1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
/*
* Copyright © 2011 Intel Corporation
* Copyright © 2012 Collabora, Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial
* portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "config.h"
#include <assert.h>
#include <float.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <wayland-server.h>
#include <libweston/matrix.h>
/*
* Matrices are stored in column-major order, that is the array indices are:
* 0 4 8 12
* 1 5 9 13
* 2 6 10 14
* 3 7 11 15
*/
WL_EXPORT void
weston_matrix_init(struct weston_matrix *matrix)
{
static const struct weston_matrix identity = {
.d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 },
.type = 0,
};
memcpy(matrix, &identity, sizeof identity);
}
/* m <- n * m, that is, m is multiplied on the LEFT. */
WL_EXPORT void
weston_matrix_multiply(struct weston_matrix *m, const struct weston_matrix *n)
{
struct weston_matrix tmp;
const float *row, *column;
int i, j, k;
for (i = 0; i < 4; i++) {
row = m->d + i * 4;
for (j = 0; j < 4; j++) {
tmp.d[4 * i + j] = 0;
column = n->d + j;
for (k = 0; k < 4; k++)
tmp.d[4 * i + j] += row[k] * column[k * 4];
}
}
tmp.type = m->type | n->type;
memcpy(m, &tmp, sizeof tmp);
}
WL_EXPORT void
weston_matrix_translate(struct weston_matrix *matrix, float x, float y, float z)
{
struct weston_matrix translate = {
.d = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, x, y, z, 1 },
.type = WESTON_MATRIX_TRANSFORM_TRANSLATE,
};
weston_matrix_multiply(matrix, &translate);
}
WL_EXPORT void
weston_matrix_scale(struct weston_matrix *matrix, float x, float y,float z)
{
struct weston_matrix scale = {
.d = { x, 0, 0, 0, 0, y, 0, 0, 0, 0, z, 0, 0, 0, 0, 1 },
.type = WESTON_MATRIX_TRANSFORM_SCALE,
};
weston_matrix_multiply(matrix, &scale);
}
WL_EXPORT void
weston_matrix_rotate_xy(struct weston_matrix *matrix, float cos, float sin)
{
struct weston_matrix translate = {
.d = { cos, sin, 0, 0, -sin, cos, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 },
.type = WESTON_MATRIX_TRANSFORM_ROTATE,
};
weston_matrix_multiply(matrix, &translate);
}
/* v <- m * v */
WL_EXPORT void
weston_matrix_transform(const struct weston_matrix *matrix,
struct weston_vector *v)
{
int i, j;
struct weston_vector t;
for (i = 0; i < 4; i++) {
t.f[i] = 0;
for (j = 0; j < 4; j++)
t.f[i] += v->f[j] * matrix->d[i + j * 4];
}
*v = t;
}
WL_EXPORT struct weston_coord
weston_matrix_transform_coord(const struct weston_matrix *matrix,
struct weston_coord c)
{
struct weston_coord out;
struct weston_vector t = { { c.x, c.y, 0.0, 1.0 } };
weston_matrix_transform(matrix, &t);
assert(fabsf(t.f[3]) > 1e-6);
out.x = t.f[0] / t.f[3];
out.y = t.f[1] / t.f[3];
return out;
}
static inline void
swap_rows(double *a, double *b)
{
unsigned k;
double tmp;
for (k = 0; k < 13; k += 4) {
tmp = a[k];
a[k] = b[k];
b[k] = tmp;
}
}
static inline void
swap_unsigned(unsigned *a, unsigned *b)
{
unsigned tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
static inline unsigned
find_pivot(double *column, unsigned k)
{
unsigned p = k;
for (++k; k < 4; ++k)
if (fabs(column[p]) < fabs(column[k]))
p = k;
return p;
}
/*
* reference: Gene H. Golub and Charles F. van Loan. Matrix computations.
* 3rd ed. The Johns Hopkins University Press. 1996.
* LU decomposition, forward and back substitution: Chapter 3.
