1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
|
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/rnn_vad/pitch_search_internal.h"
#include <stdlib.h>
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <numeric>
#include "modules/audio_processing/agc2/rnn_vad/common.h"
#include "rtc_base/checks.h"
namespace webrtc {
namespace rnn_vad {
namespace {
// Converts a lag to an inverted lag (only for 24kHz).
size_t GetInvertedLag(size_t lag) {
RTC_DCHECK_LE(lag, kMaxPitch24kHz);
return kMaxPitch24kHz - lag;
}
float ComputeAutoCorrelationCoeff(rtc::ArrayView<const float> pitch_buf,
size_t inv_lag,
size_t max_pitch_period) {
RTC_DCHECK_LT(inv_lag, pitch_buf.size());
RTC_DCHECK_LT(max_pitch_period, pitch_buf.size());
RTC_DCHECK_LE(inv_lag, max_pitch_period);
// TODO(bugs.webrtc.org/9076): Maybe optimize using vectorization.
return std::inner_product(pitch_buf.begin() + max_pitch_period,
pitch_buf.end(), pitch_buf.begin() + inv_lag, 0.f);
}
// Computes a pseudo-interpolation offset for an estimated pitch period |lag| by
// looking at the auto-correlation coefficients in the neighborhood of |lag|.
// (namely, |prev_auto_corr|, |lag_auto_corr| and |next_auto_corr|). The output
// is a lag in {-1, 0, +1}.
// TODO(bugs.webrtc.org/9076): Consider removing pseudo-i since it
// is relevant only if the spectral analysis works at a sample rate that is
// twice as that of the pitch buffer (not so important instead for the estimated
// pitch period feature fed into the RNN).
int GetPitchPseudoInterpolationOffset(size_t lag,
float prev_auto_corr,
float lag_auto_corr,
float next_auto_corr) {
const float& a = prev_auto_corr;
const float& b = lag_auto_corr;
const float& c = next_auto_corr;
int offset = 0;
if ((c - a) > 0.7f * (b - a)) {
offset = 1; // |c| is the largest auto-correlation coefficient.
} else if ((a - c) > 0.7f * (b - c)) {
offset = -1; // |a| is the largest auto-correlation coefficient.
}
return offset;
}
// Refines a pitch period |lag| encoded as lag with pseudo-interpolation. The
// output sample rate is twice as that of |lag|.
size_t PitchPseudoInterpolationLagPitchBuf(
size_t lag,
rtc::ArrayView<const float, kBufSize24kHz> pitch_buf) {
int offset = 0;
// Cannot apply pseudo-interpolation at the boundaries.
if (lag > 0 && lag < kMaxPitch24kHz) {
offset = GetPitchPseudoInterpolationOffset(
lag,
ComputeAutoCorrelationCoeff(pitch_buf, GetInvertedLag(lag - 1),
kMaxPitch24kHz),
ComputeAutoCorrelationCoeff(pitch_buf, GetInvertedLag(lag),
kMaxPitch24kHz),
ComputeAutoCorrelationCoeff(pitch_buf, GetInvertedLag(lag + 1),
kMaxPitch24kHz));
}
return 2 * lag + offset;
}
// Refines a pitch period |inv_lag| encoded as inverted lag with
// pseudo-interpolation. The output sample rate is twice as that of
// |inv_lag|.
size_t PitchPseudoInterpolationInvLagAutoCorr(
size_t inv_lag,
rtc::ArrayView<const float> auto_corr) {
int offset = 0;
// Cannot apply pseudo-interpolation at the boundaries.
if (inv_lag > 0 && inv_lag < auto_corr.size() - 1) {
offset = GetPitchPseudoInterpolationOffset(inv_lag, auto_corr[inv_lag + 1],
auto_corr[inv_lag],
auto_corr[inv_lag - 1]);
}
// TODO(bugs.webrtc.org/9076): When retraining, check if |offset| below should
// be subtracted since |inv_lag| is an inverted lag but offset is a lag.
return 2 * inv_lag + offset;
}
// Integer multipliers used in CheckLowerPitchPeriodsAndComputePitchGain() when
// looking for sub-harmonics.
// The values have been chosen to serve the following algorithm. Given the
// initial pitch period T, we examine whether one of its harmonics is the true
// fundamental frequency. We consider T/k with k in {2, ..., 15}. For each of
// these harmonics, in addition to the pitch gain of itself, we choose one
// multiple of its pitch period, n*T/k, to validate it (by averaging their pitch
// gains). The multiplier n is chosen so that n*T/k is used only one time over
// all k. When for example k = 4, we should also expect a peak at 3*T/4. When
// k = 8 instead we don't want to look at 2*T/8, since we have already checked
// T/4 before. Instead, we look at T*3/8.
