1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/**************************************************************************/
/* */
/* The Why platform for program certification */
/* Copyright (C) 2002-2008 */
/* Romain BARDOU */
/* Jean-Franois COUCHOT */
/* Mehdi DOGGUY */
/* Jean-Christophe FILLITRE */
/* Thierry HUBERT */
/* Claude MARCH */
/* Yannick MOY */
/* Christine PAULIN */
/* Yann RGIS-GIANAS */
/* Nicolas ROUSSET */
/* Xavier URBAIN */
/* */
/* This software is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU General Public */
/* License version 2, as published by the Free Software Foundation. */
/* */
/* This software is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */
/* */
/* See the GNU General Public License version 2 for more details */
/* (enclosed in the file GPL). */
/* */
/**************************************************************************/
// TODO: does Caduceus permit verification where N and t are
// parameters?
// TODO: assert that the initial queue state models Qnew() -- not
// clear that Caduceus supports this
// TODO: create separate interface functions that implement the spec,
// that call internal functions to do the work, put the algebraic
// queue into a separate file
// TODO: head and dequeue require q_size>0 but also handle the case
// where this is not true -- can and should the spec say something
// about this case?
// TODO: is the set of axioms sound, complete, and minimal? would be
// nice to check this.
typedef unsigned char uint8_t;
typedef uint8_t bool;
typedef uint8_t error_t;
typedef int t;
#define N 10
// Simplify has no model for mod and verifying this queue requires
// only these special cases
/*@ axiom int_mod_1: \forall int x; \forall int y;
@ ((0 <= x < y) => ((x%y) == x))
@*/
/*@ axiom int_mod_2: \forall int x; \forall int y;
@ ((y > 0) && (y <= x < (y+y))) => ((x%y) == (x-y))
@*/
/*@ type Q */
/*@ logic Q Qnew() */
/*@ logic Q Qerror() */
/*@ logic t Ierror() */
/*@ logic int QmaxSize(Q q) */
/*@ logic int Qsize(Q q) */
/*@ logic Q Qenqueue(Q q, t x) */
/*@ logic int Qempty(Q q) */
/*@ logic t Qelement(Q q, int x) */
/*@ logic t Qhead(Q q) */
/*@ logic t Qdequeue_t(Q q) */
/*@ logic Q Qdequeue_Q(Q q) */
/*@ axiom Q01 : \forall Q q; QmaxSize(q) == N */
/*@ axiom Q02 : \forall Q q; \forall t x; (N <= Qsize(q)) => (Qenqueue(q,x) == Qerror()) */
/*@ axiom Q02a : \forall Q q; \forall t x; (Qsize(q) < N) => (Qenqueue(q,x) != Qerror()) */
/*@ axiom Q02b : \forall Q q; (Qsize(q) == 0) => (Qdequeue_t(q) == Ierror()) */
/*@ axiom Q02c : \forall Q q; (0 < Qsize(q)) => !(Qdequeue_t(q) == Ierror()) */
/*@ axiom Q02d : \forall Q q; (Qsize(q) == 0) => (Qdequeue_Q(q) == Qerror()) */
/*@ axiom Q02e : \forall Q q; (0 < Qsize(q)) => (Qdequeue_Q(q) != Qerror()) */
/*@ axiom Q09 : \forall Q q; \forall int x; (x >= Qsize(q)) => (Qelement(q,x) == Ierror()) */
/*@ axiom Q03 : \forall Q q; Qsize(Qnew()) == 0 */
/*@ axiom Q04 : \forall Q q; \forall t x; (Qsize(q) < N) => Qsize(Qenqueue(q,x)) == 1+Qsize(q) */
/*@ axiom Q04a : \forall Q q; ((0 < Qsize(q))) => Qsize(Qdequeue_Q(q)) == Qsize(q) - 1 */
/*@ axiom Q05 : \forall Q q; (Qsize(q) == 0) => (Qempty(q) == 1) */
/*@ axiom Q06 : \forall Q q; (0 < Qsize(q)) => (Qempty(q) == 0) */
/*@ axiom Q08 : \forall t y; \forall Q q; \forall int x; (0 <= x < Qsize(q)) =>
@ ( Qelement(Qenqueue(q,y),x) == Qelement(q,x))
@*/
/*@ axiom Q08a : \forall Q q; \forall int x; ((0 <= x < Qsize(q) - 1) ) =>
@ (Qelement(Qdequeue_Q(q),x) == Qelement(q,x + 1))
@*/
/*@ axiom Q08b : \forall Q q; \forall int x; ((x == Qsize(q)) && (Qsize(q) < N)) =>
@ (\forall t y; Qelement(Qenqueue(q,y),x) == y)
