File: pitch_estimator.c

package info (click to toggle)
webrtc-audio-processing 1.3-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 6,112 kB
  • sloc: cpp: 50,766; ansic: 19,793; asm: 236; makefile: 4
file content (695 lines) | stat: -rw-r--r-- 25,360 bytes parent folder | download | duplicates (31)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
/*
 *  Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
 *
 *  Use of this source code is governed by a BSD-style license
 *  that can be found in the LICENSE file in the root of the source
 *  tree. An additional intellectual property rights grant can be found
 *  in the file PATENTS.  All contributing project authors may
 *  be found in the AUTHORS file in the root of the source tree.
 */

#include "modules/audio_coding/codecs/isac/main/source/pitch_estimator.h"

#include <math.h>
#include <memory.h>
#include <string.h>
#ifdef WEBRTC_ANDROID
#include <stdlib.h>
#endif

#include "modules/audio_coding/codecs/isac/main/source/filter_functions.h"
#include "modules/audio_coding/codecs/isac/main/source/pitch_filter.h"
#include "rtc_base/system/ignore_warnings.h"

static const double kInterpolWin[8] = {-0.00067556028640,  0.02184247643159, -0.12203175715679,  0.60086484101160,
                                       0.60086484101160, -0.12203175715679,  0.02184247643159, -0.00067556028640};

/* interpolation filter */
__inline static void IntrepolFilter(double *data_ptr, double *intrp)
{
  *intrp = kInterpolWin[0] * data_ptr[-3];
  *intrp += kInterpolWin[1] * data_ptr[-2];
  *intrp += kInterpolWin[2] * data_ptr[-1];
  *intrp += kInterpolWin[3] * data_ptr[0];
  *intrp += kInterpolWin[4] * data_ptr[1];
  *intrp += kInterpolWin[5] * data_ptr[2];
  *intrp += kInterpolWin[6] * data_ptr[3];
  *intrp += kInterpolWin[7] * data_ptr[4];
}


/* 2D parabolic interpolation */
/* probably some 0.5 factors can be eliminated, and the square-roots can be removed from the Cholesky fact. */
__inline static void Intrpol2D(double T[3][3], double *x, double *y, double *peak_val)
{
  double c, b[2], A[2][2];
  double t1, t2, d;
  double delta1, delta2;


  // double T[3][3] = {{-1.25, -.25,-.25}, {-.25, .75, .75}, {-.25, .75, .75}};
  // should result in: delta1 = 0.5;  delta2 = 0.0;  peak_val = 1.0

  c = T[1][1];
  b[0] = 0.5 * (T[1][2] + T[2][1] - T[0][1] - T[1][0]);
  b[1] = 0.5 * (T[1][0] + T[2][1] - T[0][1] - T[1][2]);
  A[0][1] = -0.5 * (T[0][1] + T[2][1] - T[1][0] - T[1][2]);
  t1 = 0.5 * (T[0][0] + T[2][2]) - c;
  t2 = 0.5 * (T[2][0] + T[0][2]) - c;
  d = (T[0][1] + T[1][2] + T[1][0] + T[2][1]) - 4.0 * c - t1 - t2;
  A[0][0] = -t1 - 0.5 * d;
  A[1][1] = -t2 - 0.5 * d;

  /* deal with singularities or ill-conditioned cases */
  if ( (A[0][0] < 1e-7) || ((A[0][0] * A[1][1] - A[0][1] * A[0][1]) < 1e-7) ) {
    *peak_val = T[1][1];
    return;
  }

  /* Cholesky decomposition: replace A by upper-triangular factor */
  A[0][0] = sqrt(A[0][0]);
  A[0][1] = A[0][1] / A[0][0];
  A[1][1] = sqrt(A[1][1] - A[0][1] * A[0][1]);

  /* compute [x; y] = -0.5 * inv(A) * b */
  t1 = b[0] / A[0][0];
  t2 = (b[1] - t1 * A[0][1]) / A[1][1];
  delta2 = t2 / A[1][1];
  delta1 = 0.5 * (t1 - delta2 * A[0][1]) / A[0][0];
  delta2 *= 0.5;

