947351, 0.00948446, 0.00949098, 0.00949294,
  0.00949020, 0.00948262, 0.00947005, 0.00945235, 0.00942938, 0.00940099,
  0.00936704, 0.00932738, 0.00928186, 0.00923034, 0.00917268,
  0.00910872, 0.00903832, 0.00896134, 0.00887763, 0.00878706,
  0.00868949, 0.00858478, 0.00847280, 0.00835343, 0.00822653, 0.00809199,
  0.00794970, 0.00779956, 0.00764145, 0.00747530, 0.00730103,
  0.00711857, 0.00692787, 0.00672888, 0.00652158, 0.00630597,
  0.00608208, 0.00584994, 0.00560962, 0.00536124, 0.00510493, 0.00484089,
  0.00456935, 0.00429062, 0.00400505, 0.00371310, 0.00341532,
  0.00311238, 0.00280511, 0.00249452, 0.00218184, 0.00186864,
  0.00155690, 0.00124918, 0.00094895, 0.00066112, 0.00039320, 0.00015881
};

static void WebRtcIsac_GetVars(const double* input,
                               const int16_t* pitchGains_Q12,
                               double* oldEnergy,
                               double* varscale) {
  double nrg[4], chng, pg;
  int k;

  double pitchGains[4]={0,0,0,0};;

  /* Calculate energies of first and second frame halfs */
  nrg[0] = 0.0001;
  for (k = QLOOKAHEAD/2; k < (FRAMESAMPLES_QUARTER + QLOOKAHEAD) / 2; k++) {
    nrg[0] += input[k]*input[k];
  }
  nrg[1] = 0.0001;
  for ( ; k < (FRAMESAMPLES_HALF + QLOOKAHEAD) / 2; k++) {
    nrg[1] += input[k]*input[k];
  }
  nrg[2] = 0.0001;
  for ( ; k < (FRAMESAMPLES*3/4 + QLOOKAHEAD) / 2; k++) {
    nrg[2] += input[k]*input[k];
  }
  nrg[3] = 0.0001;
  for ( ; k < (FRAMESAMPLES + QLOOKAHEAD) / 2; k++) {
    nrg[3] += input[k]*input[k];
  }

  /* Calculate average level change */
  chng = 0.25 * (fabs(10.0 * log10(nrg[3] / nrg[2])) +
                 fabs(10.0 * log10(nrg[2] / nrg[1])) +
                 fabs(10.0 * log10(nrg[1] / nrg[0])) +
                 fabs(10.0 * log10(nrg[0] / *oldEnergy)));


  /* Find average pitch gain */
  pg = 0.0;
  for (k=0; k<4; k++)
  {
    pitchGains[k] = ((float)pitchGains_Q12[k])/4096;
    pg += pitchGains[k];
  }
  pg *= 0.25;

  /* If pitch gain is low and energy constant - increase noise level*/
  /* Matlab code:
     pg = 0:.01:.45; plot(pg, 0.0 + 1.0 * exp( -1.0 * exp(-200.0 * pg.*pg.*pg) / (1.0 + 0.4 * 0) ))
  */
  *varscale = 0.0 + 1.0 * exp( -1.4 * exp(-200.0 * pg*pg*pg) / (1.0 + 0.4 * chng) );

  *oldEnergy = nrg[3];
}

static void WebRtcIsac_GetVarsUB(const double* input,
                                 double* oldEnergy,
                                 double* varscale) {
  double nrg[4], chng;
  int k;

  /* Calculate energies of first and second frame halfs */
  nrg[0] = 0.0001;
  for (k = 0; k < (FRAMESAMPLES_QUARTER) / 2; k++) {
    nrg[0] += input[k]*input[k];
  }
  nrg[1] = 0.0001;
  for ( ; k < (FRAMESAMPLES_HALF) / 2; k++) {
    nrg[1] += input[k]*input[k];
  }
  nrg[2] = 0.0001;
  for ( ; k < (FRAMESAMPLES*3/4) / 2; k++) {
    nrg[2] += input[k]*input[k];
  }
  nrg[3] = 0.0001;
  for ( ; k < (FRAMESAMPLES) / 2; k++) {
    nrg[3] += input[k]*input[k];
  }

  /* Calculate average level change */
  chng = 0.25 * (fabs(10.0 * log10(nrg[3] / nrg[2])) +
                 fabs(10.0 * log10(nrg[2] / nrg[1])) +
                 fabs(10.0 * log10(nrg[1] / nrg[0])) +
                 fabs(10.0 * log10(nrg[0] / *oldEnergy)));


