File: lib.ml

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (598 lines) | stat: -rw-r--r-- 20,826 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
(**************************************************************************)
(*                                                                        *)
(*  The Why platform for program certification                            *)
(*  Copyright (C) 2002-2008                                               *)
(*    Romain BARDOU                                                       *)
(*    Jean-Franois COUCHOT                                               *)
(*    Mehdi DOGGUY                                                        *)
(*    Jean-Christophe FILLITRE                                           *)
(*    Thierry HUBERT                                                      *)
(*    Claude MARCH                                                       *)
(*    Yannick MOY                                                         *)
(*    Christine PAULIN                                                    *)
(*    Yann RGIS-GIANAS                                                   *)
(*    Nicolas ROUSSET                                                     *)
(*    Xavier URBAIN                                                       *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU General Public                   *)
(*  License version 2, as published by the Free Software Foundation.      *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(*  See the GNU General Public License version 2 for more details         *)
(*  (enclosed in the file GPL).                                           *)
(*                                                                        *)
(**************************************************************************)

(* ========================================================================= *)
(* Misc library functions to set up a nice environment.                      *)
(*                                                                           *)
(* Copyright (c) 2003, John Harrison. (See "LICENSE.txt" for details.)       *)
(* ========================================================================= *)

let identity x = x;;

(* ------------------------------------------------------------------------- *)
(* Function composition.                                                     *)
(* ------------------------------------------------------------------------- *)

let ( ** ) = fun f g x -> f(g x);;

(* ------------------------------------------------------------------------- *)
(* GCD and LCM on arbitrary-precision numbers.                               *)
(* ------------------------------------------------------------------------- *)

let gcd_num n1 n2 =
  abs_num(num_of_big_int
      (Big_int.gcd_big_int (big_int_of_num n1) (big_int_of_num n2)));;

let lcm_num n1 n2 = abs_num(n1 */ n2) // gcd_num n1 n2;;

(* ------------------------------------------------------------------------- *)
(* A useful idiom for "non contradictory" etc.                               *)
(* ------------------------------------------------------------------------- *)

let non p x = not(p x);;

(* ------------------------------------------------------------------------- *)
(* Repetition of a function.                                                 *)
(* ------------------------------------------------------------------------- *)

let rec funpow n f x =
  if n < 1 then x else funpow (n-1) f (f x);;

let can f x = try f x; true with Failure _ -> false;;

(* ------------------------------------------------------------------------- *)
(* Handy list operations.                                                    *)
(* ------------------------------------------------------------------------- *)

let rec (--) = fun m n -> if m > n then [] else m::((m + 1) -- n);;

let rec (---) = fun m n -> if m >/ n then [] else m::((m +/ Int 1) --- n);;

let rec map2 f l1 l2 =
  match (l1,l2) with
    [],[] -> []
  | (h1::t1),(h2::t2) -> let h = f h1 h2 in h::(map2 f t1 t2)
  | _ -> failwith "map2: length mismatch";;

let rev =
  let rec rev_append acc l =
    match l with
      [] -> acc
    | h::t -> rev_append (h::acc) t in
  fun l -> rev_append [] l;;

let hd l =
  match l with
   h::t -> h
  | _ -> failwith "hd";;

let tl l =
  match l with
   h::t -> t
  | _ -> failwith "tl";;

let rec itlist f l b =
  match l with
    [] -> b
  | (h::t) -> f h (itlist f t b);;

let rec end_itlist f l =
  match l with
        []     -> failwith "end_itlist"
      | [x]    -> x
      | (h::t) -> f h (end_itlist f t);;

let rec itlist2 f l1 l2 b =
  match (l1,l2) with
    ([],[]) -> b
  | (h1::t1,h2::t2) -> f h1 h2 (itlist2 f t1 t2 b)
  | _ -> failwith "itlist2";;

let rec zip l1 l2 =
  match (l1,l2) with
        ([],[]) -> []
      | (h1::t1,h2::t2) -> (h1,h2)::(zip t1 t2)
      | _ -> failwith "zip";;