  /* limit norm */
  t1 = delta1 * delta1 + delta2 * delta2;
  if (t1 > 1.0) {
    delta1 /= t1;
    delta2 /= t1;
  }

  *peak_val = 0.5 * (b[0] * delta1 + b[1] * delta2) + c;

  *x += delta1;
  *y += delta2;
}


static void PCorr(const double *in, double *outcorr)
{
  double sum, ysum, prod;
  const double *x, *inptr;
  int k, n;

  //ysum = 1e-6;          /* use this with float (i.s.o. double)! */
  ysum = 1e-13;
  sum = 0.0;
  x = in + PITCH_MAX_LAG/2 + 2;
  for (n = 0; n < PITCH_CORR_LEN2; n++) {
    ysum += in[n] * in[n];
    sum += x[n] * in[n];
  }

  outcorr += PITCH_LAG_SPAN2 - 1;     /* index of last element in array */
  *outcorr = sum / sqrt(ysum);

  for (k = 1; k < PITCH_LAG_SPAN2; k++) {
    ysum -= in[k-1] * in[k-1];
    ysum += in[PITCH_CORR_LEN2 + k - 1] * in[PITCH_CORR_LEN2 + k - 1];
    sum = 0.0;
    inptr = &in[k];
    prod = x[0] * inptr[0];
    for (n = 1; n < PITCH_CORR_LEN2; n++) {
      sum += prod;
      prod = x[n] * inptr[n];
    }
    sum += prod;
    outcorr--;
    *outcorr = sum / sqrt(ysum);
  }
}

static void WebRtcIsac_AllpassFilterForDec(double* InOut,
                                           const double* APSectionFactors,
                                           size_t lengthInOut,
                                           double* FilterState) {
  // This performs all-pass filtering--a series of first order all-pass
  // sections are used to filter the input in a cascade manner.
  size_t n, j;
  double temp;
  for (j = 0; j < ALLPASSSECTIONS; j++) {
    for (n = 0; n < lengthInOut; n += 2) {
      temp = InOut[n];  // store input
      InOut[n] = FilterState[j] + APSectionFactors[j] * temp;
      FilterState[j] = -APSectionFactors[j] * InOut[n] + temp;
    }
  }
}

static void WebRtcIsac_DecimateAllpass(
    const double* in,
    double* state_in,  // array of size: 2*ALLPASSSECTIONS+1
    size_t N,          // number of input samples
    double* out) {     // array of size N/2

  static const double APupper[ALLPASSSECTIONS] = {0.0347, 0.3826};
  static const double APlower[ALLPASSSECTIONS] = {0.1544, 0.744};

  size_t n;
  double data_vec[PITCH_FRAME_LEN];

  /* copy input */
  memcpy(data_vec + 1, in, sizeof(double) * (N - 1));

  data_vec[0] = state_in[2 * ALLPASSSECTIONS];  // the z^(-1) state
  state_in[2 * ALLPASSSECTIONS] = in[N - 1];

  WebRtcIsac_AllpassFilterForDec(data_vec + 1, APupper, N, state_in);
  WebRtcIsac_AllpassFilterForDec(data_vec, APlower, N,
                                 state_in + ALLPASSSECTIONS);

  for (n = 0; n < N / 2; n++)
    out[n] = data_vec[2 * n] + data_vec[2 * n + 1];
}