  /* If pitch gain is low and energy constant - increase noise level*/
  /* Matlab code:
     pg = 0:.01:.45; plot(pg, 0.0 + 1.0 * exp( -1.0 * exp(-200.0 * pg.*pg.*pg) / (1.0 + 0.4 * 0) ))
  */
  *varscale = exp( -1.4 / (1.0 + 0.4 * chng) );

  *oldEnergy = nrg[3];
}

void WebRtcIsac_GetLpcCoefLb(double *inLo, double *inHi, MaskFiltstr *maskdata,
                             double signal_noise_ratio, const int16_t *pitchGains_Q12,
                             double *lo_coeff, double *hi_coeff)
{
  int k, n, j, pos1, pos2;
  double varscale;

  double DataLo[WINLEN], DataHi[WINLEN];
  double corrlo[ORDERLO+2], corrlo2[ORDERLO+1];
  double corrhi[ORDERHI+1];
  double k_veclo[ORDERLO], k_vechi[ORDERHI];

  double a_LO[ORDERLO+1], a_HI[ORDERHI+1];
  double tmp, res_nrg;

  double FwdA, FwdB;

  /* hearing threshold level in dB; higher value gives more noise */
  const double HearThresOffset = -28.0;

  /* bandwdith expansion factors for low- and high band */
  const double gammaLo = 0.9;
  const double gammaHi = 0.8;

  /* less-noise-at-low-frequencies factor */
  double aa;


  /* convert from dB to signal level */
  const double H_T_H = pow(10.0, 0.05 * HearThresOffset);
  double S_N_R = pow(10.0, 0.05 * signal_noise_ratio) / 3.46;    /* divide by sqrt(12) */

  /* change quallevel depending on pitch gains and level fluctuations */
  WebRtcIsac_GetVars(inLo, pitchGains_Q12, &(maskdata->OldEnergy), &varscale);

  /* less-noise-at-low-frequencies factor */
  aa = 0.35 * (0.5 + 0.5 * varscale);

  /* replace data in buffer by new look-ahead data */
  for (pos1 = 0; pos1 < QLOOKAHEAD; pos1++)
    maskdata->DataBufferLo[pos1 + WINLEN - QLOOKAHEAD] = inLo[pos1];

  for (k = 0; k < SUBFRAMES; k++) {

    /* Update input buffer and multiply signal with window */
    for (pos1 = 0; pos1 < WINLEN - UPDATE/2; pos1++) {
      maskdata->DataBufferLo[pos1] = maskdata->DataBufferLo[pos1 + UPDATE/2];
      maskdata->DataBufferHi[pos1] = maskdata->DataBufferHi[pos1 + UPDATE/2];
      DataLo[pos1] = maskdata->DataBufferLo[pos1] * kLpcCorrWindow[pos1];
      DataHi[pos1] = maskdata->DataBufferHi[pos1] * kLpcCorrWindow[pos1];
    }
    pos2 = k * UPDATE/2;
    for (n = 0; n < UPDATE/2; n++, pos1++) {
      maskdata->DataBufferLo[pos1] = inLo[QLOOKAHEAD + pos2];
      maskdata->DataBufferHi[pos1] = inHi[pos2++];
      DataLo[pos1] = maskdata->DataBufferLo[pos1] * kLpcCorrWindow[pos1];
      DataHi[pos1] = maskdata->DataBufferHi[pos1] * kLpcCorrWindow[pos1];
    }

    /* Get correlation coefficients */
    WebRtcIsac_AutoCorr(corrlo, DataLo, WINLEN, ORDERLO+1); /* computing autocorrelation */
    WebRtcIsac_AutoCorr(corrhi, DataHi, WINLEN, ORDERHI);


    /* less noise for lower frequencies, by filtering/scaling autocorrelation sequences */
    corrlo2[0] = (1.0+aa*aa) * corrlo[0] - 2.0*aa * corrlo[1];
    tmp = (1.0 + aa*aa);
    for (n = 1; n <= ORDERLO; n++) {
      corrlo2[n] = tmp * corrlo[n] - aa * (corrlo[n-1] + corrlo[n+1]);
    }
    tmp = (1.0+aa) * (1.0+aa);
    for (n = 0; n <= ORDERHI; n++) {
      corrhi[n] = tmp * corrhi[n];
    }

    /* add white noise floor */
    corrlo2[0] += 1e-6;
    corrhi[0] += 1e-6;


    FwdA = 0.01;
    FwdB = 0.01;

