1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
#include "audioconverter.h"
#include "logcategories.h"
#include "ulaw.h"
#include "adpcm/adpcm-lib.h"
audioConverter::audioConverter(QObject* parent) : QObject(parent)
{
}
bool audioConverter::init(QAudioFormat inFormat, codecType inCodec, QAudioFormat outFormat, codecType outCodec, quint8 opusComplexity, quint8 resampleQuality)
{
this->inFormat = inFormat;
this->inCodec = inCodec;
this->outFormat = outFormat;
this->outCodec = outCodec;
this->opusComplexity = opusComplexity;
this->resampleQuality = resampleQuality;
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
qInfo(logAudioConverter) << "Starting audioConverter() Input:" << inFormat.channelCount() << "Channels of" << inCodec << inFormat.sampleRate() << inFormat.sampleType() << inFormat.sampleSize() <<
"Output:" << outFormat.channelCount() << "Channels of" << outCodec << outFormat.sampleRate() << outFormat.sampleType() << outFormat.sampleSize();
if (inFormat.byteOrder() != outFormat.byteOrder()) {
qInfo(logAudioConverter) << "Byteorder mismatch in:" << inFormat.byteOrder() << "out:" << outFormat.byteOrder();
}
#else
qInfo(logAudioConverter) << "Starting audioConverter() Input:" << inFormat.channelCount() << "Channels of" << inCodec << inFormat.sampleRate() << inFormat.sampleFormat() <<
"Output:" << outFormat.channelCount() << "Channels of" << outCodec << outFormat.sampleRate() << outFormat.sampleFormat();
#endif
if (inCodec == OPUS)
{
// Create instance of opus decoder
int opus_err = 0;
opusDecoder = opus_decoder_create(inFormat.sampleRate(), inFormat.channelCount(), &opus_err);
qInfo(logAudioConverter()) << "Creating opus decoder: " << opus_strerror(opus_err);
}
if (outCodec == OPUS)
{
// Create instance of opus encoder
int opus_err = 0;
opusEncoder = opus_encoder_create(outFormat.sampleRate(), outFormat.channelCount(), OPUS_APPLICATION_AUDIO, &opus_err);
//opus_encoder_ctl(opusEncoder, OPUS_SET_LSB_DEPTH(16));
//opus_encoder_ctl(opusEncoder, OPUS_SET_INBAND_FEC(1));
//opus_encoder_ctl(opusEncoder, OPUS_SET_DTX(1));
//opus_encoder_ctl(opusEncoder, OPUS_SET_PACKET_LOSS_PERC(5));
opus_encoder_ctl(opusEncoder, OPUS_SET_COMPLEXITY(opusComplexity)); // Reduce complexity to maybe lower CPU?
qInfo(logAudioConverter()) << "Creating opus encoder: " << opus_strerror(opus_err);
}
if (outCodec == ADPCM)
{
adpcmContext = adpcm_create_context(outFormat.channelCount(),outFormat.sampleRate(),1,1);
}
if (inFormat.sampleRate() != outFormat.sampleRate())
{
int resampleError = 0;
unsigned int ratioNum;
unsigned int ratioDen;
// Sample rate conversion required.
resampler = wf_resampler_init(outFormat.channelCount(), inFormat.sampleRate(), outFormat.sampleRate(), resampleQuality, &resampleError);
wf_resampler_get_ratio(resampler, &ratioNum, &ratioDen);
resampleRatio = static_cast<double>(ratioDen) / ratioNum;
qInfo(logAudioConverter()) << "wf_resampler_init() returned: " << resampleError << " resampleRatio: " << resampleRatio;
}
return true;
}
audioConverter::~audioConverter()
{
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
qInfo(logAudioConverter) << "Closing audioConverter() Input:" << inFormat.channelCount() << "Channels of" << inCodec << inFormat.sampleRate() << inFormat.sampleType() << inFormat.sampleSize() <<
"Output:" << outFormat.channelCount() << "Channels of" << outCodec << outFormat.sampleRate() << outFormat.sampleType() << outFormat.sampleSize();
#else
qInfo(logAudioConverter) << "Closing audioConverter() Input:" << inFormat.channelCount() << "Channels of" << inCodec << inFormat.sampleRate() << inFormat.sampleFormat() <<
"Output:" << outFormat.channelCount() << "Channels of" << outCodec << outFormat.sampleRate() << outFormat.sampleFormat();
#endif
if (opusEncoder != Q_NULLPTR) {
qInfo(logAudioConverter()) << "Destroying opus encoder";
opus_encoder_destroy(opusEncoder);
}
if (opusDecoder != Q_NULLPTR) {
qInfo(logAudioConverter()) << "Destroying opus decoder";
opus_decoder_destroy(opusDecoder);
}
if (adpcmContext != Q_NULLPTR) {
qDebug(logAudioConverter()) << "adpcm context closed";
adpcm_free_context(adpcmContext);
}
if (resampler != Q_NULLPTR) {
speex_resampler_destroy(resampler);
qDebug(logAudioConverter()) << "Resampler closed";
}
}
bool audioConverter::convert(audioPacket audio)
{
// If inFormat and outFormat are identical, just emit the data back (removed as it doesn't then process amplitude)
if (audio.data.size() > 0)
{
if (inCodec == OPUS)
{
quint8* in = (quint8*)audio.data.data();
//Decode the frame.
