File: labor.arff

package info (click to toggle)
weka 3.6.14-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 113,028 kB
  • sloc: java: 275,291; xml: 2,633; sh: 64; makefile: 25
file content (164 lines) | stat: -rw-r--r-- 8,279 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
% Date: Tue, 15 Nov 88 15:44:08 EST
% From: stan <stan@csi2.UofO.EDU>
% To: aha@ICS.UCI.EDU
% 
% 1. Title: Final settlements in labor negotitions in Canadian industry
% 
% 2. Source Information
%    -- Creators: Collective Barganing Review, montly publication,
%       Labour Canada, Industrial Relations Information Service,
%         Ottawa, Ontario, K1A 0J2, Canada, (819) 997-3117
%         The data includes all collective agreements reached
%         in the business and personal services sector for locals
%         with at least 500 members (teachers, nurses, university
%         staff, police, etc) in Canada in 87 and first quarter of 88.   
%    -- Donor: Stan Matwin, Computer Science Dept, University of Ottawa,
%                 34 Somerset East, K1N 9B4, (stan@uotcsi2.bitnet)
%    -- Date: November 1988
%  
% 3. Past Usage:
%    -- testing concept learning software, in particular
%       an experimental method to learn two-tiered concept descriptions.
%       The data was used to learn the description of an acceptable
%       and unacceptable contract.
%       The unacceptable contracts were either obtained by interviewing
%       experts, or by inventing near misses.
%       Examples of use are described in:
%         Bergadano, F., Matwin, S., Michalski, R.,
%         Zhang, J., Measuring Quality of Concept Descriptions, 
%         Procs. of the 3rd European Working Sessions on Learning,
%         Glasgow, October 1988.
%         Bergadano, F., Matwin, S., Michalski, R., Zhang, J.,
%         Representing and Acquiring Imprecise and Context-dependent
%         Concepts in Knowledge-based Systems, Procs. of ISMIS'88,
%         North Holland, 1988.
% 4. Relevant Information:
%    -- data was used to test 2tier approach with learning
% from positive and negative examples
% 
% 5. Number of Instances: 57 
% 
% 6. Number of Attributes: 16 
% 
% 7. Attribute Information:
%    1.  dur: duration of agreement 
%        [1..7]
%    2   wage1.wage : wage increase in first year of contract 
%        [2.0 .. 7.0]
%    3   wage2.wage : wage increase in second year of contract
%        [2.0 .. 7.0]
%    4   wage3.wage : wage increase in third year of contract
%        [2.0 .. 7.0]
%    5   cola : cost of living allowance 
%        [none, tcf, tc]
%    6   hours.hrs : number of working hours during week
%        [35 .. 40]
%    7   pension : employer contributions to pension plan
%        [none, ret_allw, empl_contr]
%    8   stby_pay : standby pay
%        [2 .. 25]
%    9   shift_diff : shift differencial : supplement for work on II and III shift
%        [1 .. 25]
%   10   educ_allw.boolean : education allowance 
%        [true false]
%   11   holidays : number of statutory holidays 
%        [9 .. 15]
%   12   vacation : number of paid vacation days
%        [ba, avg, gnr]
%   13   lngtrm_disabil.boolean : 
%        employer's help during employee longterm disabil
%        ity [true , false]
%   14   dntl_ins : employers contribution towards the dental plan
%        [none, half, full]
%   15   bereavement.boolean : employer's financial contribution towards the 
%        covering the costs of bereavement
%        [true , false]
%   16   empl_hplan : employer's contribution towards the health plan
%        [none, half, full]
% 
% 8. Missing Attribute Values: None
% 
% 9. Class Distribution:
% 
% 10. Exceptions from format instructions: no commas between attribute values.
% 
% 
@relation 'labor-neg-data'
@attribute 'duration' numeric
@attribute 'wage-increase-first-year' numeric
@attribute 'wage-increase-second-year' numeric
@attribute 'wage-increase-third-year' numeric
@attribute 'cost-of-living-adjustment' {'none','tcf','tc'}
@attribute 'working-hours' numeric
@attribute 'pension' {'none','ret_allw','empl_contr'}
@attribute 'standby-pay' numeric
@attribute 'shift-differential' numeric
@attribute 'education-allowance' {'yes','no'}
@attribute 'statutory-holidays' numeric
@attribute 'vacation' {'below_average','average','generous'}
