1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/transient/transient_suppressor_impl.h"
#include <string.h>
#include <algorithm>
#include <cmath>
#include <complex>
#include <deque>
#include <limits>
#include <set>
#include "common_audio/include/audio_util.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "common_audio/third_party/ooura/fft_size_256/fft4g.h"
#include "modules/audio_processing/transient/common.h"
#include "modules/audio_processing/transient/transient_detector.h"
#include "modules/audio_processing/transient/transient_suppressor.h"
#include "modules/audio_processing/transient/windows_private.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
namespace webrtc {
static const float kMeanIIRCoefficient = 0.5f;
static const float kVoiceThreshold = 0.02f;
// TODO(aluebs): Check if these values work also for 48kHz.
static const size_t kMinVoiceBin = 3;
static const size_t kMaxVoiceBin = 60;
namespace {
float ComplexMagnitude(float a, float b) {
return std::abs(a) + std::abs(b);
}
} // namespace
TransientSuppressorImpl::TransientSuppressorImpl()
: data_length_(0),
detection_length_(0),
analysis_length_(0),
buffer_delay_(0),
complex_analysis_length_(0),
num_channels_(0),
window_(NULL),
detector_smoothed_(0.f),
keypress_counter_(0),
chunks_since_keypress_(0),
detection_enabled_(false),
suppression_enabled_(false),
use_hard_restoration_(false),
chunks_since_voice_change_(0),
seed_(182),
using_reference_(false) {}
TransientSuppressorImpl::~TransientSuppressorImpl() {}
int TransientSuppressorImpl::Initialize(int sample_rate_hz,
int detection_rate_hz,
int num_channels) {
switch (sample_rate_hz) {
case ts::kSampleRate8kHz:
analysis_length_ = 128u;
window_ = kBlocks80w128;
break;
case ts::kSampleRate16kHz:
analysis_length_ = 256u;
window_ = kBlocks160w256;
break;
case ts::kSampleRate32kHz:
analysis_length_ = 512u;
window_ = kBlocks320w512;
break;
case ts::kSampleRate48kHz:
analysis_length_ = 1024u;
window_ = kBlocks480w1024;
break;
default:
return -1;
}
if (detection_rate_hz != ts::kSampleRate8kHz &&
detection_rate_hz != ts::kSampleRate16kHz &&
detection_rate_hz != ts::kSampleRate32kHz &&
detection_rate_hz != ts::kSampleRate48kHz) {
return -1;
}
if (num_channels <= 0) {
return -1;
}
detector_.reset(new TransientDetector(detection_rate_hz));
data_length_ = sample_rate_hz * ts::kChunkSizeMs / 1000;
if (data_length_ > analysis_length_) {
RTC_NOTREACHED();
return -1;
}
buffer_delay_ = analysis_length_ - data_length_;
complex_analysis_length_ = analysis_length_ / 2 + 1;
RTC_DCHECK_GE(complex_analysis_length_, kMaxVoiceBin);
num_channels_ = num_channels;
in_buffer_.reset(new float[analysis_length_ * num_channels_]);
memset(in_buffer_.get(), 0,
analysis_length_ * num_channels_ * sizeof(in_buffer_[0]));
detection_length_ = detection_rate_hz * ts::kChunkSizeMs / 1000;
detection_buffer_.reset(new float[detection_length_]);
memset(detection_buffer_.get(), 0,
detection_length_ * sizeof(detection_buffer_[0]));
out_buffer_.reset(new float[analysis_length_ * num_channels_]);
memset(out_buffer_.get(), 0,
analysis_length_ * num_channels_ * sizeof(out_buffer_[0]));
// ip[0] must be zero to trigger initialization using rdft().
size_t ip_length = 2 + sqrtf(analysis_length_);
ip_.reset(new size_t[ip_length]());
memset(ip_.get(), 0, ip_length * sizeof(ip_[0]));
wfft_.reset(new float[complex_analysis_length_ - 1]);
memset(wfft_.get(), 0, (complex_analysis_length_ - 1) * sizeof(wfft_[0]));
spectral_mean_.reset(new float[complex_analysis_length_ * num_channels_]);
memset(spectral_mean_.get(), 0,
complex_analysis_length_ * num_channels_ * sizeof(spectral_mean_[0]));
fft_buffer_.reset(new float[analysis_length_ + 2]);
memset(fft_buffer_.get(), 0, (analysis_length_ + 2) * sizeof(fft_buffer_[0]));
magnitudes_.reset(new float[complex_analysis_length_]);
memset(magnitudes_.get(), 0,
complex_analysis_length_ * sizeof(magnitudes_[0]));
mean_factor_.reset(new float[complex_analysis_length_]);
static const float kFactorHeight = 10.f;
static const float kLowSlope = 1.f;
static const float kHighSlope = 0.3f;
for (size_t i = 0; i < complex_analysis_length_; ++i) {
mean_factor_[i] =
kFactorHeight /
(1.f + std::exp(kLowSlope * static_cast<int>(i - kMinVoiceBin))) +
kFactorHeight /
(1.f + std::exp(kHighSlope * static_cast<int>(kMaxVoiceBin - i)));
}
detector_smoothed_ = 0.f;
keypress_counter_ = 0;
chunks_since_keypress_ = 0;
detection_enabled_ = false;
suppression_enabled_ = false;
use_hard_restoration_ = false;
chunks_since_voice_change_ = 0;
seed_ = 182;
using_reference_ = false;
return 0;
}
int TransientSuppressorImpl::Suppress(float* data,
size_t data_length,
int num_channels,
const float* detection_data,
size_t detection_length,
const float* reference_data,
size_t reference_length,
float voice_probability,
bool key_pressed) {
if (!data || data_length != data_length_ || num_channels != num_channels_ ||
detection_length != detection_length_ || voice_probability < 0 ||
voice_probability > 1) {
return -1;
}
UpdateKeypress(key_pressed);
UpdateBuffers(data);
int result = 0;
if (detection_enabled_) {
UpdateRestoration(voice_probability);
if (!detection_data) {
// Use the input data of the first channel if special detection data is
// not supplied.