let rec forall p l =
  match l with
    [] -> true
  | h::t -> p(h) & forall p t;;

let rec exists p l =
  match l with
    [] -> false
  | h::t -> p(h) or exists p t;;

let partition p l =
    itlist (fun a (yes,no) -> if p a then a::yes,no else yes,a::no) l ([],[]);;

let filter p l = fst(partition p l);;

let length =
  let rec len k l =
    if l = [] then k else len (k + 1) (tl l) in
  fun l -> len 0 l;;

let rec last l =
  match l with
    [x] -> x
  | (h::t) -> last t
  | [] -> failwith "last";;

let rec butlast l =
  match l with
    [_] -> []
  | (h::t) -> h::(butlast t)
  | [] -> failwith "butlast";;

let rec find p l =
  match l with
      [] -> failwith "find"
    | (h::t) -> if p(h) then h else find p t;;

let rec el n l =
  if n = 0 then hd l else el (n - 1) (tl l);;

let map f =
  let rec mapf l =
    match l with
      [] -> []
    | (x::t) -> let y = f x in y::(mapf t) in
  mapf;;

let rec allpairs f l1 l2 =
  itlist (fun x -> (@) (map (f x) l2)) l1 [];;

let distinctpairs l =
  filter (fun (a,b) -> a < b) (allpairs (fun a b -> a,b) l l);;

let rec chop_list n l =
  if n = 0 then [],l else
  try let m,l' = chop_list (n-1) (tl l) in (hd l)::m,l'
  with Failure _ -> failwith "chop_list";;

let replicate n a = map (fun x -> a) (1--n);;

let rec insertat i x l =
  if i = 0 then x::l else
  match l with
    [] -> failwith "insertat: list too short for position to exist"
  | h::t -> h::(insertat (i-1) x t);;

let rec forall2 p l1 l2 =
  match (l1,l2) with
    [],[] -> true
  | (h1::t1,h2::t2) -> p h1 h2 & forall2 p t1 t2
  | _ -> false;;

let index x =
  let rec ind n l =
    match l with
      [] -> failwith "index"
    | (h::t) -> if x = h then n else ind (n + 1) t in
  ind 0;;

let rec unzip l =
  match l with
    [] -> [],[]
  | (x,y)::t ->
      let xs,ys = unzip t in x::xs,y::ys;;

(* ------------------------------------------------------------------------- *)
(* Whether the first of two items comes earlier in the list.                 *)
(* ------------------------------------------------------------------------- *)

let rec earlier l x y =
  match l with
    h::t -> if h = y then false
              else if h = x then true
              else earlier t x y
  | [] -> false;;

(* ------------------------------------------------------------------------- *)
(* Application of (presumably imperative) function over a list.              *)
(* ------------------------------------------------------------------------- *)

let rec do_list f l =
  match l with
    [] -> ()
  | h::t -> f(h); do_list f t;;

(* ------------------------------------------------------------------------- *)
(* Association lists.                                                        *)
(* ------------------------------------------------------------------------- *)

let assoc x l = snd(find (fun p -> fst p = x) l);;

let rev_assoc x l = fst(find (fun p -> snd p = x) l);;

(* ------------------------------------------------------------------------- *)
(* Merging of sorted lists (maintaining repetitions).                        *)
(* ------------------------------------------------------------------------- *)

let rec merge ord l1 l2 =
  match l1 with
    [] -> l2
  | h1::t1 -> match l2 with
                [] -> l1
              | h2::t2 -> if ord h1 h2 then h1::(merge ord t1 l2)
                          else h2::(merge ord l1 t2);;

(* ------------------------------------------------------------------------- *)
(* Bottom-up mergesort.                                                      *)
(* ------------------------------------------------------------------------- *)

let sort ord =
  let rec mergepairs l1 l2 =
    match (l1,l2) with
        ([s],[]) -> s
      | (l,[]) -> mergepairs [] l
      | (l,[s1]) -> mergepairs (s1::l) []
      | (l,(s1::s2::ss)) -> mergepairs ((merge ord s1 s2)::l) ss in
  fun l -> if l = [] then [] else mergepairs [] (map (fun x -> [x]) l);;

