File: cooper.ml

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (433 lines) | stat: -rw-r--r-- 18,461 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
(**************************************************************************)
(*                                                                        *)
(*  The Why platform for program certification                            *)
(*  Copyright (C) 2002-2008                                               *)
(*    Romain BARDOU                                                       *)
(*    Jean-Franois COUCHOT                                               *)
(*    Mehdi DOGGUY                                                        *)
(*    Jean-Christophe FILLITRE                                           *)
(*    Thierry HUBERT                                                      *)
(*    Claude MARCH                                                       *)
(*    Yannick MOY                                                         *)
(*    Christine PAULIN                                                    *)
(*    Yann RGIS-GIANAS                                                   *)
(*    Nicolas ROUSSET                                                     *)
(*    Xavier URBAIN                                                       *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU General Public                   *)
(*  License version 2, as published by the Free Software Foundation.      *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(*  See the GNU General Public License version 2 for more details         *)
(*  (enclosed in the file GPL).                                           *)
(*                                                                        *)
(**************************************************************************)

(* ========================================================================= *)
(* Cooper's algorithm for Presburger arithmetic.                             *)
(*                                                                           *)
(* Copyright (c) 2003, John Harrison. (See "LICENSE.txt" for details.)       *)
(* ========================================================================= *)

(* ------------------------------------------------------------------------- *)
(* Lift operations up to numerals.                                           *)
(* ------------------------------------------------------------------------- *)

let mk_numeral n = Fn(string_of_num n,[]);;

let dest_numeral =
  function (Fn(ns,[])) -> num_of_string ns
         | _ -> failwith "dest_numeral";;

let is_numeral = can dest_numeral;;

let numeral1 fn n = mk_numeral(fn(dest_numeral n));;

let numeral2 fn m n = mk_numeral(fn (dest_numeral m) (dest_numeral n));;

(* ------------------------------------------------------------------------- *)
(* Operations on canonical linear terms c1 * x1 + ... + cn * xn + k          *)
(*                                                                           *)
(* Note that we're quite strict: the ci must be present even if 1            *)
(* (but if 0 we expect the monomial to be omitted) and k must be there       *)
(* even if it's zero. Thus, it's a constant iff not an addition term.        *)
(* ------------------------------------------------------------------------- *)

let rec linear_cmul n tm =
  if n =/ Int 0 then Fn("0",[]) else
  match tm with
    Fn("+",[Fn("*",[c1; x1]); rest]) ->
        Fn("+",[Fn("*",[numeral1 (( */ ) n) c1; x1]);
                        linear_cmul n rest])
  | k -> numeral1 (( */ ) n) k;;

let earlierv vars (Var x) (Var y) = earlier vars x y;;

let rec linear_add vars tm1 tm2 =
  match (tm1,tm2) with
   (Fn("+",[Fn("*",[c1; x1]); rest1]),
    Fn("+",[Fn("*",[c2; x2]); rest2])) ->
        if x1 = x2 then
          let c = numeral2 (+/) c1 c2 in
          if c = Fn("0",[]) then linear_add vars rest1 rest2
          else Fn("+",[Fn("*",[c; x1]); linear_add vars rest1 rest2])
        else if earlierv vars x1 x2 then
          Fn("+",[Fn("*",[c1; x1]); linear_add vars rest1 tm2])
        else
          Fn("+",[Fn("*",[c2; x2]); linear_add vars tm1 rest2])
  | (Fn("+",[Fn("*",[c1; x1]); rest1]),_) ->
        Fn("+",[Fn("*",[c1; x1]); linear_add vars rest1 tm2])
  | (_,Fn("+",[Fn("*",[c2; x2]); rest2])) ->
        Fn("+",[Fn("*",[c2; x2]); linear_add vars tm1 rest2])
  | _ -> numeral2 (+/) tm1 tm2;;

let linear_neg tm = linear_cmul (Int(-1)) tm;;

let linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2);;

(* ------------------------------------------------------------------------- *)
(* Linearize a term.                                                         *)
(* ------------------------------------------------------------------------- *)

let rec lint vars tm =
  match tm with
    Var x -> Fn("+",[Fn("*",[Fn("1",[]); tm]); Fn("0",[])])
  | Fn("-",[t]) -> linear_neg (lint vars t)
  | Fn("+",[s;t]) -> linear_add vars (lint vars s) (lint vars t)
  | Fn("-",[s;t]) -> linear_sub vars (lint vars s) (lint vars t)
  | Fn("*",[s;t]) ->
        let s' = lint vars s and t' = lint vars t in
        if is_numeral s' then linear_cmul (dest_numeral s') t'
        else if is_numeral t' then linear_cmul (dest_numeral t') s'
        else failwith "lint: apparent nonlinearity"
  | _ -> if is_numeral tm then tm else failwith "lint: unknown term";;