detection_data = &in_buffer_[buffer_delay_];
}
float detector_result = detector_->Detect(detection_data, detection_length,
reference_data, reference_length);
if (detector_result < 0) {
return -1;
}
using_reference_ = detector_->using_reference();
// |detector_smoothed_| follows the |detector_result| when this last one is
// increasing, but has an exponential decaying tail to be able to suppress
// the ringing of keyclicks.
float smooth_factor = using_reference_ ? 0.6 : 0.1;
detector_smoothed_ = detector_result >= detector_smoothed_
? detector_result
: smooth_factor * detector_smoothed_ +
(1 - smooth_factor) * detector_result;
for (int i = 0; i < num_channels_; ++i) {
Suppress(&in_buffer_[i * analysis_length_],
&spectral_mean_[i * complex_analysis_length_],
&out_buffer_[i * analysis_length_]);
}
}
// If the suppression isn't enabled, we use the in buffer to delay the signal
// appropriately. This also gives time for the out buffer to be refreshed with
// new data between detection and suppression getting enabled.
for (int i = 0; i < num_channels_; ++i) {
memcpy(&data[i * data_length_],
suppression_enabled_ ? &out_buffer_[i * analysis_length_]
: &in_buffer_[i * analysis_length_],
data_length_ * sizeof(*data));
}
return result;
}
// This should only be called when detection is enabled. UpdateBuffers() must
// have been called. At return, |out_buffer_| will be filled with the
// processed output.
void TransientSuppressorImpl::Suppress(float* in_ptr,
float* spectral_mean,
float* out_ptr) {
// Go to frequency domain.
for (size_t i = 0; i < analysis_length_; ++i) {
// TODO(aluebs): Rename windows
fft_buffer_[i] = in_ptr[i] * window_[i];
}
WebRtc_rdft(analysis_length_, 1, fft_buffer_.get(), ip_.get(), wfft_.get());
// Since WebRtc_rdft puts R[n/2] in fft_buffer_[1], we move it to the end
// for convenience.
fft_buffer_[analysis_length_] = fft_buffer_[1];
fft_buffer_[analysis_length_ + 1] = 0.f;
fft_buffer_[1] = 0.f;
for (size_t i = 0; i < complex_analysis_length_; ++i) {
magnitudes_[i] =
ComplexMagnitude(fft_buffer_[i * 2], fft_buffer_[i * 2 + 1]);
}
// Restore audio if necessary.
if (suppression_enabled_) {
if (use_hard_restoration_) {
HardRestoration(spectral_mean);
} else {
SoftRestoration(spectral_mean);
}
}
// Update the spectral mean.
for (size_t i = 0; i < complex_analysis_length_; ++i) {
spectral_mean[i] = (1 - kMeanIIRCoefficient) * spectral_mean[i] +
kMeanIIRCoefficient * magnitudes_[i];
}
// Back to time domain.
// Put R[n/2] back in fft_buffer_[1].
fft_buffer_[1] = fft_buffer_[analysis_length_];
WebRtc_rdft(analysis_length_, -1, fft_buffer_.get(), ip_.get(), wfft_.get());
const float fft_scaling = 2.f / analysis_length_;
for (size_t i = 0; i < analysis_length_; ++i) {
out_ptr[i] += fft_buffer_[i] * window_[i] * fft_scaling;
}
}
void TransientSuppressorImpl::UpdateKeypress(bool key_pressed) {
const int kKeypressPenalty = 1000 / ts::kChunkSizeMs;
const int kIsTypingThreshold = 1000 / ts::kChunkSizeMs;
const int kChunksUntilNotTyping = 4000 / ts::kChunkSizeMs; // 4 seconds.
