1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
|
(**************************************************************************)
(* *)
(* The Why platform for program certification *)
(* Copyright (C) 2002-2008 *)
(* Romain BARDOU *)
(* Jean-Franois COUCHOT *)
(* Mehdi DOGGUY *)
(* Jean-Christophe FILLITRE *)
(* Thierry HUBERT *)
(* Claude MARCH *)
(* Yannick MOY *)
(* Christine PAULIN *)
(* Yann RGIS-GIANAS *)
(* Nicolas ROUSSET *)
(* Xavier URBAIN *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU General Public *)
(* License version 2, as published by the Free Software Foundation. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(* See the GNU General Public License version 2 for more details *)
(* (enclosed in the file GPL). *)
(* *)
(**************************************************************************)
(* $Id: cabsint.ml,v 1.26 2008/02/05 12:10:47 marche Exp $ *)
(* TO DO:
- call to [Ceffect] functions to compute effects of loops expects
previous name disambiguation. This is not done, which can lead to
errors, e.g.
declare_heap_var : result ; oldtype = ()double ; newtype = ()global pointer
Anomaly: File "c/ceffect.ml", line 98, characters 6-12: Assertion failed
- in [propagate], when doing backward prop, do not propagate on incoming
edge with [None] value, control does not flow through this edge !
- add location to the hooks for invariants/preconditions ?
- problem with construction of graph for "do-while", not knowing
if [fwd_node] or [bwd_node] is the place the invariant is checked.
If both, problem.
- see why code cannot be shared between [Make_PointWiseSemiLattice]
and [Make_PointWiseLattice]. Problem with abstraction [t].
- consider a declaration without initializer as a definition to some top
value. Currently such declarations are ignored, which allows to translate
char* q;
if (b) q = p;
*q = 0;
by
if (b) ;
*p = 0;
- treat as a test the expression in a switch statement. The difficulty here
is that cases with multiple constants, e.g.
case 1:
case 2:
should be translated by a test of the form
(e == 1) || (e == 2)
but [e] could be performing some side-effects. In this case a local variable
(with switch scope) should be introduced, e.g.
(tmp = e; (tmp == 1) || (tmp == 2))
- check that the [default] case in a switch is properly defined by an empty
set of constants, and use it in the definition of the operational graph.
*)
open Info
open Clogic
open Cast
open Cutil
let debug = Coptions.debug
let debug_more = false
(*****************************************************************************
* *
* Basic modules for abstract interpretation *
* *
*****************************************************************************)
(* type of widening performed, if any:
- WidenFast : to infinity
- WidenZero : if possible to 0, otherwise to infinity
- WidenUnit : if possible to -1 or 0 or 1, otherwise to infinity
- WidenSteps il : if possible to the first integer in [il] that fits,
otherwise to infinity
Taken from Min's example analysis.
*)
type widening_t = WidenFast | WidenZero | WidenUnit | WidenSteps of int list
module type ELEMENT_OF_CONTAINER = sig
type t
val pretty : Format.formatter -> t -> unit
val compare : t -> t -> int
val equal : t -> t -> bool
val hash : t -> int
end
module type VARIABLE = sig
include ELEMENT_OF_CONTAINER
val to_string : t -> string
end
(* general interface of any module representing integers *)
module type INT_VALUE = sig
(* same as Int32/Int64 *)
type t
val compare : t -> t -> int
val add : t -> t -> t
val sub : t -> t -> t
val mul : t -> t -> t
val div : t -> t -> t
val rem : t -> t -> t
val abs : t -> t
val zero : t
val one : t
val minus_one : t
val of_int : int -> t
val to_int : t -> int
val of_string : string -> t
val to_string : t -> string
val neg : t -> t
val succ : t -> t
val pred : t -> t
(* added w.r.t. Int32/Int64 *)
val pretty: Format.formatter -> t -> unit
val lt : t -> t -> bool
val le : t -> t -> bool
val gt : t -> t -> bool
val ge : t -> t -> bool
val eq : t -> t -> bool
val is_zero : t -> bool
val is_one : t -> bool
val min : t -> t -> t
val max : t -> t -> t
val length : t -> t -> t (* b - a + 1 *)
end
module type SEMI_LATTICE = sig
type t
(* [top] and [bottom] made functions so that they can depend
on the context, typed as [dim_t] (usually a dimension) *)
type dim_t
val top : dim_t -> t
val bottom : dim_t -> t
val init : dim_t -> t
val equal : t -> t -> bool
val pretty : Format.formatter -> t -> unit
val join : ?backward:bool -> t -> t -> t
(* performs widening according to the widening strategy given as 1st
argument, between the stored abstract value (2nd argument) and
the new value computed (3rd argument).
The new value should always be above the stored value in the lattice
(or less precise), which should always be the case with monotone
transfer functions. *)
val widening : widening_t -> old_value:t -> new_value:t -> t
end
module type LATTICE = sig
include SEMI_LATTICE
val meet : t -> t -> t
end
module type POINT_WISE_SEMI_LATTICE = sig
include SEMI_LATTICE
type var_t
type value_t
type map_t
(* creates a singleton map *)
val singleton : var_t -> value_t -> t
(* replace ignores the value already present for this variable, if any *)
val replace : var_t -> value_t -> t -> t
(* [add] performs a join if a value was already present for this variable,
otherwise a simple add *)
val union : var_t -> value_t -> t -> t
(* [addmap] performs an [add] for every entry in the map *)
val union_map : map_t -> t -> t
(* [find] never raises an exception, returns the bottom value to signify
the variable was not found *)
val find : var_t -> t -> value_t
(* [iter] not defined for [top] value *)
val iter : (var_t -> value_t -> unit) -> t -> unit
(* [fold] not defined for [top] value *)
val fold : (var_t -> value_t -> 'a -> 'a) -> t -> 'a -> 'a
val mapi : (var_t -> value_t -> value_t) -> t -> t
end
module type POINT_WISE_LATTICE = sig
include POINT_WISE_SEMI_LATTICE
val meet : t -> t -> t
end
module Make_LatticeFromSemiLattice (L : SEMI_LATTICE) =
struct
include L
let meet x y = failwith "Semi-lattice does not implement meet"
end
module Make_PairSemiLattice (L1 : SEMI_LATTICE with type dim_t = unit)
(L2 : SEMI_LATTICE with type dim_t = unit)
: SEMI_LATTICE with type dim_t = unit and type t = L1.t * L2.t =
struct
type t = L1.t * L2.t
type dim_t = unit
let bottom () = L1.bottom (),L2.bottom ()
let top () = L1.top (),L2.top ()
let init () = L1.init (),L2.init ()
let equal p1 p2 = L1.equal (fst p1) (fst p2) && L2.equal (snd p1) (snd p2)
let pretty fmt p =
Format.fprintf fmt "(%a,%a)" L1.pretty (fst p) L2.pretty (snd p)
let join ?(backward=false) p1 p2 =
L1.join ~backward (fst p1) (fst p2),L2.join ~backward (snd p1) (snd p2)
let widening ws ~old_value ~new_value =
L1.widening ws (fst old_value) (fst new_value),
L2.widening ws (snd old_value) (snd new_value)
end
module Make_PairLattice (L1 : LATTICE with type dim_t = unit)
(L2 : LATTICE with type dim_t = unit)
: LATTICE with type dim_t = unit and type t = L1.t * L2.t =
struct
include Make_PairSemiLattice (L1) (L2)
let meet p1 p2 = L1.meet (fst p1) (fst p2),L2.meet (snd p1) (snd p2)
end
(* public type so that it can be used in both [Make_PointWiseSemiLattice]
and [Make_PointWiseLattice] *)
type 'map pointwise_t =
| PWempty
| PWmap of 'map
| PWall
module Make_PointWiseSemiLattice
(V : VARIABLE) (L : SEMI_LATTICE with type dim_t = unit)
(* no information needed to create L's bottom and top elements *)
: POINT_WISE_SEMI_LATTICE with type var_t = V.t and type value_t = L.t
(* [t] is made public to allow its reuse in [Make_PointWiseLattice] *)
and type dim_t = unit and type t = L.t Map.Make(V).t pointwise_t =
struct
module VMap = Map.Make (V)
type var_t = V.t
type value_t = L.t
type map_t = L.t VMap.t
type t = L.t VMap.t pointwise_t
type dim_t = unit
let bottom () = PWempty
let top () = PWall
let init () = PWempty
let equal pw1 pw2 = match pw1,pw2 with
| PWempty,PWempty -> true
| PWmap m1,PWmap m2 -> VMap.equal L.equal m1 m2
| PWall,PWall -> true
| _ -> false
let pretty fmt pw = match pw with
| PWempty -> Format.fprintf fmt "PWempty"
| PWmap m -> Format.fprintf fmt "PWmap{%a}"
(fun fmt m -> VMap.iter
(fun v a -> Format.fprintf fmt "(%a,%a); "
V.pretty v L.pretty a) m) m
| PWall -> Format.fprintf fmt "PWall"
let singleton var value =
PWmap (VMap.add var value VMap.empty)
let replace var value pw = match pw with
| PWempty -> PWmap (VMap.add var value VMap.empty)
| PWmap m -> PWmap (VMap.add var value m)
| PWall -> PWall
let find var pw = match pw with
| PWempty -> L.bottom ()
| PWmap m ->
begin
try VMap.find var m with Not_found -> L.bottom ()
end
| PWall -> L.top ()
let union var value pw = match pw with
| PWempty -> PWmap (VMap.add var value VMap.empty)
| PWmap m ->
let new_value = L.join value (find var pw) in
PWmap (VMap.add var new_value m)
| PWall -> PWall
let union_map m1 pw = match pw with
| PWempty -> PWmap m1
| PWmap m2 ->
(* union all elements of [m1] in [m2] *)
VMap.fold union m1 pw
| PWall -> PWall
(* ideally, [pw2] should be smaller than [pw1] when unioning maps *)
let join ?(backward=false) pw1 pw2 = match pw1,pw2 with
| PWempty,pw | pw,PWempty -> pw
| PWall,_ | _,PWall -> PWall
| PWmap m1,PWmap m2 ->
(* union all elements of [m2] in [m1] *)
union_map m2 pw1
let iter f pw = match pw with
| PWempty -> ()
| PWmap m -> VMap.iter f m
| PWall -> failwith "[iter] should not be called on [PWall]"
let fold f pw init = match pw with
| PWempty -> init
| PWmap m -> VMap.fold f m init
| PWall -> failwith "[fold] should not be called on [PWall]"
let mapi f pw = match pw with
| PWempty -> PWempty
| PWmap m -> PWmap (VMap.mapi f m)
| PWall -> PWall
let widening ws ~old_value ~new_value = match old_value,new_value with
| PWempty,new_value -> new_value
| PWmap m1,PWmap m2 ->
VMap.fold
(fun v a2 m ->
try
let a1 = VMap.find v m1 in
let a = L.widening ws a1 a2 in
replace v a m
with Not_found ->
m (* keep current binding from [new_value] *)
) m2 new_value (* yes, both from [new_value] *)
| _,PWall -> PWall
| _ ->
(* the stored value [pw1] is less precise than the new computed value
[pw2], which should not be the case *)
assert false
end
module Make_PointWiseLattice
(V : VARIABLE) (L : LATTICE with type dim_t = unit)
: POINT_WISE_LATTICE with type var_t = V.t and type value_t = L.t
and type dim_t = unit =
struct
include Make_PointWiseSemiLattice(V)(L)
module VMap = Map.Make (V)
let intersect pw var value acc =
let new_value = L.meet value (find var pw) in
union var new_value acc
let intersect_map m1 pw = match pw with
| PWempty -> PWempty
| PWmap m2 ->
(* intersect all elements of [m1] in [m2] *)
VMap.fold (intersect pw) m1 PWempty
| PWall -> PWmap m1
(* ideally, [pw2] should be smaller than [pw1] when intersecting maps *)
let meet pw1 pw2 = match pw1,pw2 with
| PWempty,_ | _,PWempty -> PWempty
| PWall,pw | pw,PWall -> pw
| PWmap m1,PWmap m2 ->
(* intersect all elements of [m2] in [m1] *)
intersect_map m2 pw1
end
(*****************************************************************************
* *
* Abstract interpretation core *
* *
*****************************************************************************)
type direction_t = Forward | Backward
(* type of pair that allows a missing part *)
type 'a pair_t = Fst of 'a | Snd of 'a | Both of 'a * 'a
(* gives operations on a control-flow graph *)
module type INTER_LANG = sig
type ilvar_t
type ilfun_t
type decl_t
(* type of declaration/statement/expression in the intermediate language *)
module Node : ELEMENT_OF_CONTAINER
module NodeSet : Set.S with type elt = Node.t
module NodeMap : Map.S with type key = Node.t
module NodeHash : sig
include Hashtbl.S with type key = Node.t
val find_both : 'a pair_t t -> Node.t -> 'a option * 'a option
val find_pre : 'a pair_t t -> Node.t -> 'a option
val find_post : 'a pair_t t -> Node.t -> 'a option
val replace_both : 'a pair_t t -> Node.t -> 'a -> 'a -> unit
val replace_pre : 'a pair_t t -> Node.t -> 'a -> unit
val replace_post : 'a pair_t t -> Node.t -> 'a -> unit
val remove_both : 'a pair_t t -> Node.t -> unit
val remove_pre : 'a pair_t t -> Node.t -> unit
val remove_post : 'a pair_t t -> Node.t -> unit
val iter_both :
(Node.t -> 'a option -> 'a option -> unit) -> 'a pair_t t -> unit
val iter_pre : (Node.t -> 'a -> unit) -> 'a pair_t t -> unit
val iter_post : (Node.t -> 'a -> unit) -> 'a pair_t t -> unit
val fold_both :
(Node.t -> 'a option -> 'a option -> 'b -> 'b) -> 'a pair_t t -> 'b -> 'b
val fold_pre : (Node.t -> 'a -> 'b -> 'b) -> 'a pair_t t -> 'b -> 'b
val fold_post : (Node.t -> 'a -> 'b -> 'b) -> 'a pair_t t -> 'b -> 'b
end
(* is this node the function precondition ? *)
val is_function_precondition_node : Node.t -> bool
(* returns true if the argument is a widening node, i.e. a node where
the analysis is expected to perform widening if it does not
naturally converge *)
val is_widening_node : Node.t -> bool
(* returns the value of the counter associated to a widening node *)
val get_widening_count : Node.t -> int
(* increment the counter associated to a widening node *)
val incr_widening_count : Node.t -> unit
(* reset the counter associated to a widening node *)
val reset_widening_count : Node.t -> unit
(* list of successors in the operational graph, e.g.