(* ------------------------------------------------------------------------- *)
(* Common measure predicates to use with "sort".                             *)
(* ------------------------------------------------------------------------- *)

let increasing f x y = f x < f y;;

let decreasing f x y = f x > f y;;

(* ------------------------------------------------------------------------- *)
(* Eliminate repetitions of adjacent elements, with and without counting.    *)
(* ------------------------------------------------------------------------- *)

let rec uniq l =
  match l with
    (x::(y::_ as ys)) -> if x = y then uniq ys else x::(uniq ys)
   | _ -> l;;

let repetitions =
  let rec repcount n l =
    match l with
      x::(y::_ as ys) -> if y = x then repcount (n + 1) ys
                  else (x,n)::(repcount 1 ys)
    | [x] -> [x,n] in
  fun l -> if l = [] then [] else repcount 1 l;;

let rec tryfind f l =
  match l with
      [] -> failwith "tryfind"
    | (h::t) -> try f h with Failure _ -> tryfind f t;;

let rec mapfilter f l =
  match l with
    [] -> []
  | (h::t) -> let rest = mapfilter f t in
              try (f h)::rest with Failure _ -> rest;;

(* ------------------------------------------------------------------------- *)
(* Set operations on ordered lists.                                          *)
(* ------------------------------------------------------------------------- *)

let setify =
  let rec canonical lis =
     match lis with
       x::(y::_ as rest) -> x < y & canonical rest
     | _ -> true in
  fun l -> if canonical l then l else uniq (sort (<=) l);;

let union =
  let rec union l1 l2 =
    match (l1,l2) with
        ([],l2) -> l2
      | (l1,[]) -> l1
      | ((h1::t1 as l1),(h2::t2 as l2)) ->
          if h1 = h2 then h1::(union t1 t2)
          else if h1 < h2 then h1::(union t1 l2)
          else h2::(union l1 t2) in
  fun s1 s2 -> union (setify s1) (setify s2);;

let intersect =
  let rec intersect l1 l2 =
    match (l1,l2) with
        ([],l2) -> []
      | (l1,[]) -> []
      | ((h1::t1 as l1),(h2::t2 as l2)) ->
          if h1 = h2 then h1::(intersect t1 t2)
          else if h1 < h2 then intersect t1 l2
          else intersect l1 t2 in
  fun s1 s2 -> intersect (setify s1) (setify s2);;

let subtract =
  let rec subtract l1 l2 =
    match (l1,l2) with
        ([],l2) -> []
      | (l1,[]) -> l1
      | ((h1::t1 as l1),(h2::t2 as l2)) ->
          if h1 = h2 then subtract t1 t2
          else if h1 < h2 then h1::(subtract t1 l2)
          else subtract l1 t2 in
  fun s1 s2 -> subtract (setify s1) (setify s2);;

let subset,psubset =
  let rec subset l1 l2 =
    match (l1,l2) with
        ([],l2) -> true
      | (l1,[]) -> false
      | ((h1::t1 as l1),(h2::t2 as l2)) ->
          if h1 = h2 then subset t1 t2
          else if h1 < h2 then false
          else subset l1 t2
  and psubset l1 l2 =
    match (l1,l2) with
        (l1,[]) -> false
      | ([],l2) -> true
      | ((h1::t1 as l1),(h2::t2 as l2)) ->
          if h1 = h2 then psubset t1 t2
          else if h1 < h2 then false
          else subset l1 t2 in
  (fun s1 s2 -> subset (setify s1) (setify s2)),
  (fun s1 s2 -> psubset (setify s1) (setify s2));;

let rec set_eq s1 s2 = (setify s1 = setify s2);;

let insert x s = union [x] s;;

let smap f s = setify (map f s);;

(* ------------------------------------------------------------------------- *)
(* Union of a family of sets.                                                *)
(* ------------------------------------------------------------------------- *)

let unions s = setify(itlist (@) s []);;