RTC_PUSH_IGNORING_WFRAME_LARGER_THAN()

static void WebRtcIsac_InitializePitch(const double* in,
                                       const double old_lag,
                                       const double old_gain,
                                       PitchAnalysisStruct* State,
                                       double* lags) {
  double buf_dec[PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2+2];
  double ratio, log_lag, gain_bias;
  double bias;
  double corrvec1[PITCH_LAG_SPAN2];
  double corrvec2[PITCH_LAG_SPAN2];
  int m, k;
  // Allocating 10 extra entries at the begining of the CorrSurf
  double corrSurfBuff[10 + (2*PITCH_BW+3)*(PITCH_LAG_SPAN2+4)];
  double* CorrSurf[2*PITCH_BW+3];
  double *CorrSurfPtr1, *CorrSurfPtr2;
  double LagWin[3] = {0.2, 0.5, 0.98};
  int ind1, ind2, peaks_ind, peak, max_ind;
  int peaks[PITCH_MAX_NUM_PEAKS];
  double adj, gain_tmp;
  double corr, corr_max;
  double intrp_a, intrp_b, intrp_c, intrp_d;
  double peak_vals[PITCH_MAX_NUM_PEAKS];
  double lags1[PITCH_MAX_NUM_PEAKS];
  double lags2[PITCH_MAX_NUM_PEAKS];
  double T[3][3];
  int row;

  for(k = 0; k < 2*PITCH_BW+3; k++)
  {
    CorrSurf[k] = &corrSurfBuff[10 + k * (PITCH_LAG_SPAN2+4)];
  }
  /* reset CorrSurf matrix */
  memset(corrSurfBuff, 0, sizeof(double) * (10 + (2*PITCH_BW+3) * (PITCH_LAG_SPAN2+4)));

  //warnings -DH
  max_ind = 0;
  peak = 0;

  /* copy old values from state buffer */
  memcpy(buf_dec, State->dec_buffer, sizeof(double) * (PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2));

  /* decimation; put result after the old values */
  WebRtcIsac_DecimateAllpass(in, State->decimator_state, PITCH_FRAME_LEN,
                             &buf_dec[PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2]);

  /* low-pass filtering */
  for (k = PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2; k < PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2+2; k++)
    buf_dec[k] += 0.75 * buf_dec[k-1] - 0.25 * buf_dec[k-2];

  /* copy end part back into state buffer */
  memcpy(State->dec_buffer, buf_dec+PITCH_FRAME_LEN/2, sizeof(double) * (PITCH_CORR_LEN2+PITCH_CORR_STEP2+PITCH_MAX_LAG/2-PITCH_FRAME_LEN/2+2));

  /* compute correlation for first and second half of the frame */
  PCorr(buf_dec, corrvec1);
  PCorr(buf_dec + PITCH_CORR_STEP2, corrvec2);

  /* bias towards pitch lag of previous frame */
  log_lag = log(0.5 * old_lag);
  gain_bias = 4.0 * old_gain * old_gain;
  if (gain_bias > 0.8) gain_bias = 0.8;
  for (k = 0; k < PITCH_LAG_SPAN2; k++)
  {
    ratio = log((double) (k + (PITCH_MIN_LAG/2-2))) - log_lag;
    bias = 1.0 + gain_bias * exp(-5.0 * ratio * ratio);
    corrvec1[k] *= bias;
  }

  /* taper correlation functions */
  for (k = 0; k < 3; k++) {
    gain_tmp = LagWin[k];
    corrvec1[k] *= gain_tmp;
    corrvec2[k] *= gain_tmp;
    corrvec1[PITCH_LAG_SPAN2-1-k] *= gain_tmp;
    corrvec2[PITCH_LAG_SPAN2-1-k] *= gain_tmp;
  }