// The array can be generate in Python as follows:
// from fractions import Fraction
// # Smallest positive integer not in X.
// def mex(X):
// for i in range(1, int(max(X)+2)):
// if i not in X:
// return i
// # Visited multiples of the period.
// S = {1}
// for n in range(2, 16):
// sn = mex({n * i for i in S} | {1})
// S = S | {Fraction(1, n), Fraction(sn, n)}
// print(sn, end=', ')
constexpr std::array<int, 14> kSubHarmonicMultipliers = {
{3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2}};
// Initial pitch period candidate thresholds for ComputePitchGainThreshold() for
// a sample rate of 24 kHz. Computed as [5*k*k for k in range(16)].
constexpr std::array<int, 14> kInitialPitchPeriodThresholds = {
{20, 45, 80, 125, 180, 245, 320, 405, 500, 605, 720, 845, 980, 1125}};
} // namespace
void Decimate2x(rtc::ArrayView<const float, kBufSize24kHz> src,
rtc::ArrayView<float, kBufSize12kHz> dst) {
// TODO(bugs.webrtc.org/9076): Consider adding anti-aliasing filter.
static_assert(2 * dst.size() == src.size(), "");
for (size_t i = 0; i < dst.size(); ++i) {
dst[i] = src[2 * i];
}
}
float ComputePitchGainThreshold(int candidate_pitch_period,
int pitch_period_ratio,
int initial_pitch_period,
float initial_pitch_gain,
int prev_pitch_period,
float prev_pitch_gain) {
// Map arguments to more compact aliases.
const int& t1 = candidate_pitch_period;
const int& k = pitch_period_ratio;
const int& t0 = initial_pitch_period;
const float& g0 = initial_pitch_gain;
const int& t_prev = prev_pitch_period;
const float& g_prev = prev_pitch_gain;
// Validate input.
RTC_DCHECK_GE(t1, 0);
RTC_DCHECK_GE(k, 2);
RTC_DCHECK_GE(t0, 0);
RTC_DCHECK_GE(t_prev, 0);
// Compute a term that lowers the threshold when |t1| is close to the last
// estimated period |t_prev| - i.e., pitch tracking.
float lower_threshold_term = 0;
if (abs(t1 - t_prev) <= 1) {
// The candidate pitch period is within 1 sample from the previous one.
// Make the candidate at |t1| very easy to be accepted.
lower_threshold_term = g_prev;
} else if (abs(t1 - t_prev) == 2 &&
t0 > kInitialPitchPeriodThresholds[k - 2]) {
// The candidate pitch period is 2 samples far from the previous one and the
// period |t0| (from which |t1| has been derived) is greater than a
// threshold. Make |t1| easy to be accepted.
lower_threshold_term = 0.5f * g_prev;
}
// Set the threshold based on the gain of the initial estimate |t0|. Also
// reduce the chance of false positives caused by a bias towards high
// frequencies (originating from short-term correlations).
float threshold = std::max(0.3f, 0.7f * g0 - lower_threshold_term);
if (static_cast<size_t>(t1) < 3 * kMinPitch24kHz) {
// High frequency.
threshold = std::max(0.4f, 0.85f * g0 - lower_threshold_term);
} else if (static_cast<size_t>(t1) < 2 * kMinPitch24kHz) {
// Even higher frequency.
threshold = std::max(0.5f, 0.9f * g0 - lower_threshold_term);
}
return threshold;
}
void ComputeSlidingFrameSquareEnergies(
rtc::ArrayView<const float, kBufSize24kHz> pitch_buf,
rtc::ArrayView<float, kMaxPitch24kHz + 1> yy_values) {
float yy =
ComputeAutoCorrelationCoeff(pitch_buf, kMaxPitch24kHz, kMaxPitch24kHz);
yy_values[0] = yy;
for (size_t i = 1; i < yy_values.size(); ++i) {
RTC_DCHECK_LE(i, kMaxPitch24kHz + kFrameSize20ms24kHz);
RTC_DCHECK_LE(i, kMaxPitch24kHz);
const float old_coeff = pitch_buf[kMaxPitch24kHz + kFrameSize20ms24kHz - i];
const float new_coeff = pitch_buf[kMaxPitch24kHz - i];
yy -= old_coeff * old_coeff;
yy += new_coeff * new_coeff;
yy = std::max(0.f, yy);
yy_values[i] = yy;
}
}
std::array<size_t, 2> FindBestPitchPeriods(
rtc::ArrayView<const float> auto_corr,
rtc::ArrayView<const float> pitch_buf,
size_t max_pitch_period) {
// Stores a pitch candidate period and strength information.