- surrounding expression for a sub-expression
- [else] and [then] branches for an [if] test expression
...
order does not matter *)
val successors : ?ignore_looping:bool -> Node.t -> Node.t list
(* list of predecessors in the operational graph.
order does not matter *)
val predecessors : ?ignore_looping:bool -> Node.t -> Node.t list
(* is this node merging the upward and backward flows in a loop ? *)
val is_loop_backward_destination_node : Node.t -> bool
(* associates to some looping destination node its source node *)
val looping_source : Node.t -> Node.t
(* iterators *)
val iter_operational :
direction_t -> roots:Node.t list -> (Node.t -> unit) -> unit
val fold_operational :
direction_t -> roots:Node.t list -> (Node.t -> 'a -> 'a) -> 'a -> 'a
end
(* defines program points where result of analysis is useful *)
module type WATCH_POINT = sig
(* replicates type of INTER_LANG *)
type node_t
(* defines watch-points *)
val is_watch_node : node_t -> bool
end
(* connects the concrete and the abstract levels *)
module type CONNECTION = sig
(* replicates type of INTER_LANG *)
type node_t
type 'a node_hash_t
(* type of abstract value map *)
type absval_t
(* type of additional information used by [transform] *)
type transform_t
(* parametric type for the result of an analysis.
It is an association from nodes to abstract values.
First abstract value is the value before the node is entered.
Second abstract value is the value after the node is exited. *)
type 'a analysis_t = 'a pair_t node_hash_t
(* result of abstract interpretation analysis *)
type absint_analysis_t = absval_t analysis_t
(* kind of widening performed, if any *)
val widening_strategy : widening_t
(* number of times a widening node can be updated before widening
is performed. Setting it to [None] means that no widening will be
ever performed. *)
val widening_threshold : int option
(* transfer function *)
val transfer :
?backward:bool -> ?with_assert:bool -> ?one_pass:bool
-> ?previous_value:absval_t -> node_t -> absval_t -> absval_t
(* takes the initial program and the formatted analysis, as well as
additional information if necessary.
returns a transformed program. *)
val transform :
absint_analysis_t -> transform_t -> node_t list -> node_t list
end
module type DATA_FLOW_ANALYSIS = sig
(* replicates type of INTER_LANG *)
type node_t
type 'a node_hash_t
type 'a node_map_t
(* replicates types of CONNECTION *)
type absval_t
type absval_pair_t = absval_t * absval_t
type 'a analysis_t
type absint_analysis_t
(*
core propagation function.
It takes as 1st argument a record of type ['a propagate_t] that gives
all the necessary basic blocks for the propagation algorithm.
The list of nodes is used to initialize its working list. It may be
all the nodes in the graph, or only the root nodes, depending on
the analysis.
The optional argument is the initial analysis. It will be used as is,
not copied (useful to remember as it is an hash-table).
It produces an analysis that depends on 'a.
*)
type 'a propagate_t =
{
(* direction *)
direction : direction_t;
(* one-pass or until convergence *)
one_pass : bool;
(* initialization points *)
init : 'a node_map_t;
(* transfer function *)
transfer : ?previous_value:'a -> node_t -> 'a -> 'a;
(* default initial value *)
bottom : unit -> 'a;
(* test of equality *)
equal : 'a -> 'a -> bool;
(* pretty-printer *)
pretty : Format.formatter -> 'a -> unit;
(* join function *)
join : ?backward:bool -> 'a -> 'a -> 'a;
(* join function on contexts *)
join_ctxt : 'a -> 'a -> 'a;
(* widening function (if any) *)
widening : widening_t -> old_value:'a -> new_value:'a -> 'a;
(* additional action after propagation *)
action : node_t -> 'a -> unit;
}
val propagate :
?analysis:'a analysis_t -> ?roots:node_t list -> 'a propagate_t
-> 'a analysis_t
(*
computes the result of an analysis on the implicit program.
It is based on [propagate].
*)
val compute : node_t list -> absint_analysis_t
(* compute backward from exit nodes *)
val compute_back : node_t list -> absint_analysis_t
(*
same as compute, with additional assertion propagation.
Takes as input the function that selects nodes to keep before assertion
propagation.
*)
val compute_with_assert :
(node_t -> bool) -> node_t list -> absint_analysis_t
(*
takes a program and computes the result of propagating forward
the information, and then propagating backward/forward again from
the nodes selected by [backward_select], with this new information
being merged with the previous one only at nodes selected by
[merge_select] using the function [merge_analyses].
*)
type compute_bnf_t =
{
(* initial computation before back-and-forth propagation *)
compute : node_t list -> absint_analysis_t;
(* joins contexts and add conditionals, or default join otherwise *)
join_context : absval_t -> absval_t -> absval_t;
(* select nodes on which to propagate backward *)
backward_select : node_t -> absval_t -> bool;
(* modifier to apply before initiating backward propagation *)
backward_modify : node_t -> absval_t -> absval_t;
(* select nodes on which to keep forward information *)
keep_select : node_t -> bool;
(* select nodes on which to merge forward and backward informations *)
merge_select : node_t -> bool;
(* do merge forward and backward informations *)
merge_analyses : absval_t -> absval_t -> absval_t;
}
val compute_back_and_forth :
compute_bnf_t -> node_t list -> absint_analysis_t
end
(* very simple dataflow analysis, with fixed characteristics:
forward, intra-procedural, context-insensitive *)
module Make_DataFlowAnalysis
(V : VARIABLE) (IL : INTER_LANG) (L : LATTICE with type dim_t = unit)
(* [L.dim_t] does not need to be [unit], change code if needed *)
(* (W : WATCH_POINT with type node_t = IL.Node.t) *)
(C : CONNECTION with type node_t = IL.Node.t and type absval_t = L.t
and type 'a node_hash_t = 'a IL.NodeHash.t)
: DATA_FLOW_ANALYSIS
with type node_t = IL.Node.t
and type 'a node_hash_t = 'a IL.NodeHash.t
and type 'a node_map_t = 'a IL.NodeMap.t
and type absval_t = C.absval_t
and type absval_pair_t = C.absval_t * C.absval_t
and type 'a analysis_t = 'a C.analysis_t
and type absint_analysis_t = C.absint_analysis_t
= struct
open IL
type node_t = Node.t
type 'a node_hash_t = 'a NodeHash.t
type 'a node_map_t = 'a NodeMap.t
type absval_t = L.t
type absval_pair_t = absval_t * absval_t
type 'a analysis_t = 'a C.analysis_t
type absint_analysis_t = C.absint_analysis_t
type 'a propagate_t =
{
(* direction *)
direction : direction_t;
(* one-pass or until convergence *)
one_pass : bool;
(* initialization points *)
init : 'a node_map_t;
(* transfer function *)
transfer : ?previous_value:'a -> node_t -> 'a -> 'a;
(* default initial value *)
bottom : unit -> 'a;
(* test of equality *)
equal : 'a -> 'a -> bool;
(* pretty-printer *)
pretty : Format.formatter -> 'a -> unit;
(* join function *)
join : ?backward:bool -> 'a -> 'a -> 'a;
(* join function on contexts *)
join_ctxt : 'a -> 'a -> 'a;
(* widening function (if any) *)
widening : widening_t -> old_value:'a -> new_value:'a -> 'a;
(* additional action after propagation *)
action : node_t -> 'a -> unit;
}
type compute_bnf_t =
{
(* initial computation before back-and-forth propagation *)
compute : node_t list -> absint_analysis_t;
(* joins contexts and add conditionals, or default join otherwise *)
join_context : absval_t -> absval_t -> absval_t;
(* select nodes on which to propagate backward *)
backward_select : node_t -> absval_t -> bool;
(* modifier to apply before initiating backward propagation *)
backward_modify : node_t -> absval_t -> absval_t;
(* select nodes on which to keep forward information *)
keep_select : node_t -> bool;
(* select nodes on which to merge forward and backward informations *)
merge_select : node_t -> bool;
(* do merge forward and backward informations.
Forward is [post] value while backward is [pre] value, which only
makes sense in general if the backward transfer function on
the node is the identity.