  corr_max = 0.0;
  /* fill middle row of correlation surface */
  ind1 = 0;
  ind2 = 0;
  CorrSurfPtr1 = &CorrSurf[PITCH_BW][2];
  for (k = 0; k < PITCH_LAG_SPAN2; k++) {
    corr = corrvec1[ind1++] + corrvec2[ind2++];
    CorrSurfPtr1[k] = corr;
    if (corr > corr_max) {
      corr_max = corr;  /* update maximum */
      max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
    }
  }
  /* fill first and last rows of correlation surface */
  ind1 = 0;
  ind2 = PITCH_BW;
  CorrSurfPtr1 = &CorrSurf[0][2];
  CorrSurfPtr2 = &CorrSurf[2*PITCH_BW][PITCH_BW+2];
  for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW; k++) {
    ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
    adj = 0.2 * ratio * (2.0 - ratio);   /* adjustment factor; inverse parabola as a function of ratio */
    corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
    CorrSurfPtr1[k] = corr;
    if (corr > corr_max) {
      corr_max = corr;  /* update maximum */
      max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
    }
    corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
    CorrSurfPtr2[k] = corr;
    if (corr > corr_max) {
      corr_max = corr;  /* update maximum */
      max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
    }
  }
  /* fill second and next to last rows of correlation surface */
  ind1 = 0;
  ind2 = PITCH_BW-1;
  CorrSurfPtr1 = &CorrSurf[1][2];
  CorrSurfPtr2 = &CorrSurf[2*PITCH_BW-1][PITCH_BW+1];
  for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW+1; k++) {
    ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
    adj = 0.9 * ratio * (2.0 - ratio);   /* adjustment factor; inverse parabola as a function of ratio */
    corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
    CorrSurfPtr1[k] = corr;
    if (corr > corr_max) {
      corr_max = corr;  /* update maximum */
      max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
    }
    corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
    CorrSurfPtr2[k] = corr;
    if (corr > corr_max) {
      corr_max = corr;  /* update maximum */
      max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
    }
  }
  /* fill remainder of correlation surface */
  for (m = 2; m < PITCH_BW; m++) {
    ind1 = 0;
    ind2 = PITCH_BW - m;         /* always larger than ind1 */
    CorrSurfPtr1 = &CorrSurf[m][2];
    CorrSurfPtr2 = &CorrSurf[2*PITCH_BW-m][PITCH_BW+2-m];
    for (k = 0; k < PITCH_LAG_SPAN2-PITCH_BW+m; k++) {
      ratio = ((double) (ind1 + 12)) / ((double) (ind2 + 12));
      adj = ratio * (2.0 - ratio);    /* adjustment factor; inverse parabola as a function of ratio */
      corr = adj * (corrvec1[ind1] + corrvec2[ind2]);
      CorrSurfPtr1[k] = corr;
      if (corr > corr_max) {
        corr_max = corr;  /* update maximum */
        max_ind = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
      }
      corr = adj * (corrvec1[ind2++] + corrvec2[ind1++]);
      CorrSurfPtr2[k] = corr;
      if (corr > corr_max) {
        corr_max = corr;  /* update maximum */
        max_ind = (int)(&CorrSurfPtr2[k] - &CorrSurf[0][0]);
      }
    }
  }

  /* threshold value to qualify as a peak */
  corr_max *= 0.6;

  peaks_ind = 0;
  /* find peaks */
  for (m = 1; m < PITCH_BW+1; m++) {
    if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
    CorrSurfPtr1 = &CorrSurf[m][2];
    for (k = 2; k < PITCH_LAG_SPAN2-PITCH_BW-2+m; k++) {
      corr = CorrSurfPtr1[k];
      if (corr > corr_max) {
        if ( (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+5)]) && (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+4)]) ) {
          if ( (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+4)]) && (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+5)]) ) {
            /* found a peak; store index into matrix */
            peaks[peaks_ind++] = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
            if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
          }
        }
      }
    }
  }
  for (m = PITCH_BW+1; m < 2*PITCH_BW; m++) {
    if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
    CorrSurfPtr1 = &CorrSurf[m][2];
    for (k = 2+m-PITCH_BW; k < PITCH_LAG_SPAN2-2; k++) {
      corr = CorrSurfPtr1[k];
      if (corr > corr_max) {
        if ( (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+5)]) && (corr > CorrSurfPtr1[k - (PITCH_LAG_SPAN2+4)]) ) {
          if ( (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+4)]) && (corr > CorrSurfPtr1[k + (PITCH_LAG_SPAN2+5)]) ) {
            /* found a peak; store index into matrix */
            peaks[peaks_ind++] = (int)(&CorrSurfPtr1[k] - &CorrSurf[0][0]);
            if (peaks_ind == PITCH_MAX_NUM_PEAKS) break;
          }
        }
      }
    }
  }

  if (peaks_ind > 0) {
    /* examine each peak */
    CorrSurfPtr1 = &CorrSurf[0][0];
    for (k = 0; k < peaks_ind; k++) {
      peak = peaks[k];