(* ------------------------------------------------------------------------- *)
(* List membership. This does *not* assume the list is a set.                *)
(* ------------------------------------------------------------------------- *)

let rec mem x lis =
  match lis with
    [] -> false
  | (h::t) -> x = h or mem x t;;

(* ------------------------------------------------------------------------- *)
(* Finding all subsets or all subsets of a given size.                       *)
(* ------------------------------------------------------------------------- *)

let rec allsets m l =
  if m = 0 then [[]] else
  match l with
    [] -> []
  | h::t -> map (fun g -> h::g) (allsets (m - 1) t) @ allsets m t;;

let rec allsubsets s =
  match s with
    [] -> [[]]
  | (a::t) -> let res = allsubsets t in
              map (fun b -> a::b) res @ res;;

let allnonemptysubsets s = subtract (allsubsets s) [[]];;

(* ------------------------------------------------------------------------- *)
(* Explosion and implosion of strings.                                       *)
(* ------------------------------------------------------------------------- *)

let explode s =
  let rec exap n l =
     if n < 0 then l else
      exap (n - 1) ((String.sub s n 1) :: l) in
  exap (String.length s - 1) [];;

let implode l = itlist (^) l "";;

(* ------------------------------------------------------------------------- *)
(* Timing; useful for documentation but not logically necessary.             *)
(* ------------------------------------------------------------------------- *)

let time f x =
  let start_time = Sys.time() in
  let result = f x in
  let finish_time = Sys.time() in
  print_string
    ("CPU time (user): "^(string_of_float(finish_time -. start_time)));
  print_newline();
  result;;

(* ------------------------------------------------------------------------- *)
(* Representation of finite partial functions as balanced trees.             *)
(* Alas, there's no polymorphic one available in the standard library.       *)
(* So this is basically a copy of what's there.                              *)
(* ------------------------------------------------------------------------- *)

type ('a,'b)func =
    Empty
  | Node of ('a,'b)func * 'a * 'b * ('a,'b)func * int;;

let apply,undefined,(|->),undefine,dom,funset =
  let compare x y = if x = y then 0 else if x < y then -1 else 1 in
  let empty = Empty in
  let height = function
      Empty -> 0
    | Node(_,_,_,_,h) -> h in
  let create l x d r =
    let hl = height l and hr = height r in
    Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1)) in
  let bal l x d r =
    let hl = match l with Empty -> 0 | Node(_,_,_,_,h) -> h in
    let hr = match r with Empty -> 0 | Node(_,_,_,_,h) -> h in
    if hl > hr + 2 then begin
      match l with
        Empty -> invalid_arg "Map.bal"
      | Node(ll, lv, ld, lr, _) ->
          if height ll >= height lr then
            create ll lv ld (create lr x d r)
          else begin
            match lr with
              Empty -> invalid_arg "Map.bal"
            | Node(lrl, lrv, lrd, lrr, _)->
                create (create ll lv ld lrl) lrv lrd (create lrr x d r)
          end
    end else if hr > hl + 2 then begin
      match r with
        Empty -> invalid_arg "Map.bal"
      | Node(rl, rv, rd, rr, _) ->
          if height rr >= height rl then
            create (create l x d rl) rv rd rr
          else begin
            match rl with
              Empty -> invalid_arg "Map.bal"
            | Node(rll, rlv, rld, rlr, _) ->
                create (create l x d rll) rlv rld (create rlr rv rd rr)
          end
    end else
      Node(l, x, d, r, (if hl >= hr then hl + 1 else hr + 1)) in
  let rec add x data = function
      Empty ->
        Node(Empty, x, data, Empty, 1)
    | Node(l, v, d, r, h) as t ->
        let c = compare x v in
        if c = 0 then
          Node(l, x, data, r, h)
        else if c < 0 then
          bal (add x data l) v d r
        else
          bal l v d (add x data r) in
  let rec find x = function
      Empty ->
        raise Not_found
    | Node(l, v, d, r, _) ->
        let c = compare x v in
        if c = 0 then d
        else find x (if c < 0 then l else r) in
  let rec mem x = function
      Empty ->
        false
    | Node(l, v, d, r, _) ->
        let c = compare x v in
        c = 0 or mem x (if c < 0 then l else r) in
  let rec merge t1 t2 =
    match (t1, t2) with
      (Empty, t) -> t
    | (t, Empty) -> t
    | (Node(l1, v1, d1, r1, h1), Node(l2, v2, d2, r2, h2)) ->
        bal l1 v1 d1 (bal (merge r1 l2) v2 d2 r2) in
  let rec remove x = function
      Empty ->
        Empty
    | Node(l, v, d, r, h) as t ->
        let c = compare x v in
        if c = 0 then
          merge l r
        else if c < 0 then
          bal (remove x l) v d r
        else
          bal l v d (remove x r) in
  let rec iter f = function
      Empty -> ()
    | Node(l, v, d, r, _) ->
        iter f l; f v d; iter f r in
  let rec map f = function
      Empty               -> Empty
    | Node(l, v, d, r, h) -> Node(map f l, v, f d, map f r, h) in
  let rec mapi f = function
      Empty               -> Empty
    | Node(l, v, d, r, h) -> Node(mapi f l, v, f v d, mapi f r, h) in
  let rec fold f m accu =
    match m with
      Empty -> accu
    | Node(l, v, d, r, _) ->
        fold f l (f v d (fold f r accu)) in
  let apply f x = try find x f with Not_found -> failwith "apply" in
  let undefined = Empty in
  let valmod x y f = add x y f in
  let undefine a f = remove a f in
  let dom f = setify(fold (fun x y a -> x::a) f []) in
  let funset f = setify(fold (fun x y a -> (x,y)::a) f []) in
apply,undefined,valmod,undefine,dom,funset;;