*)
merge_analyses : absval_t -> absval_t -> absval_t;
}
let propagate ?analysis ?(roots=[]) params =
if debug_more then Coptions.lprintf
"[propagate] %s@." (match params.direction with
| Forward -> "forward"
| Backward -> "backward");
let change = ref true in
let visited_set = ref NodeSet.empty in
(* result of the analysis *)
let res : 'a C.analysis_t = match analysis with
| None -> NodeHash.create 0
| Some analysis -> analysis
in
(* find current values associated to [node] *)
let res_val node =
match NodeHash.find_both res node with
| None,None ->
begin try
let init_val = NodeMap.find node params.init in
begin match params.direction with
| Forward -> Some init_val,None,true
| Backward -> None,Some init_val,true
end
with Not_found -> None,None,false end
| pre_val,post_val -> pre_val,post_val,false
in
let treat_node cur_node =
if not (NodeSet.mem cur_node (!visited_set)) then
begin
visited_set := NodeSet.add cur_node (!visited_set);
if IL.is_widening_node cur_node then
(* reset the counter for widening *)
IL.reset_widening_count cur_node
end;
(* find value associated to [cur_node] *)
let pre_val,post_val,is_init = res_val cur_node in
let pre_val =
if params.one_pass && is_loop_backward_destination_node cur_node then
match params.direction with
| Forward ->
let sce_node = looping_source cur_node in
let _,sce_val,_ = res_val sce_node in
begin match pre_val,sce_val with
| None,_ -> pre_val
| Some _,None -> pre_val
| Some pre_val,Some sce_val ->
Some (params.join_ctxt pre_val sce_val)
end
| Backward -> pre_val
else pre_val
in
let from_val,to_val = match params.direction with
| Forward -> pre_val,post_val
| Backward -> post_val,pre_val
in
if debug_more then Coptions.lprintf
"[propagate] take node in working list %a from val %a@."
Node.pretty cur_node (Option.pretty params.pretty) from_val;
let backward = match params.direction with
| Backward -> true | Forward -> false
in
(* compute next value and replace existing one *)
let cur_val =
(* do not call transfer function on init node in backward mode
(useful for access that is also a test, e.g. "if (t[i])") *)
if backward && is_init then
from_val
else match to_val with
| None ->
Option.app (params.transfer cur_node) from_val
| Some to_val ->
Option.app (params.transfer ~previous_value:to_val cur_node)
from_val
in
(* perform widening if necessary *)
let cur_val = match cur_val with
| None -> None
| Some cur_val ->
if IL.is_widening_node cur_node then
match C.widening_threshold with
| None ->
(* analysis does not require widening to converge *)
Some cur_val
| Some threshold ->
let cur_count = IL.get_widening_count cur_node in
IL.incr_widening_count cur_node;
if cur_count = threshold then
(* perform widening *)
match to_val with
| None -> Some cur_val
| Some to_val ->
if debug_more then Coptions.lprintf
"[propagate] perform widening@.";
Some (params.widening C.widening_strategy
~old_value:to_val ~new_value:cur_val)
else if cur_count > threshold then
(* needed ???????? *)
to_val
else
(* not yet time for widening *)
Some cur_val
else
(* not a widening node *)
Some cur_val
in
if debug_more then Coptions.lprintf
"[propagate] computed value: %a@."
(Option.pretty params.pretty) cur_val;
if debug_more then Coptions.lprintf
"[propagate] previous value: %a@."
(Option.pretty params.pretty) to_val;
(* change value if different in fixpoint case, or in all cases when
doing a one-pass propagation. In the last case, the value of the node
is not modified, but the successors' values are. *)
if not (Option.equal params.equal cur_val None)
&& (params.one_pass
|| not (Option.equal params.equal cur_val to_val)) then
begin
(* [from_val] and [cur_val] are [Some] options here *)
let from_val =
match from_val with Some v -> v | None -> assert false in
let cur_val =
match cur_val with Some v -> v | None -> assert false in
change := true;
if debug_more then Coptions.lprintf
"[propagate] new value is different@.";
begin match params.direction with
| Forward ->
NodeHash.replace_both res cur_node from_val cur_val;
| Backward ->
NodeHash.replace_both res cur_node cur_val from_val
end;
let next_nodes = match params.direction with
| Forward ->
IL.successors ~ignore_looping:params.one_pass cur_node
| Backward ->
IL.predecessors ~ignore_looping:params.one_pass cur_node
in
if debug_more then Coptions.lprintf
"[propagate] node has %i successor(s)@." (List.length next_nodes);
if debug_more then Coptions.lprintf
"[propagate] %a@." (fun fmt -> List.iter
(Coptions.lprintf "%a " Node.pretty))
next_nodes;
List.iter (fun nx_node ->
let nx_pre,nx_post,_ = res_val nx_node in
let nx_from,nx_to = match params.direction with
| Forward -> nx_pre,nx_post
| Backward -> nx_post,nx_pre
in
if debug_more then Coptions.lprintf
"[propagate] succ prev value: %a@."
(Option.pretty params.pretty) nx_from;
let nx_val = match nx_from with
| None -> cur_val
| Some nx_from ->
if is_function_precondition_node nx_node then
(* function precondition is non-empty, use it
rather than propagating initial value *)
nx_from (* ignore [cur_val] *)
else
params.join ~backward nx_from cur_val
in
if debug_more then Coptions.lprintf
"[propagate] succ cur value: %a@."
params.pretty nx_val;
(* change value if different *)
if not (Option.equal
params.equal (Some nx_val) nx_from) then
begin
if debug_more then Coptions.lprintf
"[propagate] new value for successor \
is different@.";
if debug_more then Coptions.lprintf
"[propagate] new value: %a@."
params.pretty nx_val;
let nx_to = match nx_to with
| None -> params.bottom ()
| Some nx_to -> nx_to
in
begin match params.direction with
| Forward ->
NodeHash.replace_both res nx_node
nx_val nx_to
| Backward ->
NodeHash.replace_both res nx_node
nx_to nx_val
end;
(*
(* add node in working list/set if not present *)
add_node nx_node
*)
end
) next_nodes
end;
(* perform additional action (if any) *)
match cur_val with
| None -> ()
| Some cur_val -> params.action cur_node cur_val
in
while !change do
change := false;
if debug_more then Coptions.lprintf
"[propagate] one more round of propagation@.";
IL.iter_operational params.direction ~roots treat_node;
(* immediately stop iteration in one-pass propagation *)
if params.one_pass then change := false
done;
res
let forward_params ?join_context
?(one_pass=false) ?(with_assert=false) init =
{
(* direction *)
direction = Forward;
(* one-pass or until convergence *)
one_pass = one_pass;
(* initialization points *)
init = init;
(* transfer function *)
transfer = C.transfer ~backward:false ~with_assert ~one_pass;
(* default initial value *)
bottom = L.bottom;
(* test of equality *)
equal = L.equal;
(* pretty-printer *)
pretty = L.pretty;
(* join function *)
join = L.join;
(* join function on contexts *)
join_ctxt =
begin match join_context with
| None -> L.join ~backward:false
| Some f -> f
end;
(* widening function (if any) *)
widening = L.widening;
(* additional action after propagation *)
action = fun _ _ -> ();
}
let backward_params ?join_context nodes cstr action =
{
(* direction *)
direction = Backward;
(* one-pass or until convergence *)
one_pass = true;
(* initialization points *)
init = List.fold_left (fun map node -> NodeMap.add node cstr map)
NodeMap.empty nodes;
(* transfer function *)
transfer = C.transfer
~backward:true ~with_assert:false ~one_pass:true;
(* default initial value *)
bottom = L.bottom;
(* test of equality *)
equal = L.equal;
(* pretty-printer *)
pretty = L.pretty;
(* join function *)
join = L.join;
(* join function on contexts, only used in forward propagation *)
join_ctxt =
begin match join_context with
| None -> L.join ~backward:false
| Some f -> f
end;
(* widening function (if any) *)
widening = L.widening;
(* additional action after propagation *)
action = action;
}
let keep_only_selected keep_select analysis =
IL.iter_operational Forward ~roots:[] (fun node ->
if keep_select node then
NodeHash.remove_pre analysis node
else
NodeHash.remove analysis node
)
let compute decls =
let init = List.fold_left (fun m decl -> NodeMap.add decl (L.init ()) m)
NodeMap.empty decls in
propagate (forward_params init)
let compute_back nodes =
propagate (backward_params nodes (L.init()) (fun _ _ -> ()))
(* propagation of assertions (e.g. resulting from verification conditions)
should be done in one pass, without going through back edges in loops.
Indeed, on the following code
int i = 0;
int p[10]; // pp1
while (i++) { // pp2
p[i] = 0; // pp3
}
At program point 1 (pp1) : i == 0 && arrlen(p) == 10
At pp3 without assertions : i > 0 && arrlen(p) == 10
At pp3 with assertions : 0 < i < arrlen(p) == 10
If we join pp1 and pp3 with assertions, we get a buggy assume-invariant
0 <= i < arrlen(p) == 10
The correct thing to do is to join pp1 and pp3 without assertions, to get
the correct assume-invariant
0 <= i && arrlen(p) == 10
And then to propagate the assertions without going through back edges.
*)
let compute_with_assert keep_select decls =
(* 1st step: propagate forward information *)
let fwd_analysis = compute decls in
(* 2nd step: propagate forward assertions *)
keep_only_selected keep_select fwd_analysis;
let init = List.fold_left (fun m decl -> NodeMap.add decl (L.init ()) m)
NodeMap.empty decls in
propagate (forward_params ~with_assert:true ~one_pass:true init)
~analysis:fwd_analysis
let compute_back_and_forth params decls =
(* 1st step: propagate initial information *)
let fwd_analysis = params.compute decls in
(* 2nd step: propagate backward/forward again from every selected node *)
IL.fold_operational Forward ~roots:[] (fun node cur_analysis ->
let node_value_in_analysis analysis node =
let pre_cur_val = match NodeHash.find_pre analysis node with
| None ->
(* use here top value, in order to correctly meet with value
from forward analysis *)
L.top ()
| Some pre_val -> pre_val
in
let post_cur_val = match NodeHash.find_post analysis node with
| None ->
(* use here top value, in order to correctly meet with value
from forward analysis *)
L.top ()
| Some post_val -> post_val
in
(* always refer to [fwd_analysis] to keep initial fixpoint
results. [analysis] may not have an appropriate value,
due to the fact some backward analysis may not have
considered this node, and thus have "forgotten" the initial
results. *)
let pre_fwd_val,post_fwd_val =
match NodeHash.find_both fwd_analysis node with
| None,None ->
(* use here top value to allow [meet] below *)
L.top (),L.top ()
| Some pre_val,None ->
pre_val,L.top ()
| None,Some post_val ->
L.top (),post_val
| Some pre_val,Some post_val ->
pre_val,post_val
in
let pre_cur_val = L.meet pre_cur_val pre_fwd_val in
let post_cur_val = L.meet post_cur_val post_fwd_val in
pre_cur_val,post_cur_val
in
let pre_val,_ = node_value_in_analysis cur_analysis node in
if params.backward_select node pre_val then
(* create an empty new analysis *)
let mix_analysis = NodeHash.create (NodeHash.length cur_analysis) in
let pre_val = params.backward_modify node pre_val in
let bwd_action node pre_bwd_val =
if params.merge_select node || params.keep_select node then
let pre_cur_val,post_cur_val =
node_value_in_analysis cur_analysis node
in
if params.merge_select node then
(* use [post] value, only one valid for previous analysis *)
let pre_mix_val = params.merge_analyses post_cur_val pre_bwd_val
in
(* for merge nodes, set same value as [pre] and [post] value *)
NodeHash.replace_both mix_analysis node pre_mix_val pre_mix_val
else if params.keep_select node then
NodeHash.replace_both mix_analysis node pre_cur_val post_cur_val
else assert false
else ()
in
(* propagate backward on the path that leads to this node *)
let bwd_params = backward_params [node] pre_val bwd_action in
let bwd_analysis = propagate bwd_params ~roots:[node] in
ignore (bwd_analysis);
(* add appropriate assume invariant when "forgotten" by last
backward analysis *)
IL.iter_operational Forward ~roots:[] (fun node ->
if params.keep_select node then
let pre_mix_val,post_mix_val =
node_value_in_analysis mix_analysis node
in
NodeHash.replace_both mix_analysis node pre_mix_val post_mix_val
);
(* propagate forward again *)
keep_only_selected params.keep_select mix_analysis;
let init =
List.fold_left (fun m decl -> NodeMap.add decl (L.init ()) m)
NodeMap.empty decls in
let fwd_params = forward_params ~join_context:params.join_context
~with_assert:true ~one_pass:true init in
propagate fwd_params ~analysis:mix_analysis
else cur_analysis
) fwd_analysis
end
(*****************************************************************************
* *
* Concrete intermediate language for analysis *
* *
*****************************************************************************)
(* type used for offset from pointer *)
let int_offset_type = Ctypes.c_int
let int_offset_kind = Ctypes.Signed,Ctypes.Int
let int_offset_addop = Badd_int int_offset_kind
(* type to represent a function in the normalized code.