(* ------------------------------------------------------------------------- *)
(* Linearize the atoms in a formula, and eliminate non-strict inequalities.  *)
(* ------------------------------------------------------------------------- *)

let mkatom vars p t = Atom(R(p,[Fn("0",[]);lint vars t]));;

let linform vars fm =
  match fm with
    Atom(R("divides",[c;t])) ->
        let c' = mk_numeral(abs_num(dest_numeral c)) in
        Atom(R("divides",[c';lint vars t]))
  | Atom(R("=",[s;t])) -> mkatom vars "=" (Fn("-",[t;s]))
  | Atom(R("<",[s;t])) -> mkatom vars "<" (Fn("-",[t;s]))
  | Atom(R(">",[s;t])) -> mkatom vars "<" (Fn("-",[s;t]))
  | Atom(R("<=",[s;t])) ->
        mkatom vars "<" (Fn("-",[Fn("+",[t;Fn("1",[])]);s]))
  | Atom(R(">=",[s;t])) ->
        mkatom vars "<" (Fn("-",[Fn("+",[s;Fn("1",[])]);t]))
  | _ -> fm;;

(* ------------------------------------------------------------------------- *)
(* Post-NNF transformation eliminating negated inequalities.                 *)
(* ------------------------------------------------------------------------- *)

let rec posineq fm =
  match fm with
  | Not(Atom(R("<",[Fn("0",[]); t]))) ->
        Atom(R("<",[Fn("0",[]); linear_sub [] (Fn("1",[])) t]))
  | _ -> fm;;

(* ------------------------------------------------------------------------- *)
(* Find the LCM of the coefficients of x.                                    *)
(* ------------------------------------------------------------------------- *)

let rec formlcm x fm =
  match fm with
    Atom(R(p,[_;Fn("+",[Fn("*",[c;y]);z])])) when y = x ->
        abs_num(dest_numeral c)
  | Not(p) -> formlcm x p
  | And(p,q) -> lcm_num (formlcm x p) (formlcm x q)
  | Or(p,q) -> lcm_num (formlcm x p) (formlcm x q)
  | _ -> Int 1;;

(* ------------------------------------------------------------------------- *)
(* Adjust all coefficients of x in formula; fold in reduction to +/- 1.      *)
(* ------------------------------------------------------------------------- *)

let rec adjustcoeff x l fm =
  match fm with
    Atom(R(p,[d; Fn("+",[Fn("*",[c;y]);z])])) when y = x ->
        let m = l // dest_numeral c in
        let n = if p = "<" then abs_num(m) else m in
        let xtm = Fn("*",[mk_numeral(m // n); x]) in
        Atom(R(p,[linear_cmul (abs_num m) d;
                Fn("+",[xtm; linear_cmul n z])]))
  | Not(p) -> Not(adjustcoeff x l p)
  | And(p,q) -> And(adjustcoeff x l p,adjustcoeff x l q)
  | Or(p,q) -> Or(adjustcoeff x l p,adjustcoeff x l q)
  | _ -> fm;;

(* ------------------------------------------------------------------------- *)
(* Hence make coefficient of x one in existential formula.                   *)
(* ------------------------------------------------------------------------- *)

let unitycoeff x fm =
  let l = formlcm x fm in
  let fm' = adjustcoeff x l fm in
  if l =/ Int 1 then fm' else
  let xp = Fn("+",[Fn("*",[Fn("1",[]);x]); Fn("0",[])]) in
  And(Atom(R("divides",[mk_numeral l; xp])),adjustcoeff x l fm);;

(* ------------------------------------------------------------------------- *)
(* The "minus infinity" version.                                             *)
(* ------------------------------------------------------------------------- *)

let rec minusinf x fm =
  match fm with
    Atom(R("=",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);z])]))
        when y = x -> False
  | Atom(R("<",[Fn("0",[]); Fn("+",[Fn("*",[pm1;y]);z])])) when y = x ->
        if pm1 = Fn("1",[]) then False else True
  | Not(p) -> Not(minusinf x p)
  | And(p,q) -> And(minusinf x p,minusinf x q)
  | Or(p,q) -> Or(minusinf x p,minusinf x q)
  | _ -> fm;;

(* ------------------------------------------------------------------------- *)
(* The LCM of all the divisors that involve x.                               *)
(* ------------------------------------------------------------------------- *)

let rec divlcm x fm =
  match fm with
    Atom(R("divides",[d;Fn("+",[Fn("*",[c;y]);z])])) when y = x ->
        dest_numeral d
  | Not(p) -> divlcm x p
  | And(p,q) -> lcm_num (divlcm x p) (divlcm x q)
  | Or(p,q) -> lcm_num (divlcm x p) (divlcm x q)
  | _ -> Int 1;;