int nSamples = opus_packet_get_nb_samples(in, audio.data.size(), inFormat.sampleRate());
if (nSamples == -1) {
// No opus data yet?
return false;
}
QByteArray outPacket(nSamples * sizeof(float) * inFormat.channelCount(), (char)0xff); // Preset the output buffer size.
float* out = (float*)outPacket.data();
int ret = opus_decode_float(opusDecoder, in, audio.data.size(), out, nSamples, 0);
if (ret != nSamples)
{
qDebug(logAudio()) << "opus_decode_float: returned:" << ret << "samples, expected:" << nSamples;
}
audio.data.clear();
audio.data = outPacket; // Replace incoming data with converted.
}
else if (inCodec == PCMU)
{
// Current packet is "technically" 8bit so need to create a new buffer that is 16bit
QByteArray outPacket((int)audio.data.length() * 2, (char)0xff);
qint16* out = (qint16*)outPacket.data();
for (int f = 0; f < audio.data.length(); f++)
{
*out++ = ulaw_decode[(quint8)audio.data[f]];
}
audio.data.clear();
audio.data = outPacket; // Replace incoming data with converted.
// Make sure that sample size/type is set correctly
}
else if (inCodec == ADPCM)
{
QByteArray outPacket((int)((audio.data.length()-4) * 4), (char)0xff);
qint16* out = (qint16*)outPacket.data();
quint8* in = (quint8*)audio.data.data();
int samples = adpcm_decode_block(out,in,audio.data.size(),1);
if (samples != outPacket.size()/2) {
qInfo() << "Sample size mismatch, audio packet in:" << audio.data.length() << "out:" << outPacket.length() << "samples:" <<samples;
}
audio.data.clear();
audio.data = outPacket; // Replace incoming data with converted.
}
Eigen::VectorXf samplesF;
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
if (inFormat.sampleType() == QAudioFormat::SignedInt && inFormat.sampleSize() == 32)
#else
if (inFormat.sampleFormat() == QAudioFormat::Int32)
#endif
{
Eigen::Ref<VectorXint32> samplesI = Eigen::Map<VectorXint32>(reinterpret_cast<qint32*>(audio.data.data()), audio.data.size() / int(sizeof(qint32)));
samplesF = samplesI.cast<float>() / float(std::numeric_limits<qint32>::max());
}
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
else if (inFormat.sampleType() == QAudioFormat::SignedInt && inFormat.sampleSize() == 16)
#else
else if (inFormat.sampleFormat() == QAudioFormat::Int16)
#endif
{
Eigen::Ref<VectorXint16> samplesI = Eigen::Map<VectorXint16>(reinterpret_cast<qint16*>(audio.data.data()), audio.data.size() / int(sizeof(qint16)));
samplesF = samplesI.cast<float>() / float(std::numeric_limits<qint16>::max());
}
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
else if (inFormat.sampleType() == QAudioFormat::UnSignedInt && inFormat.sampleSize() == 8)
#else
else if (inFormat.sampleFormat() == QAudioFormat::UInt8)
#endif
{
Eigen::Ref<VectorXuint8> samplesI = Eigen::Map<VectorXuint8>(reinterpret_cast<quint8*>(audio.data.data()), audio.data.size() / int(sizeof(quint8)));
samplesF = samplesI.cast<float>() / float(std::numeric_limits<quint8>::max());;
}
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
else if (inFormat.sampleType() == QAudioFormat::Float)
#else
else if (inFormat.sampleFormat() == QAudioFormat::Float)
#endif
{
samplesF = Eigen::Map<Eigen::VectorXf>(reinterpret_cast<float*>(audio.data.data()), audio.data.size() / int(sizeof(float)));
}
else
{
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
qInfo(logAudio()) << "Unsupported Input Sample Type:" << inFormat.sampleType() << "Size:" << inFormat.sampleSize();
#else
qInfo(logAudio()) << "Unsupported Input Sample Format:" << inFormat.sampleFormat();
#endif
}
if (samplesF.size() > 0)
{
// samplesF is currently raw samples as received from the radio:
emit floatAudio(samplesF);
audio.amplitudePeak = samplesF.array().abs().maxCoeff();
//audio.amplitudeRMS = samplesF.array().abs().mean(); // zero for tx audio
//audio.amplitudeRMS = samplesF.norm() / sqrt(samplesF.size()); // too high values. Zero for tx audio.