It has the same elements as the hash-table [Cenv.c_functions]. *)
type func_t =
{
name : string;
spec : Cast.nspec;
typ : Ctypes.ctype;
f : Info.fun_info;
s : Cast.nstatement option;
loc : Loc.position
}
module ILVar : VARIABLE with type t = var_info = struct
type t = var_info
let pretty fmt v = Format.fprintf fmt "%s" v.var_name
let to_string v = v.var_name
let compare v1 v2 = Pervasives.compare v1.var_uniq_tag v2.var_uniq_tag
let equal v1 v2 = compare v1 v2 = 0
let hash v = v.var_uniq_tag
end
module ILVarMap = Map.Make (ILVar)
module ILVarSet = Set.Make (ILVar)
(* translation targetted at very simple syntaxical analysis on paths,
since effects of calls are not considered, and unspecified evaluation order
is translated in parallel edges in the CFG *)
module type CFG_LANG_INTERNAL = sig
type node_t
type var_tt
type intern_t =
| InternOperational
| InternOperationalBwdSrc
| InternOperationalBwdDest
| InternStructural
| InternLogical
| InternLogicalScope
type count_t = { mutable count : int }
type lvalue_t = Assign | OpAssign | IncrDecr
type write_t =
{
(* list of variables written variables in the loop *)
write_vars : var_tt list;
(* list of pointers whose content is read in the loop *)
read_under_pointers : var_tt list;
(* list of pointers whose content is modified in the loop *)
write_under_pointers : var_tt list;
}
type norm_node =
(* coding constructs *)
| Nexpr of nexpr
(* execution proceeds to next nodes only if test succeeds.
Replaces [Nexpr] where a test controls the flow: if, loop (switch ?).
The [then] branch will be preceded by the normal test of [if], while
the [else] branch will be preceded by the negation of this test.
The same occurs for loops.
This kind of node is produced for analysis on the operational graph
only. In particular, the subsequent transformations on the underlying
code are not supposed to return a [Ntest] node from a [Ntest] node.
They can return simply a [Nexpr] node.
*)
| Ntest of nexpr
| Nlvalue of nexpr * lvalue_t
| Nstat of nstatement
| Ndecl of func_t
(* logical constructs *)
| Nspec of nspec
| Nannot of nloop_annot
| Nterm of nterm
| Npred of npredicate
(* Various logical constructs act as "assume": assume statement,
function precondition, call postcondition, etc.
Each of these may already be part of an enclosing logical or
coding construct, e.g. the function precondition is already part of
a specification. Then the same [Nassume] node is used both
in the operational graph and as a sub-node of an enclosing node
in the logical or the structural graph, e.g. an [Nspec] node
in the logical graph for the function precondition. *)
| Nassume of npredicate
(* loop assume invariant is a special kind of assume *)
| Nassinv of npredicate * write_t
(* function precondition is a special kind of assume *)
| Npre of npredicate
(* Various logical constructs act as "assert": assert statement,
loop invariant, function postcondition, call precondition, etc.
Each of these may already be part of an enclosing logical or
coding construct, e.g. the loop invariant is already part of
an annotation. Then the same [Nassert] node is used both
in the operational graph and as a sub-node of an enclosing node
in the logical or the structural graph, e.g. an [Nannot] node
in the logical graph for the loop invariant. *)
| Nassert of npredicate
(* loop invariant is a special kind of assert *)
| Ninv of npredicate * write_t
(* special constructs *)
(* "forward" node used in both hierarchical graphs (structural + logical)
and in the operational graph so far.
The element it carries defines which graph it is part of.
This is used when changing the graph as the result of an analysis. *)
| Nintern of intern_t
(* widening node added in the operational lattice, to allow unbounded
analyses to terminate. The integer is a counter initialized to 0 and
incremented each time a new abstract value is computed for this node.
Depending on the analysis, some widening may be performed on
the abstract value if the counter is above some threshold. *)
| Nwiden of count_t
(* create a temporary node that will not be part of either graph.
In particular, it will not be possible to add edges from/to this node.
This is convenient for nodes created during the transformation of
the code, that only store intermediate results. *)
val create_tmp_node : norm_node -> node_t
val get_e : node_t -> nexpr
val get_expr : node_t -> nexpr_node
val get_s : node_t -> nstatement
val get_stat : node_t -> nstatement_node
val get_decl : node_t -> func_t
val get_spec : node_t -> nspec
val get_annot : node_t -> nloop_annot
val get_t : node_t -> nterm
val get_term : node_t -> Ctypes.ctype nterm_node
val get_p : node_t -> npredicate
val get_predicate : node_t -> Ctypes.ctype npredicate_node
(* is this expression an assignment ? *)
val sub_expr_is_assign : nexpr -> bool
(* if the left-hand side of this assignment is a variable, return it *)
val sub_assign_get_lhs_var : nexpr -> var_tt option
(* remove casts on top of the expression *)
val sub_skip_casts : nexpr -> nexpr
val decode_decl_list : nexpr -> nexpr c_initializer
val change_sub_components_in_stat : node_t -> node_t list -> node_t
val change_sub_components_in_expr : node_t -> node_t list -> node_t
val change_sub_components_in_term : node_t -> node_t list -> node_t
val change_sub_components_in_pred : node_t -> node_t list -> node_t
val change_sub_components : node_t -> node_t list -> node_t
end
module type CFG_LANG_EXTERNAL = sig
include INTER_LANG with type ilvar_t = ILVar.t
and type ilfun_t = fun_info
and type decl_t = func_t
(* successors in both structural and logical graph *)
(* list of successors in the structural graph, e.g.
- list of operands of an operation
- caller and arguments of a function call
- list of statements in a block statement
... *)
val code_children : Node.t -> Node.t list (* order matters *)
(* list of successors in the logical graph, e.g.
- loop annotation of a loop
- spec of block of code
- invariant of a loop annotation
- sub-predicate in an invariant
- term in a predicate
... *)
val logic_children : Node.t -> Node.t list (* order matters *)
(* beginning of logical block
Used for \old annotations and specifications. *)
val logic_begin : Node.t -> Node.t
(* end of logical block
Used for annotations and specifications. *)
val logic_end : Node.t -> Node.t
(* associated invariant relation, that relates corresponding invariant and
assume invariant nodes for a specific loop *)
val logic_invariant : Node.t -> Node.t option
(* is it the beginning or the end of a logical scope ? *)
val is_logic_scope : Node.t -> bool
(* 11 kinds of nodes:
for code: expression/test/statement/declaration
for logic: specification/loop annotation/term/predicate/assume/assert
for internal use: internal
*)
type node_kind =
(* coding *) | NKexpr | NKtest | NKlvalue | NKstat | NKdecl
(* logical *) | NKspec | NKannot | NKterm | NKpred | NKassume | NKassert
(* special *) | NKnone
(* query functions *)
(* returns the node's kind *)
val get_node_kind : Node.t -> node_kind
(* is this node a [Ninv] node for a loop invariant ? *)
val is_invariant_node : Node.t -> bool
(* is this node a [Nassinv] node for a loop invariant ? *)
val is_assume_invariant_node : Node.t -> bool
(* is this node a [Nintern InternOperationalBwdSrc] node
for collecting values on the backward edge of a loop before
merging with the upward value ? *)
val is_loop_backward_source_node : Node.t -> bool
(* put in INTER_LANG interface :
is_loop_backward_destination_node : Node.t -> bool
*)
(* get the list of variables modified in this loop *)
val get_loop_write_vars : Node.t -> ilvar_t list
(* get the list of pointers whose content is read in this loop *)
val get_loop_read_under_pointers : Node.t -> ilvar_t list
(* get the list of pointers whose content is modified in this loop *)
val get_loop_write_under_pointers : Node.t -> ilvar_t list
(* returns the function's parameters *)
val decl_get_params : Node.t -> ilvar_t list
(* is it a return statement ? *)
val stat_is_return : Node.t -> bool
(* is it an assert statement ? *)
val stat_is_assert : Node.t -> bool
(* is it a loop statement ? *)
val stat_is_loop : Node.t -> bool
(* is it an if statement ? *)
val stat_is_if : Node.t -> bool
(* is it a spec statement ? *)
val stat_is_spec : Node.t -> bool
(* is it a label statement ? *)
val stat_is_label : Node.t -> bool
(* is it a declaration statement ? *)
val stat_is_decl : Node.t -> bool
(* get the label associated with this label statement *)
val stat_get_label : Node.t -> string
(* is it a jump statement ? *)
val stat_is_jump : Node.t -> bool
(* is it a block statement ? *)
val stat_is_block : Node.t -> bool
(* is it a no-op statement ? *)
val stat_is_nop : Node.t -> bool
(* get the variable associated with this declaration statement *)
val decl_stat_get_var : Node.t -> ilvar_t
(* get the next statement of this declaration statement *)
val decl_stat_get_next : Node.t -> Node.t
(* is this expression a -local- variable ? *)
val expr_is_local_var : Node.t -> bool
(* returns the variable in this term/expression over a variable *)
val termexpr_var_get : Node.t -> ilvar_t
(* is this expression an integer constant ? *)
val expr_is_int_constant : Node.t -> bool
(* returns the integer in this expression over an integer constant *)
val expr_int_constant_get : Node.t -> int
(* is this expression an assignment ? *)
val expr_is_assign : Node.t -> bool
(* get the right operand of this assignment (maybe the ony one, in case of
an increment/decrement *)
val assign_get_rhs_operand : Node.t -> Node.t
(* get the left operand of this assignment (maybe the ony one, in case of
an increment/decrement *)
val assign_get_lhs_operand : Node.t -> Node.t
(* is this a local variable ? *)
val var_is_local : ilvar_t -> bool
(* is this variable an integer ? *)
val var_is_integer : ilvar_t -> bool
(* is the type of this expression an integer type ? *)
val expr_type_is_int : Node.t -> bool
(* is the type of this expression a character type ? *)
val expr_type_is_char : Node.t -> bool
(* is this expression an integer assignment ? *)
val expr_is_int_assign : Node.t -> bool
(* is this variable a pointer ? *)
val var_is_pointer : ilvar_t -> bool
(* is the type of this expression a pointer type ? *)
val expr_type_is_ptr : Node.t -> bool
(* remove casts on top of the expression *)
val skip_casts : Node.t -> Node.t
(* is this term/expression a -local- variable ? *)
val termexpr_is_local_var : Node.t -> bool
(* is this expression a pointer assignment ? *)
val expr_is_ptr_assign : Node.t -> bool
(* if the left-hand side of this assignment is a -local- variable,
return it *)
val assign_get_local_lhs_var : Node.t -> ilvar_t option
(* is this expression a dereference ? *)
val expr_is_deref : Node.t -> bool
(* get the variable and the offset dereferenced, if any *)
val deref_get_variable_and_offset :
Node.t -> (ilvar_t * Node.t option) option
(* if the dereferenced expression is a -local- variable, return it *)
val deref_get_local_var : Node.t -> ilvar_t option
(* is this expression a call ? *)
val expr_is_call : Node.t -> bool
(* get the function called, if any *)
val call_get_function : Node.t -> ilfun_t option
(* get the arguments for the call, if any *)
val call_get_args : Node.t -> Node.t list
(* get precondition for function *)
val function_get_precondition : ilfun_t -> Node.t option
(* get parameters for function *)
val function_get_params : ilfun_t -> ilvar_t list
(* is this term/predicate an \old one ? *)
val termpred_is_old : Node.t -> bool
(* is this term/predicate an \at one ? *)
val termpred_is_at : Node.t -> bool
(* get the label associated with this \at term/predicate *)
val termpred_get_label : Node.t -> string
(* constructors.