let tryapplyd f a d = try apply f a with Failure _ -> d;;
let tryapply f x = tryapplyd f x x;;
let tryapplyl f x = tryapplyd f x [];;
let (:=) = fun x y -> (x |-> y) undefined;;
let fpf assigs = itlist (fun x -> x) assigs undefined;;
let defined f x = can (apply f) x;;

(* ------------------------------------------------------------------------- *)
(* Install a (trivial) printer for finite partial functions.                 *)
(* ------------------------------------------------------------------------- *)

let print_fpf (f:('a,'b)func) = print_string "<func>";;

START_INTERACTIVE;;
#install_printer print_fpf;;
END_INTERACTIVE;;

(* ------------------------------------------------------------------------- *)
(* Related stuff for standard functions.                                     *)
(* ------------------------------------------------------------------------- *)

let valmod a y f x = if x = a then y else f(x);;

let undef x = failwith "undefined function";;

(* ------------------------------------------------------------------------- *)
(* Union-find algorithm.                                                     *)
(* ------------------------------------------------------------------------- *)

type ('a)pnode = Nonterminal of 'a | Terminal of 'a * int;;

type ('a)partition = Partition of ('a,('a)pnode)func;;

let rec terminus (Partition f as ptn) a =
  match (apply f a) with
    Nonterminal(b) -> terminus ptn b
  | Terminal(p,q) -> (p,q);;

let tryterminus ptn a =
  try terminus ptn a with Failure _ -> (a,0);;

let canonize ptn a = try fst(terminus ptn a) with Failure _ -> a;;

let equate (a,b) (Partition f as ptn) =
  let (a',na) = tryterminus ptn a
  and (b',nb) = tryterminus ptn b in
  Partition
   (if a' = b' then f else
    if na <= nb then
       itlist identity [a' |-> Nonterminal b'; b' |-> Terminal(b',na+nb)] f
    else
       itlist identity [b' |-> Nonterminal a'; a' |-> Terminal(a',na+nb)] f);;

let unequal = Partition undefined;;

let equated (Partition f) = dom f;;

(* ------------------------------------------------------------------------- *)
(* First number starting at n for which p succeeds.                          *)
(* ------------------------------------------------------------------------- *)

let rec first n p = if p(n) then n else first (n +/ Int 1) p;;