(* ------------------------------------------------------------------------- *)
(* Construct the B-set.                                                      *)
(* ------------------------------------------------------------------------- *)

let rec bset x fm =
  match fm with
    Not(Atom(R("=",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);a])])))
    when y = x -> [linear_neg a]
  | Atom(R("=",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);a])]))
    when y = x -> [linear_neg(linear_add [] a (Fn("1",[])))]
  | Atom(R("<",[Fn("0",[]); Fn("+",[Fn("*",[Fn("1",[]);y]);a])]))
    when y = x -> [linear_neg a]
  | Not(p) -> bset x p
  | And(p,q) -> union (bset x p) (bset x q)
  | Or(p,q) -> union (bset x p) (bset x q)
  | _ -> [];;

(* ------------------------------------------------------------------------- *)
(* Replace top variable with another linear form, retaining canonicality.    *)
(* ------------------------------------------------------------------------- *)

let rec linrep vars x t fm =
  match fm with
    Atom(R(p,[d; Fn("+",[Fn("*",[c;y]);z])])) when y = x ->
        let ct = linear_cmul (dest_numeral c) t in
        Atom(R(p,[d; linear_add vars ct z]))
  | Not(p) -> Not(linrep vars x t p)
  | And(p,q) -> And(linrep vars x t p,linrep vars x t q)
  | Or(p,q) -> Or(linrep vars x t p,linrep vars x t q)
  | _ -> fm;;

(* ------------------------------------------------------------------------- *)
(* Evaluation of constant expressions.                                       *)
(* ------------------------------------------------------------------------- *)

let operations =
  ["=",(=/); "<",(</); ">",(>/); "<=",(<=/); ">=",(>=/);
   "divides",(fun x y -> mod_num y x =/ Int 0)];;

let evalc_atom at =
  match at with
    R(p,[s;t]) ->
        (try if assoc p operations (dest_numeral s) (dest_numeral t)
             then True else False
         with Failure _ -> Atom at)
  | _ -> Atom at;;

let evalc = onatoms evalc_atom;;

(* ------------------------------------------------------------------------- *)
(* Hence the core quantifier elimination procedure.                          *)
(* ------------------------------------------------------------------------- *)

let cooper vars fm =
  match fm with
   Exists(x0,p0) ->
        let x = Var x0 in
        let p = unitycoeff x p0 in
        let p_inf = simplify(minusinf x p) and bs = bset x p
        and js = Int 1 --- divlcm x p in
        let p_element j b =
          linrep vars x (linear_add vars b (mk_numeral j)) p in
        let stage j = list_disj
           (linrep vars x (mk_numeral j) p_inf ::
            map (p_element j) bs) in
        list_disj (map stage js)
  | _ -> failwith "cooper: not an existential formula";;

(* ------------------------------------------------------------------------- *)
(* Overall function.                                                         *)
(* ------------------------------------------------------------------------- *)

let integer_qelim =
  simplify ** evalc **
  lift_qelim linform (cnnf posineq ** evalc) cooper;;

(* ------------------------------------------------------------------------- *)
(* Examples.                                                                 *)
(* ------------------------------------------------------------------------- *)

START_INTERACTIVE;;
integer_qelim <<forall x y. x < y ==> 2 * x + 1 < 2 * y>>;;

integer_qelim <<forall x y. ~(2 * x + 1 = 2 * y)>>;;

integer_qelim <<exists x y. x > 0 /\ y >= 0 /\ 3 * x - 5 * y = 1>>;;

integer_qelim <<exists x y z. 4 * x - 6 * y = 1>>;;

integer_qelim <<forall x. b < x ==> a <= x>>;;

integer_qelim <<forall x. a < 3 * x ==> b < 3 * x>>;;

time integer_qelim <<forall x y. x <= y ==> 2 * x + 1 < 2 * y>>;;

time integer_qelim <<(exists d. y = 65 * d) ==> (exists d. y = 5 * d)>>;;

time integer_qelim
  <<forall y. (exists d. y = 65 * d) ==> (exists d. y = 5 * d)>>;;

time integer_qelim <<forall x y. ~(2 * x + 1 = 2 * y)>>;;

time integer_qelim
  <<forall x y z. (2 * x + 1 = 2 * y) ==> x + y + z > 129>>;;

time integer_qelim <<forall x. a < x ==> b < x>>;;

time integer_qelim <<forall x. a <= x ==> b < x>>;;

(* ------------------------------------------------------------------------- *)
(* Formula examples from Cooper's paper.                                     *)
(* ------------------------------------------------------------------------- *)

time integer_qelim <<forall a b. exists x. a < 20 * x /\ 20 * x < b>>;;

time integer_qelim <<exists x. a < 20 * x /\ 20 * x < b>>;;

time integer_qelim <<forall b. exists x. a < 20 * x /\ 20 * x < b>>;;

time integer_qelim
  <<forall a. exists b. a < 4 * b + 3 * a \/ (~(a < b) /\ a > b + 1)>>;;

time integer_qelim
  <<exists y. forall x. x + 5 * y > 1 /\ 13 * x - y > 1 /\ x + 2 < 0>>;;