- [make_] functions operate directly on their arguments.
- [change_] functions take a first node as context, and operate on
other arguments.
*)
(* create a new sequence expression node *)
val make_seq_expr : Node.t -> Node.t -> Node.t
(* create a new node expression + constant *)
val make_int_expr_add_cst : Node.t -> int -> Node.t
(* create a new node expression + variable *)
val make_int_expr_add_var : Node.t -> ilvar_t -> Node.t
(* create a new node term/expression + term/expression *)
val make_int_termexpr_add_termexpr : Node.t -> Node.t -> Node.t
(* create a new declaration statement for the variable, with the given
statement as next statement *)
val make_var_decl : Node.t -> ilvar_t -> Node.t
(* create a new block statement node *)
val make_seq_stat : Node.t -> Node.t -> Node.t
(* make this node be an integer constant to be added to some pointer *)
val change_in_int_offset_cst : Node.t -> int -> Node.t
(* make this node be an assignment variable = constant *)
val change_in_int_var_assign_cst : Node.t -> ilvar_t -> int -> Node.t
(* make this node be an assignment variable = variable *)
val change_in_int_var_assign_var : Node.t -> ilvar_t -> ilvar_t -> Node.t
(* make this node be an assignment variable = expression *)
val change_in_int_var_assign_expr : Node.t -> ilvar_t -> Node.t -> Node.t
(* change the structural sub-components of this node *)
val change_sub_components : Node.t -> Node.t list -> Node.t
(* language interface *)
(* returns the list of roots *)
val from_file : decl_t list -> (Node.t * Node.t) list
val to_file : Node.t list -> decl_t list
(* collect variables used and declared in the code *)
val collect_vars : unit -> ILVarSet.t * ILVarSet.t
end
module CFGLangFromNormalized : sig
include CFG_LANG_EXTERNAL
include CFG_LANG_INTERNAL with type node_t = Node.t and type var_tt = ILVar.t
end = struct
type var_tt = ILVar.t
type ilvar_t = ILVar.t
type ilfun_t = fun_info
type decl_t = func_t
type node_kind =
(* coding *) | NKexpr | NKtest | NKlvalue | NKstat | NKdecl
(* logical *) | NKspec | NKannot | NKterm | NKpred | NKassume | NKassert
(* special *) | NKnone
(* special node [Nintern] used for special purposes:
- during construction to reference future nodes
- to translate [switch] into appropriate structural tree
- in loops to create a destination node for back edge
...
It carries an element of type [intern_t] that defines which graph
it is part of.
*)
type intern_t =
| InternOperational
| InternOperationalBwdSrc
| InternOperationalBwdDest
| InternStructural
| InternLogical
| InternLogicalScope
type count_t = { mutable count : int }
type lvalue_t = Assign | OpAssign | IncrDecr
type write_t =
{ write_vars : ILVar.t list;
read_under_pointers : ILVar.t list;
write_under_pointers : ILVar.t list; }
let w_empty = { write_vars = [];
read_under_pointers = [];
write_under_pointers = []; }
type norm_node =
(* coding constructs *)
| Nexpr of nexpr
| Ntest of nexpr
| Nlvalue of nexpr * lvalue_t
| Nstat of nstatement
| Ndecl of func_t
(* logical constructs *)
| Nspec of nspec
| Nannot of nloop_annot
| Nterm of nterm
| Npred of npredicate
| Nassume of npredicate
| Nassinv of npredicate * write_t
| Npre of npredicate
| Nassert of npredicate
| Ninv of npredicate * write_t
(* special constructs *)
| Nintern of intern_t
| Nwiden of count_t
(* type of labels on edges in the CFG *)
module NodeRelation = struct
type t =
| OperationalFwd (* forward edge in the operational graph *)
| OperationalBwd (* backward edge in the operational graph *)
| StructuralDown (* edge to first sub-node in the structural graph *)
| StructuralSame (* other edges in the structural graph *)
| LogicalDown (* edge to first sub-node in the logical graph *)
| LogicalSame (* other edges in the logical graph *)
| LogicScopeBegin (* edge to first node in logical block *)
| LogicScopeEnd (* edge to last node in logical block *)
| LogicInvariant (* edge to relate invariant and assume invariant *)
(* arbitrary index to provide total ordering *)
let index r = match r with
| OperationalFwd -> 0
| OperationalBwd -> 1
| StructuralDown -> 2
| StructuralSame -> 3
| LogicalDown -> 4
| LogicalSame -> 5
| LogicScopeBegin -> 6
| LogicScopeEnd -> 7
| LogicInvariant -> 8
let compare r1 r2 = Pervasives.compare (index r1) (index r2)
(* if not stated otherwise, an edge is a forward operational one *)
let default = OperationalFwd
end
(* We use here an abstract imperative labeled graph.
Labels are of 4 kinds :
- operational labels form a graph that respects evaluation order,
to facilitate dataflow analysis
- structural labels form a graph that respects the hierarchical order
between expressions and statements, e.g. with [StructuralDown] labels from
an expression to its first sub-expression, and [StructuralSame] label
from a sub-expression to the next sub-expression at the same level.
- logical labels form a graph similar to the structural graph, except
it is used for logical properties on the code instead of the code itself.
- logical scope labels decorate some nodes in the structural or
logical graph with information on the beginning and end of their logical
scope. This is used to interpret correctly the logical annotations.
Beware that since the operational graph is used for dataflow analysis
computation, the action associated to the node will be repeated when
going through this node in the graph. This makes it necessary sometimes
to create internal nodes whose sole purpose is to connect parts of
the graph with no associated action.
It may be also necessary to create such internal nodes in the structural
or logical graph, in order to encode/decode more easily the underlying
structural/logical constructs.
*)
module Self =
Graph.Imperative.Digraph.AbstractLabeled
(struct type t = norm_node end) (NodeRelation)
module Node = struct
include Self.V
let pretty fmt n =
match label n with
| Nexpr e -> Cprint.nexpr fmt e
| Ntest e -> Cprint.nexpr fmt e
| Nlvalue (e,_) -> Cprint.nexpr fmt e
| Nstat s ->
begin match s.nst_node with
| NSnop -> Format.fprintf fmt "NSnop"
| NSassert _ -> Format.fprintf fmt "NSassert"
| NSassume _ -> Format.fprintf fmt "NSassume"
| NSlogic_label _ -> Format.fprintf fmt "NSlogic_label"
| NSexpr e -> Format.fprintf fmt "NSexpr(%a)" Cprint.nexpr e
| NSif (e,s1,s2) -> Format.fprintf fmt "NSif"
| NSwhile (annot,e,s1) -> Format.fprintf fmt "NSwhile"
| NSdowhile (annot,s1,e) -> Format.fprintf fmt "NSdowhile"
| NSfor (annot,einit,etest,eincr,s1) -> Format.fprintf fmt "NSfor"
| NSblock sl -> Format.fprintf fmt "NSblock"
| NSreturn None -> Format.fprintf fmt "NSreturn"
| NSreturn (Some e) -> Format.fprintf fmt "NSreturn"
| NSbreak -> Format.fprintf fmt "NSbreak"
| NScontinue -> Format.fprintf fmt "NScontinue"
| NSgoto _ -> Format.fprintf fmt "NSgoto"
| NSlabel (str,s1) -> Format.fprintf fmt "NSlabel"
| NSspec (spec,s1) -> Format.fprintf fmt "NSspec"
| NSdecl (typ,var,None,s1) -> Format.fprintf fmt "NSdecl"
| NSdecl (typ,var,Some cinit,s1) -> Format.fprintf fmt "NSdecl"
| NSswitch (e,c,cases) -> Format.fprintf fmt "NSswitch"
end
| Ndecl _ -> Format.fprintf fmt "Ndecl"
| Nspec _ -> Format.fprintf fmt "Nspec"
| Nannot _ -> Format.fprintf fmt "Nannot"
| Nterm t -> Cprint.nterm fmt t
| Npred p -> Cprint.npredicate fmt p
| Nassume _ -> Format.fprintf fmt "Nassume"
| Nassinv _ -> Format.fprintf fmt "Nassinv"
| Npre _ -> Format.fprintf fmt "Npre"
| Nassert _ -> Format.fprintf fmt "Nassert"
| Ninv _ -> Format.fprintf fmt "Ninv"
| Nintern fk ->
begin match fk with
| InternOperational ->
Format.fprintf fmt "Nintern(InternOperational)"
| InternOperationalBwdSrc ->
Format.fprintf fmt "Nintern(InternOperationalBwdSrc)"
| InternOperationalBwdDest ->
Format.fprintf fmt "Nintern(InternOperationalBwdDest)"
| InternStructural ->
Format.fprintf fmt "Nintern(InternStructural)"
| InternLogical ->
Format.fprintf fmt "Nintern(InternLogical)"
| InternLogicalScope ->
Format.fprintf fmt "Nintern(InternLogicalScope)"
end
| Nwiden c -> Format.fprintf fmt "Nwiden(%d)" c.count
end
module Edge = Self.E
module NodeSet = Set.Make (Node)
module NodeMap = Map.Make (Node)
(* It is necessary to make it a hash-table based on [Node.equal] and
[Node.hash], otherwise mutated nodes (e.g. the invariant node with
its mutable field) are not recognized equal. *)
module NodeHash = struct
include Hashtbl.Make (Node)
let find_both analysis node =
try
match find analysis node with
| Fst v -> Some v,None
| Snd v -> None,Some v
| Both (v1,v2) -> Some v1,Some v2
with Not_found -> None,None
let find_pre analysis node = fst (find_both analysis node)
let find_post analysis node = snd (find_both analysis node)
let replace_both analysis node v1 v2 =
replace analysis node (Both (v1,v2))
let replace_pre analysis node v1 =
match find_post analysis node with
| None -> replace analysis node (Fst v1)
| Some v2 -> replace analysis node (Both (v1,v2))
let replace_post analysis node v2 =
match find_pre analysis node with
| None -> replace analysis node (Snd v2)
| Some v1 -> replace analysis node (Both (v1,v2))
let remove_both = remove
let remove_pre analysis node =
match find_post analysis node with
| None -> remove analysis node
| Some v -> remove analysis node; replace_post analysis node v
let remove_post analysis node =
match find_pre analysis node with
| None -> remove analysis node
| Some v -> remove analysis node; replace_pre analysis node v
let iter_both f analysis =
iter (fun node v -> match v with
| Fst v -> f node (Some v) None
| Snd v -> f node None (Some v)