      /* compute four interpolated values around current peak */
      IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)], &intrp_a);
      IntrepolFilter(&CorrSurfPtr1[peak - 1            ], &intrp_b);
      IntrepolFilter(&CorrSurfPtr1[peak                ], &intrp_c);
      IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)], &intrp_d);

      /* determine maximum of the interpolated values */
      corr = CorrSurfPtr1[peak];
      corr_max = intrp_a;
      if (intrp_b > corr_max) corr_max = intrp_b;
      if (intrp_c > corr_max) corr_max = intrp_c;
      if (intrp_d > corr_max) corr_max = intrp_d;

      /* determine where the peak sits and fill a 3x3 matrix around it */
      row = peak / (PITCH_LAG_SPAN2+4);
      lags1[k] = (double) ((peak - row * (PITCH_LAG_SPAN2+4)) + PITCH_MIN_LAG/2 - 4);
      lags2[k] = (double) (lags1[k] + PITCH_BW - row);
      if ( corr > corr_max ) {
        T[0][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
        T[2][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
        T[1][1] = corr;
        T[0][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
        T[2][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
        T[1][0] = intrp_a;
        T[0][1] = intrp_b;
        T[2][1] = intrp_c;
        T[1][2] = intrp_d;
      } else {
        if (intrp_a == corr_max) {
          lags1[k] -= 0.5;
          lags2[k] += 0.5;
          IntrepolFilter(&CorrSurfPtr1[peak - 2*(PITCH_LAG_SPAN2+5)], &T[0][0]);
          IntrepolFilter(&CorrSurfPtr1[peak - (2*PITCH_LAG_SPAN2+9)], &T[2][0]);
          T[1][1] = intrp_a;
          T[0][2] = intrp_b;
          T[2][2] = intrp_c;
          T[1][0] = CorrSurfPtr1[peak - (2*PITCH_LAG_SPAN2+9)];
          T[0][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
          T[2][1] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
          T[1][2] = corr;
        } else if (intrp_b == corr_max) {
          lags1[k] -= 0.5;
          lags2[k] -= 0.5;
          IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+6)], &T[0][0]);
          T[2][0] = intrp_a;
          T[1][1] = intrp_b;
          IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+3)], &T[0][2]);
          T[2][2] = intrp_d;
          T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+5)];
          T[0][1] = CorrSurfPtr1[peak - 1];
          T[2][1] = corr;
          T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
        } else if (intrp_c == corr_max) {
          lags1[k] += 0.5;
          lags2[k] += 0.5;
          T[0][0] = intrp_a;
          IntrepolFilter(&CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)], &T[2][0]);
          T[1][1] = intrp_c;
          T[0][2] = intrp_d;
          IntrepolFilter(&CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)], &T[2][2]);
          T[1][0] = CorrSurfPtr1[peak - (PITCH_LAG_SPAN2+4)];
          T[0][1] = corr;
          T[2][1] = CorrSurfPtr1[peak + 1];
          T[1][2] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
        } else {
          lags1[k] += 0.5;
          lags2[k] -= 0.5;
          T[0][0] = intrp_b;
          T[2][0] = intrp_c;
          T[1][1] = intrp_d;
          IntrepolFilter(&CorrSurfPtr1[peak + 2*(PITCH_LAG_SPAN2+4)], &T[0][2]);
          IntrepolFilter(&CorrSurfPtr1[peak + (2*PITCH_LAG_SPAN2+9)], &T[2][2]);
          T[1][0] = corr;
          T[0][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+4)];
          T[2][1] = CorrSurfPtr1[peak + (PITCH_LAG_SPAN2+5)];
          T[1][2] = CorrSurfPtr1[peak + (2*PITCH_LAG_SPAN2+9)];
        }
      }