*/
static int
matrix_invert(double *A, unsigned *p, const struct weston_matrix *matrix)
{
unsigned i, j, k;
unsigned pivot;
double pv;
for (i = 0; i < 4; ++i)
p[i] = i;
for (i = 16; i--; )
A[i] = matrix->d[i];
/* LU decomposition with partial pivoting */
for (k = 0; k < 4; ++k) {
pivot = find_pivot(&A[k * 4], k);
if (pivot != k) {
swap_unsigned(&p[k], &p[pivot]);
swap_rows(&A[k], &A[pivot]);
}
pv = A[k * 4 + k];
if (fabs(pv) < 1e-9)
return -1; /* zero pivot, not invertible */
for (i = k + 1; i < 4; ++i) {
A[i + k * 4] /= pv;
for (j = k + 1; j < 4; ++j)
A[i + j * 4] -= A[i + k * 4] * A[k + j * 4];
}
}
return 0;
}
static void
inverse_transform(const double *LU, const unsigned *p, float *v)
{
/* Solve A * x = v, when we have P * A = L * U.
* P * A * x = P * v => L * U * x = P * v
* Let U * x = b, then L * b = P * v.
*/
double b[4];
unsigned j;
/* Forward substitution, column version, solves L * b = P * v */
/* The diagonal of L is all ones, and not explicitly stored. */
b[0] = v[p[0]];
b[1] = (double)v[p[1]] - b[0] * LU[1 + 0 * 4];
b[2] = (double)v[p[2]] - b[0] * LU[2 + 0 * 4];
b[3] = (double)v[p[3]] - b[0] * LU[3 + 0 * 4];
b[2] -= b[1] * LU[2 + 1 * 4];
b[3] -= b[1] * LU[3 + 1 * 4];
b[3] -= b[2] * LU[3 + 2 * 4];
/* backward substitution, column version, solves U * y = b */
#if 1
/* hand-unrolled, 25% faster for whole function */
b[3] /= LU[3 + 3 * 4];
b[0] -= b[3] * LU[0 + 3 * 4];
b[1] -= b[3] * LU[1 + 3 * 4];
b[2] -= b[3] * LU[2 + 3 * 4];
b[2] /= LU[2 + 2 * 4];
b[0] -= b[2] * LU[0 + 2 * 4];
b[1] -= b[2] * LU[1 + 2 * 4];
b[1] /= LU[1 + 1 * 4];
b[0] -= b[1] * LU[0 + 1 * 4];
b[0] /= LU[0 + 0 * 4];
#else
for (j = 3; j > 0; --j) {
unsigned k;
b[j] /= LU[j + j * 4];
for (k = 0; k < j; ++k)
b[k] -= b[j] * LU[k + j * 4];
}
b[0] /= LU[0 + 0 * 4];
#endif
/* the result */
for (j = 0; j < 4; ++j)
v[j] = b[j];
}
WL_EXPORT int
weston_matrix_invert(struct weston_matrix *inverse,
const struct weston_matrix *matrix)
{
double LU[16]; /* column-major */
unsigned perm[4]; /* permutation */
unsigned c;
if (matrix_invert(LU, perm, matrix) < 0)
return -1;
weston_matrix_init(inverse);
for (c = 0; c < 4; ++c)
inverse_transform(LU, perm, &inverse->d[c * 4]);
inverse->type = matrix->type;
return 0;
}
static bool
near_zero(float a)
{
if (fabs(a) > 0.00001)
return false;
return true;
}
static float
get_el(const struct weston_matrix *matrix, int row, int col)
{
assert(row >= 0 && row <= 3);
assert(col >= 0 && col <= 3);
return matrix->d[col * 4 + row];
}
static bool
near_zero_at(const struct weston_matrix *matrix, int row, int col)
{
return near_zero(get_el(matrix, row, col));
}
static bool
near_one_at(const struct weston_matrix *matrix, int row, int col)
{
return near_zero(get_el(matrix, row, col) - 1.0);
}
static bool
near_pm_one_at(const struct weston_matrix *matrix, int row, int col)
{
return near_zero(fabs(get_el(matrix, row, col)) - 1.0);
}
static bool
near_int_at(const struct weston_matrix *matrix, int row, int col)
{
float el = get_el(matrix, row, col);
return near_zero(roundf(el) - el);
}
/* Lazy decompose the matrix to figure out whether its operations will
* cause an image to look ugly without some kind of filtering.