@*/
/*@ axiom Q10 : \forall Q q; Qhead(q) == Qelement(q,0) */
/*@ axiom Q11 : \forall Q q; Qdequeue_t(q) == Qelement(q,0) */
/*@ axiom Q12 : \forall Q q; (Qempty(q) == 1) =>
@ (\forall t x; Qdequeue_Q(Qenqueue(q,x)) == Qnew())
@*/
/*@ axiom Q13 : \forall Q q; (Qempty(q) == 0) =>
@ (\forall t x; Qdequeue_Q(Qenqueue(q,x)) ==
@ Qenqueue(Qdequeue_Q(q),x))
@*/
static t queue[N];
static unsigned char q_head = 0;
static unsigned char q_tail = 0;
static unsigned char q_size = 0;
/*@ predicate models(Q q) {
@ (q != Qerror()) &&
@ (q_size == Qsize(q)) &&
@ (\forall int i; (0 <= i < q_size) => (Qelement(q,i) == queue[(i+q_head)%N]))
@ }
@*/
/*@ predicate valid_slot (uint8_t i) {
@ (i >= 0) && (i < N) &&
@ \valid_index(queue,i)
@ }
@*/
/*@ predicate occupied_slot (uint8_t i) {
@ ((q_tail > q_head) && (q_head <= i < q_tail)) ||
@ ((q_tail < q_head) && ((q_head <= i) || (i < q_tail))) ||
@ ((q_head == q_tail) && (q_size == N))
@ }
@*/
/* should say 2**(8*sizeof(uint8_t)) instead of 256 */
/*@ invariant q0 : 0 <= N < 256 */
/*@ invariant q1 : 0 <= q_size <= N */
/*@ invariant q2 : valid_slot(q_head) */
/*@ invariant q3 : valid_slot(q_tail) */
/*@ invariant size_1 : (q_tail > q_head) => (q_size == (q_tail - q_head)) */
/*@ invariant size_2 : (q_tail < q_head) => (q_size == (N + q_tail - q_head)) */
/*@ invariant size_3 : (q_tail == q_head) <=> ((q_size == 0) || (q_size == N)) */
/*@ assigns \nothing
@ ensures (\result == N) &&
@ (\forall Q q; \old(models(q)) => (\result == QmaxSize(q)))
@*/
uint8_t maxSize (void)
{
return N;
}
/*@ assigns \nothing
@ ensures (\result == q_size) &&
@ (\forall Q q; \old(models(q)) => (\result == Qsize(q)))
@*/
uint8_t size (void)
{
return q_size;
}
/*@ assigns \nothing
@ ensures ((q_size == 0) => (\result == 1)) &&
@ ((q_size != 0) => (\result == 0)) &&
@ (\forall Q q; \old(models(q)) => (\result == Qempty(q)))
@*/
bool empty (void)
{
return (q_size == 0);
}
/*@ requires q_size > 0
@ assigns \nothing
@ ensures (\forall Q q; \old(models(q)) => ((Qhead(q) == \result) &&
@ (Qhead(q) != Ierror())))
@*/
t head (void)
{
/*@ assert occupied_slot(q_head) */
return queue[q_head];
}
/*@ requires 0 <= e < q_size
@ assigns \nothing
@ ensures (\forall Q q; \old(models(q)) => ((Qelement(q,e) == \result)))
@*/
t element (uint8_t e)
{
uint8_t tmp = e + q_head;
tmp = tmp % N;
/*@ assert valid_slot(tmp) */
/*@ assert occupied_slot(tmp) */
return queue[tmp];
}
/*@ assigns queue[\old(q_tail)], q_tail, q_size
@ ensures (((\old(q_size) <N) =>
@ (
@ (\result == 1) &&
@ (q_size == (\old(q_size)+1)) &&
@ (occupied_slot(\old(q_tail))) &&
@ (\forall Q q; \old(models(q)) =>
@ (
@ (Qelement(Qenqueue(q,e),Qsize(q)) ==queue[(Qsize(q)+q_head)%N]) &&
@ (models(Qenqueue(q,e)))
@ )
@ )
@ )
@ ) &&
@ ((\old(q_size) == N) =>
@ ((\result == 0) && (q_size == \old(q_size)) && (\forall Q q; \old(models(q)) => (Qenqueue(q,e) == Qerror())))
@ )
@ )
@*/
error_t enqueue (t e)
{
if (q_size < N) {
/*@ assert !occupied_slot(q_tail) */
queue[q_tail] = e;
q_tail = q_tail + 1;
q_tail = q_tail % N;
q_size = q_size + 1;
return 1;
} else {
return 0;
}
}
/*@ requires q_size > 0
@ assigns q_head, q_size
@ ensures (\result == queue[\old(q_head)]) &&
@ (q_size == (\old(q_size)-1)) &&
@ (!occupied_slot(\old(q_head))) &&
@ (\forall Q q; \old(models(q)) => models(Qdequeue_Q(q))) &&
@ (\forall Q q; \old(models(q)) => ((Qdequeue_t(q) == \result) &&
@ (Qdequeue_t(q) != Ierror())))
@*/
t dequeue (void)
{
int tmp;
/*@ assert occupied_slot(q_head) */
tmp = queue[q_head];
if (!(q_size == 0)) {
q_head = q_head + 1;
q_head = q_head % N;
q_size = q_size - 1;
}
return tmp;
}
|