struct PitchCandidate {
// Pitch period encoded as inverted lag.
size_t period_inverted_lag = 0;
// Pitch strength encoded as a ratio.
float strength_numerator = -1.f;
float strength_denominator = 0.f;
// Compare the strength of two pitch candidates.
bool HasStrongerPitchThan(const PitchCandidate& b) const {
// Comparing the numerator/denominator ratios without using divisions.
return strength_numerator * b.strength_denominator >
b.strength_numerator * strength_denominator;
}
};
RTC_DCHECK_GT(max_pitch_period, auto_corr.size());
RTC_DCHECK_LT(max_pitch_period, pitch_buf.size());
const size_t frame_size = pitch_buf.size() - max_pitch_period;
// TODO(bugs.webrtc.org/9076): Maybe optimize using vectorization.
float yy =
std::inner_product(pitch_buf.begin(), pitch_buf.begin() + frame_size + 1,
pitch_buf.begin(), 1.f);
// Search best and second best pitches by looking at the scaled
// auto-correlation.
PitchCandidate candidate;
PitchCandidate best;
PitchCandidate second_best;
second_best.period_inverted_lag = 1;
for (size_t inv_lag = 0; inv_lag < auto_corr.size(); ++inv_lag) {
// A pitch candidate must have positive correlation.
if (auto_corr[inv_lag] > 0) {
candidate.period_inverted_lag = inv_lag;
candidate.strength_numerator = auto_corr[inv_lag] * auto_corr[inv_lag];
candidate.strength_denominator = yy;
if (candidate.HasStrongerPitchThan(second_best)) {
if (candidate.HasStrongerPitchThan(best)) {
second_best = best;
best = candidate;
} else {
second_best = candidate;
}
}
}
// Update |squared_energy_y| for the next inverted lag.
const float old_coeff = pitch_buf[inv_lag];
const float new_coeff = pitch_buf[inv_lag + frame_size];
yy -= old_coeff * old_coeff;
yy += new_coeff * new_coeff;
yy = std::max(0.f, yy);
}
return {{best.period_inverted_lag, second_best.period_inverted_lag}};
}
size_t RefinePitchPeriod48kHz(
rtc::ArrayView<const float, kBufSize24kHz> pitch_buf,
rtc::ArrayView<const size_t, 2> inv_lags) {
// Compute the auto-correlation terms only for neighbors of the given pitch
// candidates (similar to what is done in ComputePitchAutoCorrelation(), but
// for a few lag values).
std::array<float, kNumInvertedLags24kHz> auto_corr;
auto_corr.fill(0.f); // Zeros become ignored lags in FindBestPitchPeriods().
auto is_neighbor = [](size_t i, size_t j) {
return ((i > j) ? (i - j) : (j - i)) <= 2;
};
for (size_t inv_lag = 0; inv_lag < auto_corr.size(); ++inv_lag) {
if (is_neighbor(inv_lag, inv_lags[0]) || is_neighbor(inv_lag, inv_lags[1]))
auto_corr[inv_lag] =
ComputeAutoCorrelationCoeff(pitch_buf, inv_lag, kMaxPitch24kHz);
}
// Find best pitch at 24 kHz.
const auto pitch_candidates_inv_lags = FindBestPitchPeriods(
{auto_corr.data(), auto_corr.size()},
{pitch_buf.data(), pitch_buf.size()}, kMaxPitch24kHz);
const auto inv_lag = pitch_candidates_inv_lags[0]; // Refine the best.
// Pseudo-interpolation.
return PitchPseudoInterpolationInvLagAutoCorr(inv_lag, auto_corr);
}
PitchInfo CheckLowerPitchPeriodsAndComputePitchGain(
rtc::ArrayView<const float, kBufSize24kHz> pitch_buf,
int initial_pitch_period_48kHz,
PitchInfo prev_pitch_48kHz) {
RTC_DCHECK_LE(kMinPitch48kHz, initial_pitch_period_48kHz);
RTC_DCHECK_LE(initial_pitch_period_48kHz, kMaxPitch48kHz);
// Stores information for a refined pitch candidate.
struct RefinedPitchCandidate {
RefinedPitchCandidate() {}
RefinedPitchCandidate(int period_24kHz, float gain, float xy, float yy)
: period_24kHz(period_24kHz), gain(gain), xy(xy), yy(yy) {}
int period_24kHz;
// Pitch strength information.
float gain;
// Additional pitch strength information used for the final estimation of
// pitch gain.
float xy; // Cross-correlation.
float yy; // Auto-correlation.