@attribute 'longterm-disability-assistance' {'yes','no'}
@attribute 'contribution-to-dental-plan' {'none','half','full'}
@attribute 'bereavement-assistance' {'yes','no'}
@attribute 'contribution-to-health-plan' {'none','half','full'}
@attribute 'class' {'bad','good'}
@data
1,5,?,?,?,40,?,?,2,?,11,'average',?,?,'yes',?,'good'
2,4.5,5.8,?,?,35,'ret_allw',?,?,'yes',11,'below_average',?,'full',?,'full','good'
?,?,?,?,?,38,'empl_contr',?,5,?,11,'generous','yes','half','yes','half','good'
3,3.7,4,5,'tc',?,?,?,?,'yes',?,?,?,?,'yes',?,'good'
3,4.5,4.5,5,?,40,?,?,?,?,12,'average',?,'half','yes','half','good'
2,2,2.5,?,?,35,?,?,6,'yes',12,'average',?,?,?,?,'good'
3,4,5,5,'tc',?,'empl_contr',?,?,?,12,'generous','yes','none','yes','half','good'
3,6.9,4.8,2.3,?,40,?,?,3,?,12,'below_average',?,?,?,?,'good'
2,3,7,?,?,38,?,12,25,'yes',11,'below_average','yes','half','yes',?,'good'
1,5.7,?,?,'none',40,'empl_contr',?,4,?,11,'generous','yes','full',?,?,'good'
3,3.5,4,4.6,'none',36,?,?,3,?,13,'generous',?,?,'yes','full','good'
2,6.4,6.4,?,?,38,?,?,4,?,15,?,?,'full',?,?,'good'
2,3.5,4,?,'none',40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'
3,3.5,4,5.1,'tcf',37,?,?,4,?,13,'generous',?,'full','yes','full','good'
1,3,?,?,'none',36,?,?,10,'no',11,'generous',?,?,?,?,'good'
2,4.5,4,?,'none',37,'empl_contr',?,?,?,11,'average',?,'full','yes',?,'good'
1,2.8,?,?,?,35,?,?,2,?,12,'below_average',?,?,?,?,'good'
1,2.1,?,?,'tc',40,'ret_allw',2,3,'no',9,'below_average','yes','half',?,'none','bad'
1,2,?,?,'none',38,'none',?,?,'yes',11,'average','no','none','no','none','bad'
2,4,5,?,'tcf',35,?,13,5,?,15,'generous',?,?,?,?,'good'
2,4.3,4.4,?,?,38,?,?,4,?,12,'generous',?,'full',?,'full','good'
2,2.5,3,?,?,40,'none',?,?,?,11,'below_average',?,?,?,?,'bad'
3,3.5,4,4.6,'tcf',27,?,?,?,?,?,?,?,?,?,?,'good'
2,4.5,4,?,?,40,?,?,4,?,10,'generous',?,'half',?,'full','good'
1,6,?,?,?,38,?,8,3,?,9,'generous',?,?,?,?,'good'
3,2,2,2,'none',40,'none',?,?,?,10,'below_average',?,'half','yes','full','bad'
2,4.5,4.5,?,'tcf',?,?,?,?,'yes',10,'below_average','yes','none',?,'half','good'
2,3,3,?,'none',33,?,?,?,'yes',12,'generous',?,?,'yes','full','good'
2,5,4,?,'none',37,?,?,5,'no',11,'below_average','yes','full','yes','full','good'
3,2,2.5,?,?,35,'none',?,?,?,10,'average',?,?,'yes','full','bad'
3,4.5,4.5,5,'none',40,?,?,?,'no',11,'average',?,'half',?,?,'good'
3,3,2,2.5,'tc',40,'none',?,5,'no',10,'below_average','yes','half','yes','full','bad'
2,2.5,2.5,?,?,38,'empl_contr',?,?,?,10,'average',?,?,?,?,'bad'
2,4,5,?,'none',40,'none',?,3,'no',10,'below_average','no','none',?,'none','bad'
3,2,2.5,2.1,'tc',40,'none',2,1,'no',10,'below_average','no','half','yes','full','bad'
2,2,2,?,'none',40,'none',?,?,'no',11,'average','yes','none','yes','full','bad'
1,2,?,?,'tc',40,'ret_allw',4,0,'no',11,'generous','no','none','no','none','bad'
1,2.8,?,?,'none',38,'empl_contr',2,3,'no',9,'below_average','yes','half',?,'none','bad'
3,2,2.5,2,?,37,'empl_contr',?,?,?,10,'average',?,?,'yes','none','bad'
2,4.5,4,?,'none',40,?,?,4,?,12,'average','yes','full','yes','half','good'
1,4,?,?,'none',?,'none',?,?,'yes',11,'average','no','none','no','none','bad'
2,2,3,?,'none',38,'empl_contr',?,?,'yes',12,'generous','yes','none','yes','full','bad'
2,2.5,2.5,?,'tc',39,'empl_contr',?,?,?,12,'average',?,?,'yes',?,'bad'
2,2.5,3,?,'tcf',40,'none',?,?,?,11,'below_average',?,?,'yes',?,'bad'
2,4,4,?,'none',40,'none',?,3,?,10,'below_average','no','none',?,'none','bad'
2,4.5,4,?,?,40,?,?,2,'no',10,'below_average','no','half',?,'half','bad'
2,4.5,4,?,'none',40,?,?,5,?,11,'average',?,'full','yes','full','good'
2,4.6,4.6,?,'tcf',38,?,?,?,?,?,?,'yes','half',?,'half','good'
2,5,4.5,?,'none',38,?,14,5,?,11,'below_average','yes',?,?,'full','good'
2,5.7,4.5,?,'none',40,'ret_allw',?,?,?,11,'average','yes','full','yes','full','good'
2,7,5.3,?,?,?,?,?,?,?,11,?,'yes','full',?,?,'good'
3,2,3,?,'tcf',?,'empl_contr',?,?,'yes',?,?,'yes','half','yes',?,'good'
3,3.5,4,4.5,'tcf',35,?,?,?,?,13,'generous',?,?,'yes','full','good'
3,4,3.5,?,'none',40,'empl_contr',?,6,?,11,'average','yes','full',?,'full','good'
3,5,4.4,?,'none',38,'empl_contr',10,6,?,11,'generous','yes',?,?,'full','good'
3,5,5,5,?,40,?,?,?,?,12,'average',?,'half','yes','half','good'
3,6,6,4,?,35,?,?,14,?,9,'generous','yes','full','yes','full','good'
%
%
%