| Both (v1,v2) -> f node (Some v1) (Some v2)
) analysis
let iter_pre f analysis =
iter (fun node v -> match v with
| Fst v -> f node v
| Snd v -> ()
| Both (v1,v2) -> f node v1
) analysis
let iter_post f analysis =
iter (fun node v -> match v with
| Fst v -> ()
| Snd v -> f node v
| Both (v1,v2) -> f node v2
) analysis
let fold_both f analysis init =
fold (fun node v acc -> match v with
| Fst v -> f node (Some v) None acc
| Snd v -> f node None (Some v) acc
| Both (v1,v2) -> f node (Some v1) (Some v2) acc
) analysis init
let fold_pre f analysis init =
fold (fun node v acc -> match v with
| Fst v -> f node v acc
| Snd v -> acc
| Both (v1,v2) -> f node v1 acc
) analysis init
let fold_post f analysis init =
fold (fun node v acc -> match v with
| Fst v -> acc
| Snd v -> f node v acc
| Both (v1,v2) -> f node v2 acc
) analysis init
end
let internal_graph = ref None
let graph () = match !internal_graph with
| None -> failwith "attempting to access graph before creation"
| Some g -> g
(* add a node *)
type node_t = Node.t
let add_vertex node = Self.add_vertex (graph ()) node
let create_tmp_node node = Node.create node
(* create a node and add it to the graph *)
let create_node node =
let node = create_tmp_node node in
add_vertex node;
node
(* shortcut query functions *)
let get_node_kind node =
match Node.label node with
| Nexpr _ -> NKexpr
| Ntest _ -> NKtest
| Nlvalue _ -> NKlvalue
| Nstat _ -> NKstat
| Ndecl _ -> NKdecl
| Nspec _ -> NKspec
| Nannot _ -> NKannot
| Nterm _ -> NKterm
| Npred _ -> NKpred
(* [Npre] and [Nassinv] are special cases of [Nassume] *)
| Nassume _ -> NKassume
| Nassinv _ -> NKassume
| Npre _ -> NKassume
(* [Ninv] is a special case of [Nassert] *)
| Nassert _ -> NKassert
| Ninv _ -> NKassert
(* both forward and widening nodes belong to
the "default" kind [NKnone] *)
| Nintern _ -> NKnone
| Nwiden _ -> NKnone
let get_e node =
match Node.label node with
| Nexpr e -> e
| Ntest e -> e
| Nlvalue (e,_) -> e
| _ -> failwith "[get_e] should be called only on expression or test"
let get_expr node = (get_e node).nexpr_node
let get_s node =
match Node.label node with
| Nstat s -> s
| _ -> failwith "[get_s] should be called only on statement"
let get_stat node = (get_s node).nst_node
let get_decl node =
match Node.label node with
| Ndecl d -> d
| _ -> failwith "[get_decl] should be called only on declaration"
let get_spec node =
match Node.label node with
| Nspec s -> s
| _ -> failwith "[get_spec] should be called only on specification"
let get_annot node =
match Node.label node with
| Nannot a -> a
| _ -> failwith "[get_annot] should be called only on loop annotation"
let get_t node =
match Node.label node with
| Nterm t -> t
| _ -> failwith "[get_t] should be called only on term"
let get_term node = (get_t node).nterm_node
let get_p node =
match Node.label node with
| Npred p | Nassume p | Nassinv (p,_)
| Npre p | Nassert p | Ninv (p,_)
-> p
| _ -> failwith "[get_p] should be called only on predicate"
let get_predicate node = (get_p node).npred_node
let fwd_is_structural node = match Node.label node with
| Nintern InternStructural -> true
| Nintern _ -> false
| _ -> failwith "[fwd_is_structural] should be called only on forward node"
let fwd_is_logical node = match Node.label node with
| Nintern InternLogical -> true
| Nintern _ -> false
| _ -> failwith "[fwd_is_logical] should be called only on forward node"
let is_invariant_node node = match Node.label node with
| Ninv _ -> true
| _ -> false
let is_assume_invariant_node node = match Node.label node with
| Nassinv _ -> true
| _ -> false
let is_loop_backward_source_node node = match Node.label node with
| Nintern InternOperationalBwdSrc -> true
| _ -> false
let is_loop_backward_destination_node node = match Node.label node with
| Nintern InternOperationalBwdDest -> true
| _ -> false
let get_loop_write_vars node = match Node.label node with
| Ninv (_,w) | Nassinv (_,w) -> w.write_vars
| _ -> assert false
let get_loop_read_under_pointers node = match Node.label node with
| Ninv (_,w) | Nassinv (_,w) -> w.read_under_pointers
| _ -> assert false
let get_loop_write_under_pointers node = match Node.label node with
| Ninv (_,w) | Nassinv (_,w) -> w.write_under_pointers
| _ -> assert false
let is_function_precondition_node node = match Node.label node with
| Npre _ -> true
| _ -> false
let is_widening_node node = match Node.label node with
| Nwiden _ -> true
| _ -> false
let get_widening_count node =
match Node.label node with
| Nwiden c -> c.count
| _ -> failwith "[get_counter] should be called only on widening node"
let incr_widening_count node =
match Node.label node with
| Nwiden c -> c.count <- c.count + 1
| _ -> failwith ("[incr_widening_count] should be called only"
^ " on widening node")
let reset_widening_count node =
match Node.label node with
| Nwiden c -> c.count <- 0
| _ -> failwith ("[reset_widening_count] should be called only"
^ " on widening node")
(* more elaborate query functions related to pointer usage *)
let is_pointer_type ctyp = match ctyp.Ctypes.ctype_node with
| Ctypes.Tvar _ ->
assert false (* not allowed in code *)
| Ctypes.Tarray _ | Ctypes.Tpointer _ ->
true
| Ctypes.Tvoid | Ctypes.Tint _ | Ctypes.Tfloat _ | Ctypes.Tfun _
| Ctypes.Tstruct _ | Ctypes.Tunion _ | Ctypes.Tenum _ ->
false
let var_is_local var =
not var.var_is_static
let is_integer_type ctyp = match ctyp.Ctypes.ctype_node with
| Ctypes.Tvar _ ->
assert false (* not allowed in code *)
| Ctypes.Tint _ | Ctypes.Tenum _ ->
true
| Ctypes.Tarray _ | Ctypes.Tpointer _
| Ctypes.Tvoid | Ctypes.Tfloat _ | Ctypes.Tfun _
| Ctypes.Tstruct _ | Ctypes.Tunion _ ->
false
let is_character_type ctyp = match ctyp.Ctypes.ctype_node with
| Ctypes.Tvar _ ->
assert false (* not allowed in code *)
| Ctypes.Tint (_,Ctypes.Char) ->
true
| Ctypes.Tint _ | Ctypes.Tenum _ ->
false
| Ctypes.Tarray _ | Ctypes.Tpointer _
| Ctypes.Tvoid | Ctypes.Tfloat _ | Ctypes.Tfun _
| Ctypes.Tstruct _ | Ctypes.Tunion _ ->
false
let var_is_integer var = is_integer_type var.var_type
let sub_expr_type_is_int e = is_integer_type e.nexpr_type
let expr_type_is_int node = sub_expr_type_is_int (get_e node)
let sub_expr_type_is_char e = is_character_type e.nexpr_type
let expr_type_is_char node = sub_expr_type_is_char (get_e node)
let is_pointer_type ctyp = match ctyp.Ctypes.ctype_node with
| Ctypes.Tvar _ ->
assert false (* not allowed in code *)
| Ctypes.Tarray _ | Ctypes.Tpointer _ ->
true
| Ctypes.Tvoid | Ctypes.Tint _ | Ctypes.Tfloat _ | Ctypes.Tfun _
| Ctypes.Tstruct _ | Ctypes.Tunion _ | Ctypes.Tenum _ ->
false
let var_is_pointer var = is_pointer_type var.var_type
let sub_expr_type_is_ptr e = is_pointer_type e.nexpr_type
let expr_type_is_ptr node = sub_expr_type_is_ptr (get_e node)
let rec sub_skip_casts e = match e.nexpr_node with
| NEcast (_,e1) -> sub_skip_casts e1
| NEunary ((Ufloat_of_int | Uint_of_float
| Ufloat_conversion | Uint_conversion),e1) -> sub_skip_casts e1
| _ -> e
let skip_casts node =
let e = get_e node in
let new_e = sub_skip_casts e in
create_tmp_node (Nexpr new_e)
let termexpr_is_local_var node =
match get_node_kind node with
| NKexpr | NKtest | NKlvalue ->
begin match get_expr node with
| NEvar (Var_info var) -> var_is_local var
| _ -> false
end
| NKterm ->
begin match get_term node with
| NTvar var -> var_is_local var
| _ -> false
end
| _ -> assert false
let termpred_is_old node =
match get_node_kind node with
| NKpred | NKassume | NKassert ->
begin match get_predicate node with
| NPold _ -> true
| _ -> false
end
| NKterm ->
begin match get_term node with
| NTold _ -> true
| _ -> false
end
| _ -> false
let termpred_is_at node =
match get_node_kind node with
| NKpred | NKassume | NKassert ->
begin match get_predicate node with
| NPat _ -> true
| _ -> false
end
| NKterm ->
begin match get_term node with
| NTat _ -> true
| _ -> false
end
| _ -> false
let termpred_get_label node =
match get_node_kind node with
| NKpred | NKassume | NKassert ->
begin match get_predicate node with
| NPat (_,lab) -> lab
| _ -> assert false
end
| NKterm ->
begin match get_term node with
| NTat (_,lab) -> lab
| _ -> assert false
end
| _ -> assert false
let decl_get_params node =
(get_decl node).f.args
let stat_is_return node =
match get_stat node with NSreturn _ -> true | _ -> false
let stat_is_assert node =
match get_stat node with NSassert _ -> true | _ -> false
let stat_is_loop node = match get_stat node with
| NSwhile _ | NSdowhile _ | NSfor _ -> true | _ -> false
let stat_is_if node =
match get_stat node with NSif _ -> true | _ -> false
let stat_is_spec node =
match get_stat node with NSspec _ -> true | _ -> false
let stat_is_label node =
match get_stat node with NSlabel _ | NSlogic_label _ -> true | _ -> false
let stat_is_decl node =
match get_stat node with NSdecl _ -> true | _ -> false
let stat_get_label node =
match get_stat node with
| NSlabel (lab,_) -> lab.label_info_name
| NSlogic_label lab -> lab
| _ -> assert false
let stat_is_jump node = match get_stat node with
| NSreturn _ | NSbreak | NScontinue | NSgoto _ ->
true
| NSnop | NSassert _ | NSassume _ | NSlogic_label _ | NSexpr _
| NSif _ | NSwhile _ | NSdowhile _ | NSfor _ | NSblock _
| NSlabel _ | NSspec _ | NSdecl _ | NSswitch _ ->
false
let stat_is_block node =
match get_stat node with NSblock _ -> true | _ -> false
let stat_is_nop node =
match get_stat node with NSnop -> true | _ -> false
let decl_stat_get_var node =
match get_stat node with NSdecl (_,var,_,_) -> var | _ -> assert false