if (key_pressed) {
keypress_counter_ += kKeypressPenalty;
chunks_since_keypress_ = 0;
detection_enabled_ = true;
}
keypress_counter_ = std::max(0, keypress_counter_ - 1);
if (keypress_counter_ > kIsTypingThreshold) {
if (!suppression_enabled_) {
RTC_LOG(LS_INFO) << "[ts] Transient suppression is now enabled.";
}
suppression_enabled_ = true;
keypress_counter_ = 0;
}
if (detection_enabled_ && ++chunks_since_keypress_ > kChunksUntilNotTyping) {
if (suppression_enabled_) {
RTC_LOG(LS_INFO) << "[ts] Transient suppression is now disabled.";
}
detection_enabled_ = false;
suppression_enabled_ = false;
keypress_counter_ = 0;
}
}
void TransientSuppressorImpl::UpdateRestoration(float voice_probability) {
const int kHardRestorationOffsetDelay = 3;
const int kHardRestorationOnsetDelay = 80;
bool not_voiced = voice_probability < kVoiceThreshold;
if (not_voiced == use_hard_restoration_) {
chunks_since_voice_change_ = 0;
} else {
++chunks_since_voice_change_;
if ((use_hard_restoration_ &&
chunks_since_voice_change_ > kHardRestorationOffsetDelay) ||
(!use_hard_restoration_ &&
chunks_since_voice_change_ > kHardRestorationOnsetDelay)) {
use_hard_restoration_ = not_voiced;
chunks_since_voice_change_ = 0;
}
}
}
// Shift buffers to make way for new data. Must be called after
// |detection_enabled_| is updated by UpdateKeypress().
void TransientSuppressorImpl::UpdateBuffers(float* data) {
// TODO(aluebs): Change to ring buffer.
memmove(in_buffer_.get(), &in_buffer_[data_length_],
(buffer_delay_ + (num_channels_ - 1) * analysis_length_) *
sizeof(in_buffer_[0]));
// Copy new chunk to buffer.
for (int i = 0; i < num_channels_; ++i) {
memcpy(&in_buffer_[buffer_delay_ + i * analysis_length_],
&data[i * data_length_], data_length_ * sizeof(*data));
}
if (detection_enabled_) {
// Shift previous chunk in out buffer.
memmove(out_buffer_.get(), &out_buffer_[data_length_],
(buffer_delay_ + (num_channels_ - 1) * analysis_length_) *
sizeof(out_buffer_[0]));
// Initialize new chunk in out buffer.
for (int i = 0; i < num_channels_; ++i) {
memset(&out_buffer_[buffer_delay_ + i * analysis_length_], 0,
data_length_ * sizeof(out_buffer_[0]));
}
}
}
// Restores the unvoiced signal if a click is present.
// Attenuates by a certain factor every peak in the |fft_buffer_| that exceeds
// the spectral mean. The attenuation depends on |detector_smoothed_|.
// If a restoration takes place, the |magnitudes_| are updated to the new value.
void TransientSuppressorImpl::HardRestoration(float* spectral_mean) {
const float detector_result =
1.f - std::pow(1.f - detector_smoothed_, using_reference_ ? 200.f : 50.f);
// To restore, we get the peaks in the spectrum. If higher than the previous
// spectral mean we adjust them.
for (size_t i = 0; i < complex_analysis_length_; ++i) {
if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0) {
// RandU() generates values on [0, int16::max()]
const float phase = 2 * ts::kPi * WebRtcSpl_RandU(&seed_) /
std::numeric_limits<int16_t>::max();
const float scaled_mean = detector_result * spectral_mean[i];
fft_buffer_[i * 2] = (1 - detector_result) * fft_buffer_[i * 2] +
scaled_mean * cosf(phase);
fft_buffer_[i * 2 + 1] = (1 - detector_result) * fft_buffer_[i * 2 + 1] +
scaled_mean * sinf(phase);
magnitudes_[i] = magnitudes_[i] -
detector_result * (magnitudes_[i] - spectral_mean[i]);
}
}
}
// Restores the voiced signal if a click is present.
// Attenuates by a certain factor every peak in the |fft_buffer_| that exceeds
// the spectral mean and that is lower than some function of the current block
// frequency mean. The attenuation depends on |detector_smoothed_|.
// If a restoration takes place, the |magnitudes_| are updated to the new value.
void TransientSuppressorImpl::SoftRestoration(float* spectral_mean) {
// Get the spectral magnitude mean of the current block.
float block_frequency_mean = 0;
for (size_t i = kMinVoiceBin; i < kMaxVoiceBin; ++i) {
block_frequency_mean += magnitudes_[i];
}
block_frequency_mean /= (kMaxVoiceBin - kMinVoiceBin);
// To restore, we get the peaks in the spectrum. If higher than the
// previous spectral mean and lower than a factor of the block mean
// we adjust them. The factor is a double sigmoid that has a minimum in the
// voice frequency range (300Hz - 3kHz).
for (size_t i = 0; i < complex_analysis_length_; ++i) {
if (magnitudes_[i] > spectral_mean[i] && magnitudes_[i] > 0 &&
(using_reference_ ||
magnitudes_[i] < block_frequency_mean * mean_factor_[i])) {
const float new_magnitude =
magnitudes_[i] -
detector_smoothed_ * (magnitudes_[i] - spectral_mean[i]);
const float magnitude_ratio = new_magnitude / magnitudes_[i];
fft_buffer_[i * 2] *= magnitude_ratio;
fft_buffer_[i * 2 + 1] *= magnitude_ratio;
magnitudes_[i] = new_magnitude;
}
}
}
} // namespace webrtc
|