    /* recursive filtering of correlation over subframes */
    for (n = 0; n <= ORDERLO; n++) {
      maskdata->CorrBufLo[n] = FwdA * maskdata->CorrBufLo[n] + corrlo2[n];
      corrlo2[n] = ((1.0-FwdA)*FwdB) * maskdata->CorrBufLo[n] + (1.0-FwdB) * corrlo2[n];
    }
    for (n = 0; n <= ORDERHI; n++) {
      maskdata->CorrBufHi[n] = FwdA * maskdata->CorrBufHi[n] + corrhi[n];
      corrhi[n] = ((1.0-FwdA)*FwdB) * maskdata->CorrBufHi[n] + (1.0-FwdB) * corrhi[n];
    }

    /* compute prediction coefficients */
    WebRtcIsac_LevDurb(a_LO, k_veclo, corrlo2, ORDERLO);
    WebRtcIsac_LevDurb(a_HI, k_vechi, corrhi, ORDERHI);

    /* bandwidth expansion */
    tmp = gammaLo;
    for (n = 1; n <= ORDERLO; n++) {
      a_LO[n] *= tmp;
      tmp *= gammaLo;
    }

    /* residual energy */
    res_nrg = 0.0;
    for (j = 0; j <= ORDERLO; j++) {
      for (n = 0; n <= j; n++) {
        res_nrg += a_LO[j] * corrlo2[j-n] * a_LO[n];
      }
      for (n = j+1; n <= ORDERLO; n++) {
        res_nrg += a_LO[j] * corrlo2[n-j] * a_LO[n];
      }
    }

    /* add hearing threshold and compute the gain */
    *lo_coeff++ = S_N_R / (sqrt(res_nrg) / varscale + H_T_H);

    /* copy coefficients to output array */
    for (n = 1; n <= ORDERLO; n++) {
      *lo_coeff++ = a_LO[n];
    }


    /* bandwidth expansion */
    tmp = gammaHi;
    for (n = 1; n <= ORDERHI; n++) {
      a_HI[n] *= tmp;
      tmp *= gammaHi;
    }

    /* residual energy */
    res_nrg = 0.0;
    for (j = 0; j <= ORDERHI; j++) {
      for (n = 0; n <= j; n++) {
        res_nrg += a_HI[j] * corrhi[j-n] * a_HI[n];
      }
      for (n = j+1; n <= ORDERHI; n++) {
        res_nrg += a_HI[j] * corrhi[n-j] * a_HI[n];
      }
    }

    /* add hearing threshold and compute of the gain */
    *hi_coeff++ = S_N_R / (sqrt(res_nrg) / varscale + H_T_H);

    /* copy coefficients to output array */
    for (n = 1; n <= ORDERHI; n++) {
      *hi_coeff++ = a_HI[n];
    }
  }
}



/******************************************************************************
 * WebRtcIsac_GetLpcCoefUb()
 *
 * Compute LP coefficients and correlation coefficients. At 12 kHz LP
 * coefficients of the first and the last sub-frame is computed. At 16 kHz
 * LP coefficients of 4th, 8th and 12th sub-frames are computed. We always
 * compute correlation coefficients of all sub-frames.
 *
 * Inputs:
 *       -inSignal           : Input signal
 *       -maskdata           : a structure keeping signal from previous frame.
 *       -bandwidth          : specifies if the codec is in 0-16 kHz mode or
 *                             0-12 kHz mode.
 *
 * Outputs:
 *       -lpCoeff            : pointer to a buffer where A-polynomials are
 *                             written to (first coeff is 1 and it is not
 *                             written)
 *       -corrMat            : a matrix where correlation coefficients of each
 *                             sub-frame are written to one row.
 *       -varscale           : a scale used to compute LPC gains.
 */
void
WebRtcIsac_GetLpcCoefUb(
    double*      inSignal,
    MaskFiltstr* maskdata,
    double*      lpCoeff,
    double       corrMat[][UB_LPC_ORDER + 1],
    double*      varscale,
    int16_t  bandwidth)
{
  int frameCntr, activeFrameCntr, n, pos1, pos2;
  int16_t criterion1;
  int16_t criterion2;
  int16_t numSubFrames = SUBFRAMES * (1 + (bandwidth == isac16kHz));
  double data[WINLEN];
  double corrSubFrame[UB_LPC_ORDER+2];
  double reflecCoeff[UB_LPC_ORDER];

  double aPolynom[UB_LPC_ORDER+1];
  double tmp;

  /* bandwdith expansion factors */
  const double gamma = 0.9;

  /* change quallevel depending on pitch gains and level fluctuations */
  WebRtcIsac_GetVarsUB(inSignal, &(maskdata->OldEnergy), varscale);