let decl_stat_get_next node =
match get_stat node with
| NSdecl (_,_,_,ns) ->
create_tmp_node (Nstat ns)
| _ -> assert false
let expr_is_local_var node = match get_expr node with
| NEvar (Var_info var) -> var_is_local var
| _ -> false
let termexpr_var_get node =
match get_node_kind node with
| NKexpr | NKtest | NKlvalue ->
begin match get_expr node with
| NEvar (Var_info var) -> var
| _ -> assert false
end
| NKterm ->
begin match get_term node with
| NTvar var -> var
| _ -> assert false
end
| _ -> assert false
let expr_is_int_constant node = match get_expr node with
| NEconstant (IntConstant s) ->
begin
try ignore(int_of_string s); true
with Failure "int_of_string" -> false
end
| _ -> false
let expr_int_constant_get node = match get_expr node with
| NEconstant (IntConstant s) ->
begin
try int_of_string s
with Failure "int_of_string" -> assert false
end
| _ -> assert false
let expr_is_deref node = match get_expr node with
| NEarrow _ | NEunary (Ustar,_) -> true
| _ -> false
let expr_is_call node = match get_expr node with
| NEcall _ -> true
| _ -> false
let call_get_function node = match get_expr node with
| NEcall { ncall_fun = fe } ->
begin match fe.nexpr_node with
| NEvar (Fun_info f) -> Some f
| _ -> None
end
| _ -> assert false
let call_get_args node = match get_expr node with
| NEcall { ncall_args = el } ->
List.map (fun e -> create_tmp_node (Nexpr e)) el
| _ -> assert false
let function_get_precondition func =
let func_name = func.fun_name in
try
let (spec,_,_,_,_) = Hashtbl.find Cenv.c_functions func_name in
begin match spec.requires with
| None -> None
| Some p -> Some (create_tmp_node (Npred p))
end
with Not_found -> None
let function_get_params func =
let func_name = func.fun_name in
try
let (_,_,f,_,_) = Hashtbl.find Cenv.c_functions func_name in
f.args
with Not_found -> []
let array_and_pointer_types_match arr_typ ptr_typ =
match arr_typ.Ctypes.ctype_node,ptr_typ.Ctypes.ctype_node with
| Ctypes.Tarray (avalid,atyp,_),Ctypes.Tpointer (pvalid,ptyp) ->
avalid = pvalid && (atyp = ptyp)
| _ -> false
let change_in_int_offset_cst node index =
let e = get_e node in
let cst_e = NEconstant (IntConstant (string_of_int index)) in
let cst_e = { e with nexpr_node = cst_e; nexpr_type = int_offset_type } in
create_tmp_node (Nexpr cst_e)
let deref_get_variable_and_offset node = match get_expr node with
| NEarrow (e1,_,_) | NEunary (Ustar,e1) ->
(* exhaustive case analysis needed here, in order to
guarantee no dereference can be missed *)
let rec destruct e = match e.nexpr_node with
(* dereference from some variable [v] *)
| NEvar (Var_info v) -> Some (v,None)
| NEcast (typ,e1) ->
begin match destruct e1 with
| None -> None
| Some (v,off) ->
if array_and_pointer_types_match v.var_type typ then
Some (v,off)
else None
end
| NEbinary (e1,Badd_pointer_int,_) | NEincr (_,e1) ->
let e2opt = match e.nexpr_node with
| NEbinary (_,_,e2) -> Some e2
| NEincr ((Upostfix_inc | Upostfix_dec),_) -> None
| NEincr (Uprefix_inc,_) ->
Some (get_e (change_in_int_offset_cst node 1))
| NEincr (Uprefix_dec,_) ->
Some (get_e (change_in_int_offset_cst node (-1)))
| _ -> assert false
in
begin match destruct e1 with
| None -> None
| Some (v,None) -> Some (v,e2opt)
| Some (v,Some off) as e1destr ->
begin match e2opt with
| None -> e1destr
| Some e2 ->
let new_off = NEbinary (off,int_offset_addop,e2) in
let new_off = { off with nexpr_node = new_off } in
Some (v,Some new_off)
end
end
(* not a dereference from a variable *)
| NEarrow _ | NEunary (Ustar,_) | NEcall _ -> None
(* other cases should not be possible *)
| _ -> assert false
in
(* return a node as offset *)
begin match destruct e1 with
| None -> None
| Some (v,None) -> Some (v,None)
| Some (v,Some e) -> Some (v,Some (create_tmp_node (Nexpr e)))
end
| _ -> assert false
let deref_get_local_var node =
match deref_get_variable_and_offset node with
| None -> None
| Some (var,_) -> if var_is_local var then Some var else None
let sub_expr_is_assign e = match e.nexpr_node with
| NEincr (_,e1) | NEassign (e1,_) | NEassign_op (e1,_,_) -> true
| _ -> false
let expr_is_assign node =
sub_expr_is_assign (get_e node)
let sub_expr_is_int_assign e =
sub_expr_is_assign e && (sub_expr_type_is_int e)
let expr_is_int_assign node =
sub_expr_is_int_assign (get_e node)
let sub_expr_is_ptr_assign e =
sub_expr_is_assign e && (sub_expr_type_is_ptr e)
let expr_is_ptr_assign node =
sub_expr_is_ptr_assign (get_e node)
let assign_get_rhs_operand node = match (get_expr node) with
| NEincr (_,e2) | NEassign (_,e2) ->
create_tmp_node (Nexpr e2)
| NEassign_op (e1,op,e2) ->
let rhs_e = NEbinary (e1,op,e2) in
let rhs_e = { e1 with nexpr_node = rhs_e } in
create_tmp_node (Nexpr rhs_e)
| _ -> assert false
let assign_get_lhs_operand node = match (get_expr node) with
| NEincr (_,e1) | NEassign (e1,_) | NEassign_op (e1,_,_) ->
create_tmp_node (Nexpr e1)
| _ -> assert false
let sub_assign_get_lhs_var e = match e.nexpr_node with
| NEincr (_,e1) | NEassign (e1,_) | NEassign_op (e1,_,_) ->
begin
(* exhaustive case analysis needed here, in order to
guarantee no assignment can be missed *)
match e1.nexpr_node with
(* cast not allowed here for the moment, it is checked
and error possibly reported in an earlier stage *)
| NEcast _ -> assert false
(* not an assignment to a variable *)
| NEarrow _ | NEunary (Ustar,_) -> None
(* assignment to some variable [var] *)
| NEvar (Var_info var) -> Some var
(* other cases should not be possible *)
| _ -> assert false
end
| _ -> failwith ("[sub_assign_get_lhs_var] should be called"
^ " only on assignment")
let assign_get_lhs_var node =
sub_assign_get_lhs_var (get_e node)
let assign_get_local_lhs_var node =
match assign_get_lhs_var node with
| None -> None
| Some var -> if var_is_local var then Some var else None
(* construction of the graph(s), i.e. operational + structural *)
(* [successors n] returns the operational successors of node [n]
for the dataflow analysis. Only [OperationalFwd] and [OperationalBwd]
labels should be taken into account.
It is also the case for [predecessors]. *)
let successors ?(ignore_looping=false) n =
let el = Self.succ_e (graph ()) n in
let el = List.filter
(fun e ->
Edge.label e = NodeRelation.OperationalFwd
|| ((not ignore_looping)
&& (Edge.label e = NodeRelation.OperationalBwd))
) el in
List.map Edge.dst el
let predecessors ?(ignore_looping=false) n =
let el = Self.pred_e (graph ()) n in
let el = List.filter
(fun e ->
Edge.label e = NodeRelation.OperationalFwd
|| ((not ignore_looping)
&& (Edge.label e = NodeRelation.OperationalBwd))
) el in
List.map Edge.src el
let looping_source n =
assert (is_loop_backward_destination_node n);
let pl = predecessors n in
let pl = List.filter is_loop_backward_source_node pl in
match pl with
| [sn] -> sn
| _ -> assert false
(* hierarchical successors. Used for structural and logical successors. *)
let succ edge n =
let el = Self.succ_e (graph ()) n in
let el = List.filter (fun e -> Edge.label e = edge) el in
match List.map Edge.dst el with
| [] -> None
| [a] -> Some a
| _ -> failwith ("[succ edge n] should find at most one successor"
^ " for node [n]")
(* hierarchical predecessors. Used for logical scopes. *)
let has_pred edge n =
let el = Self.pred_e (graph ()) n in
let el = List.filter (fun e -> Edge.label e = edge) el in
match List.map Edge.src el with
| [] -> false
| _ -> true
let child ?(structural=false) ?(logical=false) n =
if structural then
succ NodeRelation.StructuralDown n
else if logical then
succ NodeRelation.LogicalDown n
else (* no graph was specified, it is an error *)
assert false
let sibling ?(structural=false) ?(logical=false) n =
if structural then
succ NodeRelation.StructuralSame n
else if logical then
succ NodeRelation.LogicalSame n
else (* no graph was specified, it is an error *)
assert false
let rec siblings ?(structural=false) ?(logical=false) n =
match sibling ~structural ~logical n with
| None -> []
| Some m -> m :: (siblings ~structural ~logical m)
let children ?(structural=false) ?(logical=false) n =
match child ~structural ~logical n with
| None -> []
| Some m -> m :: (siblings ~structural ~logical m)
(* structural successors. Only [StructuralDown] and [StructuralSame]
labels should be taken into account. *)
let code_children = children ~structural:true ~logical:false
(* logical successors. Only [LogicalDown] and [LogicalSame]
labels should be taken into account. *)
let logic_children = children ~structural:false ~logical:true
let logic_begin n =
match succ NodeRelation.LogicScopeBegin n with
| Some nb -> nb
| None -> failwith "no logical beginning node found"
let logic_end n =
match succ NodeRelation.LogicScopeEnd n with
| Some ne -> ne
| None -> failwith "no logical end node found"
let logic_invariant n = succ NodeRelation.LogicInvariant n
let is_logic_begin n = has_pred NodeRelation.LogicScopeBegin n
let is_logic_end n = has_pred NodeRelation.LogicScopeEnd n
let is_logic_scope n = is_logic_begin n || is_logic_end n
let add_edge edge v1 v2 =
let e = Edge.create v1 edge v2 in
Self.add_edge_e (graph ()) e
(* topological order used by operations of iteration below.
- [direction] is either forward or backward.
- [roots] is empty for a classical propagation, and a single element
for a propagation from a distinguished point of the program. It could
be used also to propagate from a set of distinguished points, although
not useful for now.
- [sub_graph] is used when propagating from (a) distinguished point(s),
to identify nodes in the resulting DAG.