//audio.amplitudeRMS = samplesF.squaredNorm(); // tx not zero. Values higher than peak sometimes
//audio.amplitudeRMS = samplesF.norm(); // too small values. also too small on TX
//audio.amplitudeRMS = samplesF.blueNorm(); // scale same as norm, too small.
// Set the volume
samplesF *= audio.volume;
/*
samplesF is now an Eigen Vector of the current samples in float format
The next step is to convert to the correct number of channels in outFormat.channelCount()
*/
if (inFormat.channelCount() == 2 && outFormat.channelCount() == 1) {
// If we need to drop one of the audio channels, do it now
Eigen::VectorXf samplesTemp(samplesF.size() / 2);
samplesTemp = Eigen::Map<Eigen::VectorXf, 0, Eigen::InnerStride<2> >(samplesF.data(), samplesF.size() / 2);
samplesF = samplesTemp;
}
else if (inFormat.channelCount() == 1 && outFormat.channelCount() == 2) {
// Convert mono to stereo if required
Eigen::VectorXf samplesTemp(samplesF.size() * 2);
Eigen::Map<Eigen::VectorXf, 0, Eigen::InnerStride<2> >(samplesTemp.data(), samplesF.size()) = samplesF;
Eigen::Map<Eigen::VectorXf, 0, Eigen::InnerStride<2> >(samplesTemp.data() + 1, samplesF.size()) = samplesF;
samplesF = samplesTemp;
}
/*
Next step is to resample (if needed)
*/
if (resampler != Q_NULLPTR && resampleRatio != 1.0)
{
quint32 outFrames = ((samplesF.size() / outFormat.channelCount()) * resampleRatio);
quint32 inFrames = (samplesF.size() / outFormat.channelCount());
QByteArray outPacket(outFrames * outFormat.channelCount() * sizeof(float), (char)0xff); // Preset the output buffer size.
const float* in = (float*)samplesF.data();
float* out = (float*)outPacket.data();
int err = 0;
if (outFormat.channelCount() == 1) {
err = wf_resampler_process_float(resampler, 0, in, &inFrames, out, &outFrames);
}
else {
err = wf_resampler_process_interleaved_float(resampler, in, &inFrames, out, &outFrames);
}
if (err) {
qInfo(logAudioConverter()) << "Resampler error " << err << " inFrames:" << inFrames << " outFrames:" << outFrames;
}
samplesF = Eigen::Map<Eigen::VectorXf>(reinterpret_cast<float*>(outPacket.data()), outPacket.size() / int(sizeof(float)));
}
/*
If output is Opus so encode it now, don't do any more conversion on the output of Opus.
*/
if (outCodec == OPUS)
{
float* in = (float*)samplesF.data();
QByteArray outPacket(1275, (char)0xff); // Preset the output buffer size to MAXIMUM possible Opus frame size
quint8* out = (quint8*)outPacket.data();
int nbBytes = opus_encode_float(opusEncoder, in, (samplesF.size() / outFormat.channelCount()), out, outPacket.length());
if (nbBytes < 0)
{
qInfo(logAudioConverter()) << "Opus encode failed:" << opus_strerror(nbBytes) << "Num Samples:" << samplesF.size();
return false;
}
else {
outPacket.resize(nbBytes);
audio.data.clear();
audio.data = outPacket; // Copy output packet back to input buffer.