      /* 2D parabolic interpolation gives more accurate lags and peak value */
      Intrpol2D(T, &lags1[k], &lags2[k], &peak_vals[k]);
    }

    /* determine the highest peak, after applying a bias towards short lags */
    corr_max = 0.0;
    for (k = 0; k < peaks_ind; k++) {
      corr = peak_vals[k] * pow(PITCH_PEAK_DECAY, log(lags1[k] + lags2[k]));
      if (corr > corr_max) {
        corr_max = corr;
        peak = k;
      }
    }

    lags1[peak] *= 2.0;
    lags2[peak] *= 2.0;

    if (lags1[peak] < (double) PITCH_MIN_LAG) lags1[peak] = (double) PITCH_MIN_LAG;
    if (lags2[peak] < (double) PITCH_MIN_LAG) lags2[peak] = (double) PITCH_MIN_LAG;
    if (lags1[peak] > (double) PITCH_MAX_LAG) lags1[peak] = (double) PITCH_MAX_LAG;
    if (lags2[peak] > (double) PITCH_MAX_LAG) lags2[peak] = (double) PITCH_MAX_LAG;

    /* store lags of highest peak in output array */
    lags[0] = lags1[peak];
    lags[1] = lags1[peak];
    lags[2] = lags2[peak];
    lags[3] = lags2[peak];
  }
  else
  {
    row = max_ind / (PITCH_LAG_SPAN2+4);
    lags1[0] = (double) ((max_ind - row * (PITCH_LAG_SPAN2+4)) + PITCH_MIN_LAG/2 - 4);
    lags2[0] = (double) (lags1[0] + PITCH_BW - row);

    if (lags1[0] < (double) PITCH_MIN_LAG) lags1[0] = (double) PITCH_MIN_LAG;
    if (lags2[0] < (double) PITCH_MIN_LAG) lags2[0] = (double) PITCH_MIN_LAG;
    if (lags1[0] > (double) PITCH_MAX_LAG) lags1[0] = (double) PITCH_MAX_LAG;
    if (lags2[0] > (double) PITCH_MAX_LAG) lags2[0] = (double) PITCH_MAX_LAG;

    /* store lags of highest peak in output array */
    lags[0] = lags1[0];
    lags[1] = lags1[0];
    lags[2] = lags2[0];
    lags[3] = lags2[0];
  }
}

RTC_POP_IGNORING_WFRAME_LARGER_THAN()

/* create weighting matrix by orthogonalizing a basis of polynomials of increasing order
 * t = (0:4)';
 * A = [t.^0, t.^1, t.^2, t.^3, t.^4];
 * [Q, dummy] = qr(A);
 * P.Weight = Q * diag([0, .1, .5, 1, 1]) * Q'; */
static const double kWeight[5][5] = {
  { 0.29714285714286,  -0.30857142857143,  -0.05714285714286,   0.05142857142857,  0.01714285714286},
  {-0.30857142857143,   0.67428571428571,  -0.27142857142857,  -0.14571428571429,  0.05142857142857},
  {-0.05714285714286,  -0.27142857142857,   0.65714285714286,  -0.27142857142857, -0.05714285714286},
  { 0.05142857142857,  -0.14571428571429,  -0.27142857142857,   0.67428571428571, -0.30857142857143},
  { 0.01714285714286,   0.05142857142857,  -0.05714285714286,  -0.30857142857143,  0.29714285714286}
};

/* second order high-pass filter */
static void WebRtcIsac_Highpass(const double* in,
                         double* out,
                         double* state,
                         size_t N) {
  /* create high-pass filter ocefficients
   * z = 0.998 * exp(j*2*pi*35/8000);
   * p = 0.94 * exp(j*2*pi*140/8000);
   * HP_b = [1, -2*real(z), abs(z)^2];
   * HP_a = [1, -2*real(p), abs(p)^2]; */
  static const double a_coef[2] = { 1.86864659625574, -0.88360000000000};
  static const double b_coef[2] = {-1.99524591718270,  0.99600400000000};

  size_t k;

  for (k=0; k<N; k++) {
    *out = *in + state[1];
    state[1] = state[0] + b_coef[0] * *in + a_coef[0] * *out;
    state[0] = b_coef[1] * *in++ + a_coef[1] * *out++;
  }
}