*
* while this is a 3D transformation matrix, we only concern ourselves
* with 2D for this test. We do use some small rounding to try to catch
* sequences of operations that lead back to a matrix that doesn't
* require filters.
*
* We assume the matrix won't be used to transform a vector with w != 1.0
*
* Filtering will be necessary when:
* a non-integral translation is applied
* non-affine (perspective) translation is in use
* any scaling (other than -1) is in use
* a rotation that isn't a multiple of 90 degrees about Z is present
*/
WL_EXPORT bool
weston_matrix_needs_filtering(const struct weston_matrix *matrix)
{
/* check for non-integral X/Y translation - ignore Z */
if (!near_int_at(matrix, 0, 3) ||
!near_int_at(matrix, 1, 3))
return true;
/* Any transform matrix that matches this will be non-affine. */
if (!near_zero_at(matrix, 3, 0) ||
!near_zero_at(matrix, 3, 1) ||
!near_zero_at(matrix, 3, 2) ||
!near_pm_one_at(matrix, 3, 3))
return true;
/* Check for anything that could come from a rotation that isn't
* around the Z axis:
* [ ? ? 0 ? ]
* [ ? ? 0 ? ]
* [ 0 0 ±1 ? ]
* [ ? ? ? 1 ]
* It's not clear that we'd realistically see a -1 in [2][2], but
* it wouldn't require filtering if we did, so allow it.
*/
if (!near_zero_at(matrix, 0, 2) ||
!near_zero_at(matrix, 1, 2) ||
!near_zero_at(matrix, 2, 0) ||
!near_zero_at(matrix, 2, 1) ||
!near_pm_one_at(matrix, 2, 2))
return true;
/* We've culled the low hanging fruit, now let's match the only
* matrices left we don't have to filter, before defaulting to
* filtering.
*
* These are a combination of testing rotation and scaling at once: */
if (near_pm_one_at(matrix, 0, 0)) {
/* This could be a multiple of 90 degree rotation about Z,
* possibly with a flip, if the matrix is of the form:
* [ ±1 0 0 ? ]
* [ 0 ±1 0 ? ]
* [ 0 0 1 ? ]
* [ 0 0 0 1 ]
* Forcing ±1 excludes non-unity scale.
*/
if (near_zero_at(matrix, 1, 0) &&
near_zero_at(matrix, 0, 1) &&
near_pm_one_at(matrix, 1, 1))
return false;
}
if (near_zero_at(matrix, 0, 0)) {
/* This could be a multiple of 90 degree rotation about Z,
* possibly with a flip, if the matrix is of the form:
* [ 0 ±1 0 ? ]
* [ ±1 0 0 ? ]
* [ 0 0 1 ? ]
* [ 0 0 0 1 ]
* Forcing ±1 excludes non-unity scale.
*/
if (near_zero_at(matrix, 1, 1) &&
near_pm_one_at(matrix, 1, 0) &&
near_pm_one_at(matrix, 0, 1))
return false;
}
/* The matrix wasn't "simple" enough to classify with dumb
* heuristics, so recommend filtering */
return true;
}
/** Examine a matrix to see if it applies a standard output transform.
*
* \param mat matrix to examine
* \param[out] transform the transform, if applicable
* \return true if a standard transform is present
* Note that the check only considers rotations and flips.
* If any other scale or translation is present, those may have to
* be dealt with by the caller in some way.
*/
WL_EXPORT bool
weston_matrix_to_transform(const struct weston_matrix *mat,
enum wl_output_transform *transform)
{
/* As a first pass we can eliminate any matrix that doesn't have
* zeroes in these positions:
* [ ? ? 0 ? ]
* [ ? ? 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 ? ]
* As they will be non-affine, or rotations about axes
* other than Z.