};
// Initialize.
std::array<float, kMaxPitch24kHz + 1> yy_values;
ComputeSlidingFrameSquareEnergies(pitch_buf,
{yy_values.data(), yy_values.size()});
const float xx = yy_values[0];
// Helper lambdas.
const auto pitch_gain = [](float xy, float yy, float xx) {
RTC_DCHECK_LE(0.f, xx * yy);
return xy / std::sqrt(1.f + xx * yy);
};
// Initial pitch candidate gain.
RefinedPitchCandidate best_pitch;
best_pitch.period_24kHz = std::min(initial_pitch_period_48kHz / 2,
static_cast<int>(kMaxPitch24kHz - 1));
best_pitch.xy = ComputeAutoCorrelationCoeff(
pitch_buf, GetInvertedLag(best_pitch.period_24kHz), kMaxPitch24kHz);
best_pitch.yy = yy_values[best_pitch.period_24kHz];
best_pitch.gain = pitch_gain(best_pitch.xy, best_pitch.yy, xx);
// Store the initial pitch period information.
const size_t initial_pitch_period = best_pitch.period_24kHz;
const float initial_pitch_gain = best_pitch.gain;
// Given the initial pitch estimation, check lower periods (i.e., harmonics).
const auto alternative_period = [](int period, int k, int n) -> int {
RTC_DCHECK_GT(k, 0);
return (2 * n * period + k) / (2 * k); // Same as round(n*period/k).
};
for (int k = 2; k < static_cast<int>(kSubHarmonicMultipliers.size() + 2);
++k) {
int candidate_pitch_period = alternative_period(initial_pitch_period, k, 1);
if (static_cast<size_t>(candidate_pitch_period) < kMinPitch24kHz) {
break;
}
// When looking at |candidate_pitch_period|, we also look at one of its
// sub-harmonics. |kSubHarmonicMultipliers| is used to know where to look.
// |k| == 2 is a special case since |candidate_pitch_secondary_period| might
// be greater than the maximum pitch period.
int candidate_pitch_secondary_period = alternative_period(
initial_pitch_period, k, kSubHarmonicMultipliers[k - 2]);
RTC_DCHECK_GT(candidate_pitch_secondary_period, 0);
if (k == 2 &&
candidate_pitch_secondary_period > static_cast<int>(kMaxPitch24kHz)) {
candidate_pitch_secondary_period = initial_pitch_period;
}
RTC_DCHECK_NE(candidate_pitch_period, candidate_pitch_secondary_period)
<< "The lower pitch period and the additional sub-harmonic must not "
"coincide.";
// Compute an auto-correlation score for the primary pitch candidate
// |candidate_pitch_period| by also looking at its possible sub-harmonic
// |candidate_pitch_secondary_period|.
float xy_primary_period = ComputeAutoCorrelationCoeff(
pitch_buf, GetInvertedLag(candidate_pitch_period), kMaxPitch24kHz);
float xy_secondary_period = ComputeAutoCorrelationCoeff(
pitch_buf, GetInvertedLag(candidate_pitch_secondary_period),
kMaxPitch24kHz);
float xy = 0.5f * (xy_primary_period + xy_secondary_period);
float yy = 0.5f * (yy_values[candidate_pitch_period] +
yy_values[candidate_pitch_secondary_period]);
float candidate_pitch_gain = pitch_gain(xy, yy, xx);
// Maybe update best period.
float threshold = ComputePitchGainThreshold(
candidate_pitch_period, k, initial_pitch_period, initial_pitch_gain,
prev_pitch_48kHz.period / 2, prev_pitch_48kHz.gain);
if (candidate_pitch_gain > threshold) {
best_pitch = {candidate_pitch_period, candidate_pitch_gain, xy, yy};
}
}
// Final pitch gain and period.
best_pitch.xy = std::max(0.f, best_pitch.xy);
RTC_DCHECK_LE(0.f, best_pitch.yy);
float final_pitch_gain = (best_pitch.yy <= best_pitch.xy)
? 1.f
: best_pitch.xy / (best_pitch.yy + 1.f);
final_pitch_gain = std::min(best_pitch.gain, final_pitch_gain);
int final_pitch_period_48kHz = std::max(
kMinPitch48kHz,
PitchPseudoInterpolationLagPitchBuf(best_pitch.period_24kHz, pitch_buf));
return {final_pitch_period_48kHz, final_pitch_gain};
}
} // namespace rnn_vad
} // namespace webrtc
|