  /* replace data in buffer by new look-ahead data */
  for(frameCntr = 0, activeFrameCntr = 0; frameCntr < numSubFrames;
      frameCntr++)
  {
    if(frameCntr == SUBFRAMES)
    {
      // we are in 16 kHz
      varscale++;
      WebRtcIsac_GetVarsUB(&inSignal[FRAMESAMPLES_HALF],
                          &(maskdata->OldEnergy), varscale);
    }
    /* Update input buffer and multiply signal with window */
    for(pos1 = 0; pos1 < WINLEN - UPDATE/2; pos1++)
    {
      maskdata->DataBufferLo[pos1] = maskdata->DataBufferLo[pos1 +
                                                            UPDATE/2];
      data[pos1] = maskdata->DataBufferLo[pos1] * kLpcCorrWindow[pos1];
    }
    pos2 = frameCntr * UPDATE/2;
    for(n = 0; n < UPDATE/2; n++, pos1++, pos2++)
    {
      maskdata->DataBufferLo[pos1] = inSignal[pos2];
      data[pos1] = maskdata->DataBufferLo[pos1] * kLpcCorrWindow[pos1];
    }

    /* Get correlation coefficients */
    /* computing autocorrelation    */
    WebRtcIsac_AutoCorr(corrSubFrame, data, WINLEN, UB_LPC_ORDER+1);
    memcpy(corrMat[frameCntr], corrSubFrame,
           (UB_LPC_ORDER+1)*sizeof(double));

    criterion1 = ((frameCntr == 0) || (frameCntr == (SUBFRAMES - 1))) &&
        (bandwidth == isac12kHz);
    criterion2 = (((frameCntr+1) % 4) == 0) &&
        (bandwidth == isac16kHz);
    if(criterion1 || criterion2)
    {
      /* add noise */
      corrSubFrame[0] += 1e-6;
      /* compute prediction coefficients */
      WebRtcIsac_LevDurb(aPolynom, reflecCoeff, corrSubFrame,
                        UB_LPC_ORDER);

      /* bandwidth expansion */
      tmp = gamma;
      for (n = 1; n <= UB_LPC_ORDER; n++)
      {
        *lpCoeff++ = aPolynom[n] * tmp;
        tmp *= gamma;
      }
      activeFrameCntr++;
    }
  }
}



/******************************************************************************
 * WebRtcIsac_GetLpcGain()
 *
 * Compute the LPC gains for each sub-frame, given the LPC of each sub-frame
 * and the corresponding correlation coefficients.
 *
 * Inputs:
 *       -signal_noise_ratio : the desired SNR in dB.
 *       -numVecs            : number of sub-frames
 *       -corrMat             : a matrix of correlation coefficients where
 *                             each row is a set of correlation coefficients of
 *                             one sub-frame.
 *       -varscale           : a scale computed when WebRtcIsac_GetLpcCoefUb()
 *                             is called.
 *
 * Outputs:
 *       -gain               : pointer to a buffer where LP gains are written.
 *
 */
void
WebRtcIsac_GetLpcGain(
    double        signal_noise_ratio,
    const double* filtCoeffVecs,
    int           numVecs,
    double*       gain,
    double        corrMat[][UB_LPC_ORDER + 1],
    const double* varscale)
{
  int16_t j, n;
  int16_t subFrameCntr;
  double aPolynom[ORDERLO + 1];
  double res_nrg;

  const double HearThresOffset = -28.0;
  const double H_T_H = pow(10.0, 0.05 * HearThresOffset);
  /* divide by sqrt(12) = 3.46 */
  const double S_N_R = pow(10.0, 0.05 * signal_noise_ratio) / 3.46;

  aPolynom[0] = 1;
  for(subFrameCntr = 0; subFrameCntr < numVecs; subFrameCntr++)
  {
    if(subFrameCntr == SUBFRAMES)
    {
      // we are in second half of a SWB frame. use new varscale
      varscale++;
    }
    memcpy(&aPolynom[1], &filtCoeffVecs[(subFrameCntr * (UB_LPC_ORDER + 1)) +
                                        1], sizeof(double) * UB_LPC_ORDER);

    /* residual energy */
    res_nrg = 0.0;
    for(j = 0; j <= UB_LPC_ORDER; j++)
    {
      for(n = 0; n <= j; n++)
      {
        res_nrg += aPolynom[j] * corrMat[subFrameCntr][j-n] *
            aPolynom[n];
      }
      for(n = j+1; n <= UB_LPC_ORDER; n++)
      {
        res_nrg += aPolynom[j] * corrMat[subFrameCntr][n-j] *
            aPolynom[n];
      }
    }

    /* add hearing threshold and compute the gain */
    gain[subFrameCntr] = S_N_R / (sqrt(res_nrg) / *varscale + H_T_H);
  }
}