//samplesF = Eigen::Map<Eigen::VectorXf>(reinterpret_cast<float*>(outPacket.data()), outPacket.size() / int(sizeof(float)));
}
}
else {
/*
Now convert back into the output format required
*/
audio.data.clear();
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
if (outFormat.sampleType() == QAudioFormat::UnSignedInt && outFormat.sampleSize() == 8)
#else
if (outFormat.sampleFormat() == QAudioFormat::UInt8)
#endif
{
Eigen::VectorXf samplesITemp = samplesF * float(std::numeric_limits<qint8>::max());
samplesITemp.array() += 127;
VectorXuint8 samplesI = samplesITemp.cast<quint8>();
audio.data = QByteArray(reinterpret_cast<char*>(samplesI.data()), int(samplesI.size()) * int(sizeof(quint8)));
}
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
else if (outFormat.sampleType() == QAudioFormat::SignedInt && outFormat.sampleSize() == 16)
#else
else if (outFormat.sampleFormat() == QAudioFormat::Int16)
#endif
{
Eigen::VectorXf samplesITemp = samplesF * float(std::numeric_limits<qint16>::max());
VectorXint16 samplesI = samplesITemp.cast<qint16>();
audio.data = QByteArray(reinterpret_cast<char*>(samplesI.data()), int(samplesI.size()) * int(sizeof(qint16)));
}
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
else if (outFormat.sampleType() == QAudioFormat::SignedInt && outFormat.sampleSize() == 32)
#else
else if (outFormat.sampleFormat() == QAudioFormat::Int32)
#endif
{
Eigen::VectorXf samplesITemp = samplesF * float(std::numeric_limits<qint32>::max());
VectorXint32 samplesI = samplesITemp.cast<qint32>();
audio.data = QByteArray(reinterpret_cast<char*>(samplesI.data()), int(samplesI.size()) * int(sizeof(qint32)));
}
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
else if (outFormat.sampleType() == QAudioFormat::Float)
#else
else if (outFormat.sampleFormat() == QAudioFormat::Float)
#endif
{
audio.data = QByteArray(reinterpret_cast<char*>(samplesF.data()), int(samplesF.size()) * int(sizeof(float)));
}
else {
#if (QT_VERSION < QT_VERSION_CHECK(6,0,0))
qInfo(logAudio()) << "Unsupported Output Sample Type:" << outFormat.sampleType() << "Size:" << outFormat.sampleSize();
#else
qInfo(logAudio()) << "Unsupported Output Sample Type:" << outFormat.sampleFormat();
#endif
}
/*
As we currently don't have a float based uLaw or adpcm encoder, this must be done
after all other conversion has taken place.
*/
if (outCodec == ADPCM)
{
QByteArray outPacket((int)(audio.data.length() / 4) + 4, (char)0xff);
qint16* in = (qint16*)audio.data.data();
quint8* out = (quint8*)outPacket.data();
size_t outSize = 0;
adpcm_encode_block(adpcmContext,out,&outSize,in,audio.data.size()/2);
audio.data.clear();
audio.data = outPacket; // Copy output packet back to input buffer.
}
else if (outCodec == PCMU)
{
QByteArray outPacket((int)audio.data.length() / 2, (char)0xff);
qint16* in = (qint16*)audio.data.data();
for (int f = 0; f < outPacket.length(); f++)
{
qint16 sample = *in++;
int sign = (sample >> 8) & 0x80;
if (sign)
sample = (short)-sample;
if (sample > cClip)
sample = cClip;
sample = (short)(sample + cBias);
int exponent = (int)MuLawCompressTable[(sample >> 7) & 0xFF];
int mantissa = (sample >> (exponent + 3)) & 0x0F;
int compressedByte = ~(sign | (exponent << 4) | mantissa);
outPacket[f] = (quint8)compressedByte;
}
audio.data.clear();
audio.data = outPacket; // Copy output packet back to input buffer.
}
}
}
else
{
qDebug(logAudioConverter) << "Detected empty packet";
}
}
emit converted(audio);
return true;
}
|