RTC_PUSH_IGNORING_WFRAME_LARGER_THAN()

void WebRtcIsac_PitchAnalysis(const double *in,               /* PITCH_FRAME_LEN samples */
                              double *out,                    /* PITCH_FRAME_LEN+QLOOKAHEAD samples */
                              PitchAnalysisStruct *State,
                              double *lags,
                              double *gains)
{
  double HPin[PITCH_FRAME_LEN];
  double Weighted[PITCH_FRAME_LEN];
  double Whitened[PITCH_FRAME_LEN + QLOOKAHEAD];
  double inbuf[PITCH_FRAME_LEN + QLOOKAHEAD];
  double out_G[PITCH_FRAME_LEN + QLOOKAHEAD];          // could be removed by using out instead
  double out_dG[4][PITCH_FRAME_LEN + QLOOKAHEAD];
  double old_lag, old_gain;
  double nrg_wht, tmp;
  double Wnrg, Wfluct, Wgain;
  double H[4][4];
  double grad[4];
  double dG[4];
  int k, m, n, iter;

  /* high pass filtering using second order pole-zero filter */
  WebRtcIsac_Highpass(in, HPin, State->hp_state, PITCH_FRAME_LEN);

  /* copy from state into buffer */
  memcpy(Whitened, State->whitened_buf, sizeof(double) * QLOOKAHEAD);

  /* compute weighted and whitened signals */
  WebRtcIsac_WeightingFilter(HPin, &Weighted[0], &Whitened[QLOOKAHEAD], &(State->Wghtstr));

  /* copy from buffer into state */
  memcpy(State->whitened_buf, Whitened+PITCH_FRAME_LEN, sizeof(double) * QLOOKAHEAD);

  old_lag = State->PFstr_wght.oldlagp[0];
  old_gain = State->PFstr_wght.oldgainp[0];

  /* inital pitch estimate */
  WebRtcIsac_InitializePitch(Weighted, old_lag, old_gain, State, lags);


  /* Iterative optimization of lags - to be done */

  /* compute energy of whitened signal */
  nrg_wht = 0.0;
  for (k = 0; k < PITCH_FRAME_LEN + QLOOKAHEAD; k++)
    nrg_wht += Whitened[k] * Whitened[k];


  /* Iterative optimization of gains */

  /* set weights for energy, gain fluctiation, and spectral gain penalty functions */
  Wnrg = 1.0 / nrg_wht;
  Wgain = 0.005;
  Wfluct = 3.0;

  /* set initial gains */
  for (k = 0; k < 4; k++)
    gains[k] = PITCH_MAX_GAIN_06;

  /* two iterations should be enough */
  for (iter = 0; iter < 2; iter++) {
    /* compute Jacobian of pre-filter output towards gains */
    WebRtcIsac_PitchfilterPre_gains(Whitened, out_G, out_dG, &(State->PFstr_wght), lags, gains);

    /* gradient and approximate Hessian (lower triangle) for minimizing the filter's output power */
    for (k = 0; k < 4; k++) {
      tmp = 0.0;
      for (n = 0; n < PITCH_FRAME_LEN + QLOOKAHEAD; n++)
        tmp += out_G[n] * out_dG[k][n];
      grad[k] = tmp * Wnrg;
    }
    for (k = 0; k < 4; k++) {
      for (m = 0; m <= k; m++) {
        tmp = 0.0;
        for (n = 0; n < PITCH_FRAME_LEN + QLOOKAHEAD; n++)
          tmp += out_dG[m][n] * out_dG[k][n];
        H[k][m] = tmp * Wnrg;
      }
    }