(* ------------------------------------------------------------------------- *)
(* Some more.                                                                *)
(* ------------------------------------------------------------------------- *)

time integer_qelim <<forall x y. x >= 0 /\ y >= 0
                  ==> 12 * x - 8 * y < 0 \/ 12 * x - 8 * y > 2>>;;

time integer_qelim <<exists x y. 5 * x + 3 * y = 1>>;;

time integer_qelim <<exists x y. 5 * x + 10 * y = 1>>;;

time integer_qelim <<exists x y. x >= 0 /\ y >= 0 /\ 5 * x - 6 * y = 1>>;;


time integer_qelim <<exists w x y z. 2 * w + 3 * x + 4 * y + 5 * z = 1>>;;

time integer_qelim <<exists x y. x >= 0 /\ y >= 0 /\ 5 * x - 3 * y = 1>>;;

time integer_qelim <<exists x y. x >= 0 /\ y >= 0 /\ 3 * x - 5 * y = 1>>;;

time integer_qelim <<exists x y. x >= 0 /\ y >= 0 /\ 6 * x - 3 * y = 1>>;;

time integer_qelim
  <<forall x y. ~(x = 0) ==> 5 * y < 6 * x \/ 5 * y > 6 * x>>;;

time integer_qelim
  <<forall x y. ~divides(5,x) /\ ~divides(6,y) ==> ~(6 * x = 5 * y)>>;;

time integer_qelim <<forall x y. ~divides(5,x) ==> ~(6 * x = 5 * y)>>;;

time integer_qelim <<forall x y. ~(6 * x = 5 * y)>>;;

time integer_qelim <<forall x y. 6 * x = 5 * y ==> exists d. y = 3 * d>>;;

time integer_qelim <<6 * x = 5 * y ==> exists d. y = 3 * d>>;;

(* ------------------------------------------------------------------------- *)
(* Positive variant of the Bezout theorem.                                   *)
(* ------------------------------------------------------------------------- *)

time integer_qelim
  <<forall z. z > 7 ==> exists x y. x >= 0 /\ y >= 0 /\ 3 * x + 5 * y = z>>;;

time integer_qelim
  <<forall z. z > 2 ==> exists x y. x >= 0 /\ y >= 0 /\ 3 * x + 5 * y = z>>;;

time integer_qelim
  <<forall z.
        z <= 7
        ==> ((exists x y. x >= 0 /\ y >= 0 /\ 3 * x + 5 * y = z) <=>
             ~(exists x y. x >= 0 /\ y >= 0 /\ 3 * x + 5 * y = 7 - z))>>;;

(* ------------------------------------------------------------------------- *)
(* Basic result about congruences.                                           *)
(* ------------------------------------------------------------------------- *)

time integer_qelim
  <<forall x. ~divides(2,x) /\ divides(3,x-1) <=>
              divides(12,x-1) \/ divides(12,x-7)>>;;

time integer_qelim
  <<forall x. ~(exists m. x = 2 * m) /\ (exists m. x = 3 * m + 1) <=>
              (exists m. x = 12 * m + 1) \/ (exists m. x = 12 * m + 7)>>;;

(* ------------------------------------------------------------------------- *)
(* Something else.                                                           *)
(* ------------------------------------------------------------------------- *)

time integer_qelim
 <<forall x.
        ~(divides(2,x))
        ==> divides(4,x-1) \/
            divides(8,x-1) \/
            divides(8,x-3) \/
            divides(6,x-1) \/
            divides(14,x-1) \/
            divides(14,x-9) \/
            divides(14,x-11) \/
            divides(24,x-5) \/
            divides(24,x-11)>>;;

(* ------------------------------------------------------------------------- *)
(* Testing fix for an earlier version.                                       *)
(* ------------------------------------------------------------------------- *)

(integer_qelim ** generalize)
  <<a + 2 = b /\ v_3 = b - a + 1 /\ v_2 = b - 2 /\ v_1 = 3 ==> false>>;;

(* ------------------------------------------------------------------------- *)
(* Inspired by the Collatz conjecture.                                       *)
(* ------------------------------------------------------------------------- *)

integer_qelim
  <<exists a b. ~(a = 1) /\ ((2 * b = a) \/ (2 * b = 3 * a + 1)) /\ (a = b)>>;;

integer_qelim
 <<exists a b. a > 1 /\ b > 1 /\
               ((2 * b = a) \/ (2 * b = 3 * a + 1)) /\
               (a = b)>>;;

END_INTERACTIVE;;