*/
if (!near_zero_at(mat, 2, 0) ||
!near_zero_at(mat, 3, 0) ||
!near_zero_at(mat, 2, 1) ||
!near_zero_at(mat, 3, 1) ||
!near_zero_at(mat, 0, 2) ||
!near_zero_at(mat, 1, 2) ||
!near_zero_at(mat, 3, 2))
return false;
/* Enforce the form:
* [ ? ? 0 ? ]
* [ ? ? 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 1 ]
* While we could scale all the elements by a constant to make
* 3,3 == 1, we choose to be lazy and not bother. A matrix
* that doesn't fit this form seems likely to be too complicated
* to pass the other checks.
*/
if (!near_one_at(mat, 3, 3))
return false;
if (near_zero_at(mat, 0, 0)) {
if (!near_zero_at(mat, 1, 1))
return false;
/* We now have a matrix like:
* [ 0 A 0 ? ]
* [ B 0 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 1 ]
* When transforming a vector with a matrix of this form, the X
* and Y coordinates are effectively exchanged, so we have a
* 90 or 270 degree rotation (not 0 or 180), and could have
* a flip depending on the signs of A and B.
*
* We don't require A and B to have the same absolute value,
* so there may be independent scales in the X or Y dimensions.
*/
if (get_el(mat, 0, 1) > 0) {
/* A is positive */
if (get_el(mat, 1, 0) > 0)
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_90;
else
*transform = WL_OUTPUT_TRANSFORM_90;
} else {
/* A is negative */
if (get_el(mat, 1, 0) > 0)
*transform = WL_OUTPUT_TRANSFORM_270;
else
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_270;
}
} else if (near_zero_at(mat, 1, 0)) {
if (!near_zero_at(mat, 0, 1))
return false;
/* We now have a matrix like:
* [ A 0 0 ? ]
* [ 0 B 0 ? ]
* [ 0 0 ? ? ]
* [ 0 0 0 1 ]
* This case won't exchange the X and Y inputs, so the
* transform is 0 or 180 degrees. We could have a flip
* depending on the signs of A and B.
*
* We don't require A and B to have the same absolute value,
* so there may be independent scales in the X or Y dimensions.
*/
if (get_el(mat, 0, 0) > 0) {
/* A is positive */
if (get_el(mat, 1, 1) > 0)
*transform = WL_OUTPUT_TRANSFORM_NORMAL;
else
*transform = WL_OUTPUT_TRANSFORM_FLIPPED_180;
} else {
/* A is negative */
if (get_el(mat, 1, 1) > 0)
*transform = WL_OUTPUT_TRANSFORM_FLIPPED;
else
*transform = WL_OUTPUT_TRANSFORM_180;
}
} else {
return false;
}
return true;
}
WL_EXPORT void
weston_matrix_init_transform(struct weston_matrix *matrix,
enum wl_output_transform transform,
int x, int y, int width, int height,
int scale)
{
weston_matrix_init(matrix);
weston_matrix_translate(matrix, -x, -y, 0);
switch (transform) {
case WL_OUTPUT_TRANSFORM_FLIPPED:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
weston_matrix_scale(matrix, -1, 1, 1);
weston_matrix_translate(matrix, width, 0, 0);
break;
default:
break;
}
switch (transform) {
default:
case WL_OUTPUT_TRANSFORM_NORMAL:
case WL_OUTPUT_TRANSFORM_FLIPPED:
break;
case WL_OUTPUT_TRANSFORM_90:
case WL_OUTPUT_TRANSFORM_FLIPPED_90:
weston_matrix_rotate_xy(matrix, 0, -1);
weston_matrix_translate(matrix, 0, width, 0);
break;
case WL_OUTPUT_TRANSFORM_180:
case WL_OUTPUT_TRANSFORM_FLIPPED_180:
weston_matrix_rotate_xy(matrix, -1, 0);
weston_matrix_translate(matrix,
width, height, 0);
break;
case WL_OUTPUT_TRANSFORM_270:
case WL_OUTPUT_TRANSFORM_FLIPPED_270:
weston_matrix_rotate_xy(matrix, 0, 1);
weston_matrix_translate(matrix, height, 0, 0);
break;
}
weston_matrix_scale(matrix, scale, scale, 1);
}
|