    /* add gradient and Hessian (lower triangle) for dampening fast gain changes */
    for (k = 0; k < 4; k++) {
      tmp = kWeight[k+1][0] * old_gain;
      for (m = 0; m < 4; m++)
        tmp += kWeight[k+1][m+1] * gains[m];
      grad[k] += tmp * Wfluct;
    }
    for (k = 0; k < 4; k++) {
      for (m = 0; m <= k; m++) {
        H[k][m] += kWeight[k+1][m+1] * Wfluct;
      }
    }

    /* add gradient and Hessian for dampening gain */
    for (k = 0; k < 3; k++) {
      tmp = 1.0 / (1 - gains[k]);
      grad[k] += tmp * tmp * Wgain;
      H[k][k] += 2.0 * tmp * (tmp * tmp * Wgain);
    }
    tmp = 1.0 / (1 - gains[3]);
    grad[3] += 1.33 * (tmp * tmp * Wgain);
    H[3][3] += 2.66 * tmp * (tmp * tmp * Wgain);


    /* compute Cholesky factorization of Hessian
     * by overwritting the upper triangle; scale factors on diagonal
     * (for non pc-platforms store the inverse of the diagonals seperately to minimize divisions) */
    H[0][1] = H[1][0] / H[0][0];
    H[0][2] = H[2][0] / H[0][0];
    H[0][3] = H[3][0] / H[0][0];
    H[1][1] -= H[0][0] * H[0][1] * H[0][1];
    H[1][2] = (H[2][1] - H[0][1] * H[2][0]) / H[1][1];
    H[1][3] = (H[3][1] - H[0][1] * H[3][0]) / H[1][1];
    H[2][2] -= H[0][0] * H[0][2] * H[0][2] + H[1][1] * H[1][2] * H[1][2];
    H[2][3] = (H[3][2] - H[0][2] * H[3][0] - H[1][2] * H[1][1] * H[1][3]) / H[2][2];
    H[3][3] -= H[0][0] * H[0][3] * H[0][3] + H[1][1] * H[1][3] * H[1][3] + H[2][2] * H[2][3] * H[2][3];

    /* Compute update as  delta_gains = -inv(H) * grad */
    /* copy and negate */
    for (k = 0; k < 4; k++)
      dG[k] = -grad[k];
    /* back substitution */
    dG[1] -= dG[0] * H[0][1];
    dG[2] -= dG[0] * H[0][2] + dG[1] * H[1][2];
    dG[3] -= dG[0] * H[0][3] + dG[1] * H[1][3] + dG[2] * H[2][3];
    /* scale */
    for (k = 0; k < 4; k++)
      dG[k] /= H[k][k];
    /* back substitution */
    dG[2] -= dG[3] * H[2][3];
    dG[1] -= dG[3] * H[1][3] + dG[2] * H[1][2];
    dG[0] -= dG[3] * H[0][3] + dG[2] * H[0][2] + dG[1] * H[0][1];

    /* update gains and check range */
    for (k = 0; k < 4; k++) {
      gains[k] += dG[k];
      if (gains[k] > PITCH_MAX_GAIN)
        gains[k] = PITCH_MAX_GAIN;
      else if (gains[k] < 0.0)
        gains[k] = 0.0;
    }
  }

  /* update state for next frame */
  WebRtcIsac_PitchfilterPre(Whitened, out, &(State->PFstr_wght), lags, gains);

  /* concatenate previous input's end and current input */
  memcpy(inbuf, State->inbuf, sizeof(double) * QLOOKAHEAD);
  memcpy(inbuf+QLOOKAHEAD, in, sizeof(double) * PITCH_FRAME_LEN);

  /* lookahead pitch filtering for masking analysis */
  WebRtcIsac_PitchfilterPre_la(inbuf, out, &(State->PFstr), lags, gains);

  /* store last part of input */
  for (k = 0; k < QLOOKAHEAD; k++)
    State->inbuf[k] = inbuf[k + PITCH_FRAME_LEN];
}

RTC_POP_IGNORING_WFRAME_LARGER_THAN()