*)
module OperationalTopologicalOrder =
struct
type t =
{
direction : direction_t;
roots : NodeSet.t;
mutable sub_graph : NodeSet.t;
}
module V = Node
let iter_vertex f ord =
if NodeSet.is_empty ord.roots then
Self.iter_vertex f (graph ())
else
(* roots are forced. Force the input-degree too. *)
let work_set = ref ord.roots in
while (not (NodeSet.is_empty (!work_set))) do
let cur_work_set = !work_set in
work_set := NodeSet.empty;
ord.sub_graph <- NodeSet.union ord.sub_graph cur_work_set;
NodeSet.iter (fun node ->
let succ_nodes = match ord.direction with
| Forward -> successors ~ignore_looping:true node
| Backward -> predecessors ~ignore_looping:true node
in
List.iter (fun nx_node ->
if not (NodeSet.mem nx_node ord.sub_graph) then
work_set := NodeSet.add nx_node !work_set) succ_nodes
) cur_work_set
done;
Self.iter_vertex f (graph ())
let iter_succ f ord node =
let succ_nodes = match ord.direction with
| Forward -> successors ~ignore_looping:true node
| Backward -> predecessors ~ignore_looping:true node
in
let succ_nodes =
if NodeSet.is_empty ord.roots then succ_nodes
else List.filter
(fun node -> not (NodeSet.mem node ord.roots)) succ_nodes
in
List.iter f succ_nodes
let in_degree ord node =
let pred_nodes = match ord.direction with
| Forward -> predecessors ~ignore_looping:true node
| Backward -> successors ~ignore_looping:true node
in
if NodeSet.is_empty ord.roots then
let pred_length = List.length pred_nodes in
if pred_length = 0 then
let succ_nodes = match ord.direction with
| Forward -> successors ~ignore_looping:true node
| Backward -> predecessors ~ignore_looping:true node
in
let succ_length = List.length succ_nodes in
(* ignore nodes not in the operational graph *)
if succ_length = 0 then 1
else pred_length
else pred_length
else
(* only nodes in path should be taken into account *)
let pred_nodes = List.filter
(fun node -> NodeSet.mem node ord.sub_graph) pred_nodes in
let pred_length = List.length pred_nodes in
(* force the nodes given as root to be such *)
if NodeSet.mem node ord.roots then 0
(* real root nodes or nodes not in the operational graph
should be ignored in that case *)
else if pred_length = 0 then 1
else pred_length
end
module OperationalIterator =
Graph.Topological.Make (OperationalTopologicalOrder)
let iter_operational direction ~roots f =
let ord = {
OperationalTopologicalOrder.direction = direction;
OperationalTopologicalOrder.roots =
List.fold_right NodeSet.add roots NodeSet.empty;
OperationalTopologicalOrder.sub_graph = NodeSet.empty;
} in
OperationalIterator.iter f ord
let fold_operational direction ~roots f init =
let ord = {
OperationalTopologicalOrder.direction = direction;
OperationalTopologicalOrder.roots =
List.fold_right NodeSet.add roots NodeSet.empty;
OperationalTopologicalOrder.sub_graph = NodeSet.empty;
} in
OperationalIterator.fold f ord init
(* add an operational edge.
- [force_add_opedge] should be used for edges that originate in
a jumping statement like a return/break/continue/goto.
- [add_opedge] should be used in all other cases, with the knowledge
that an edge will be added only if the source statement is not
a jumping one. *)
let force_add_opedge v1 v2 = Self.add_edge (graph ()) v1 v2
let add_opedge v1 v2 =
match get_node_kind v1 with
| NKstat ->
if stat_is_jump v1 then
(* normal operational edges should not originate from
a jumping statement, in which case [force_add_opedge]
is used. Do nothing. *)
()
else force_add_opedge v1 v2
| _ -> force_add_opedge v1 v2
(* add backward operational edge, for loops *)
let add_backedge = add_edge NodeRelation.OperationalBwd
(* add hierarchical edges. Used for adding structural and logical edges. *)
let add_edges is_structural v vl =
let add_down_edge =
if is_structural then
add_edge NodeRelation.StructuralDown
else
add_edge NodeRelation.LogicalDown
in
let add_same_edge =
if is_structural then
add_edge NodeRelation.StructuralSame
else
add_edge NodeRelation.LogicalSame
in
let rec add_same_edges vl = match vl with
| a::b::r -> add_same_edge a b; add_same_edges (b::r)
| _ -> ()
in
match vl with
| [] -> ()
| a::r -> add_down_edge v a; add_same_edges vl
(* add structural edges: a [StructuralDown] edge from [v] to the first
node in the list [vl], and [StructuralSame] edges between successive
nodes in [vl]. Nothing to do with your hat's edge. *)
let add_stedge = add_edges (* is_structural= *)true
(* add logical edges: a [LogicalDown] edge from [v] to the first
node in the list [vl], and [LogicalSame] edges between successive
nodes in [vl]. Do not misinterpret it as a command to add luggage. *)
let add_logedge = add_edges (* is_structural= *)false
(* add logical block edge *)
let add_begedge = add_edge NodeRelation.LogicScopeBegin
let add_endedge = add_edge NodeRelation.LogicScopeEnd
let add_invedge = add_edge NodeRelation.LogicInvariant
(* constructors *)
let make_seq_expr node1 node2 =
let e1 = get_e node1 in
let e2 = get_e node2 in
let new_e = NEseq (e1,e2) in
let new_e = { e2 with nexpr_node = new_e } in
create_tmp_node (Nexpr new_e)
let make_int_expr_add_cst node cst =
let e = get_e node in
let typ = e.nexpr_type in
let op = match typ.Ctypes.ctype_node with
| Ctypes.Tint ik -> Badd_int ik
| _ -> failwith ("[make_int_expr_add_cst] should only be called on"
^ " integer expression") in
let cst_e = NEconstant (IntConstant (string_of_int cst)) in
let cst_e = { e with nexpr_node = cst_e } in
let new_e = NEbinary (e,op,cst_e) in
let new_e = { e with nexpr_node = new_e } in
create_tmp_node (Nexpr new_e)
let make_int_expr_add_var node var =
let e = get_e node in
let typ = e.nexpr_type in
let op = match typ.Ctypes.ctype_node with
| Ctypes.Tint ik -> Badd_int ik
| _ -> failwith ("[make_int_expr_add_cst] should only be called on"
^ " integer expression") in
let cst_e = NEvar (Var_info var) in
let cst_e = { e with nexpr_node = cst_e } in
(* prefer var + expr to expr + var, for ergonomic issues *)
let new_e = NEbinary (cst_e,op,e) in
let new_e = { e with nexpr_node = new_e } in
create_tmp_node (Nexpr new_e)
let make_int_termexpr_add_termexpr node1 node2 =
match get_node_kind node1 with
| NKexpr | NKtest | NKlvalue ->
let e1 = get_e node1 in
let e2 = get_e node2 in
let typ = e1.nexpr_type in
let op = match typ.Ctypes.ctype_node with
| Ctypes.Tint ik -> Badd_int ik
| _ -> failwith ("[make_int_termexpr_add_termexpr] should only"
^ " be called on integer expression") in
let new_e = NEbinary (e1,op,e2) in
let new_e = { e1 with nexpr_node = new_e } in
create_tmp_node (Nexpr new_e)
| NKterm ->
let t1 = get_t node1 in
let t2 = get_t node2 in
let op = Clogic.Badd in
let new_t = NTbinop (t1,op,t2) in
let new_t = { t1 with nterm_node = new_t } in
create_tmp_node (Nterm new_t)
| _ -> assert false
let make_var_decl node var =
let s = get_s node in
let new_s = NSdecl (var.var_type,var,None,s) in
let new_s = { s with nst_node = new_s } in
create_tmp_node (Nstat new_s)
let make_seq_stat node1 node2 =
let s1 = get_s node1 in
let s2 = get_s node2 in
let new_s = NSblock [s1;s2] in
let new_s = { s1 with nst_node = new_s } in
create_tmp_node (Nstat new_s)
(* changes the expression's type if necessary *)
let change_in_int_var_assign_cst node var index =
let e = get_e node in
let var_e = NEvar (Var_info var) in
let typ_e = var.var_type in
let var_e = { e with nexpr_node = var_e; nexpr_type = typ_e } in
let cst_e = NEconstant (IntConstant (string_of_int index)) in
let cst_e = { e with nexpr_node = cst_e; nexpr_type = typ_e } in
let new_e = NEassign (var_e, cst_e) in
let new_e = { e with nexpr_node = new_e; nexpr_type = typ_e } in
create_tmp_node (Nexpr new_e)
(* changes the expression's type if necessary *)
let change_in_int_var_assign_var node var other_var =
let e = get_e node in
let var_e = NEvar (Var_info var) in
let typ_e = var.var_type in
let var_e = { e with nexpr_node = var_e; nexpr_type = typ_e } in
let cst_e = NEvar (Var_info other_var) in
let cst_e = { e with nexpr_node = cst_e; nexpr_type = typ_e } in
let new_e = NEassign (var_e, cst_e) in
let new_e = { e with nexpr_node = new_e; nexpr_type = typ_e } in
create_tmp_node (Nexpr new_e)
(* changes the expression's type if necessary *)
let change_in_int_var_assign_expr node var sub_node =
let e = get_e node in
let var_e = NEvar (Var_info var) in
let typ_e = var.var_type in
let var_e = { e with nexpr_node = var_e; nexpr_type = typ_e } in
let cst_e = get_e sub_node in
let new_e = NEassign (var_e, cst_e) in
let new_e = { e with nexpr_node = new_e; nexpr_type = typ_e } in
create_tmp_node (Nexpr new_e)
(* to be matched with [encode_decl_list] below *)
let rec decode_decl_list einit = match einit.nexpr_node with
| NEcall ce ->
let caller = ce.ncall_fun in
if caller.nexpr_node = NEnop then
(* encoding of an initialization list *)
let args = ce.ncall_args in
Ilist (List.map decode_decl_list args)
else
(* only other possibility is expression *)
Iexpr einit
| _ -> Iexpr einit
let change_sub_components_in_stat node sub_nodes =
let s = get_s node in
let new_s = match s.nst_node with
| NSnop | NSlogic_label _ ->
assert (List.length sub_nodes = 0);
s.nst_node
| NSassert _ ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NSassert new_p1
| NSassume _ ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NSassume new_p1
| NSexpr e ->
assert (List.length sub_nodes = 1);
let new_e = list1 sub_nodes in
let new_e = get_e new_e in
NSexpr new_e
| NSif (e,s1,s2) ->
assert (List.length sub_nodes = 3);
let new_e,new_s1,new_s2 = list3 sub_nodes in
let new_e,new_s1,new_s2
= get_e new_e,get_s new_s1,get_s new_s2 in
NSif (new_e,new_s1,new_s2)
| NSwhile (annot,e,s1) ->
assert (List.length sub_nodes = 3);
let new_e,new_s1,new_a = list3 sub_nodes in
let new_e,new_s1,new_a = get_e new_e,get_s new_s1,get_annot new_a in
NSwhile (new_a,new_e,new_s1)
| NSdowhile (annot,s1,e) ->
assert (List.length sub_nodes = 3);
let new_s1,new_e,new_a = list3 sub_nodes in
let new_s1,new_e,new_a = get_s new_s1,get_e new_e,get_annot new_a in
NSdowhile (new_a,new_s1,new_e)
| NSfor (annot,einit,etest,eincr,s1) ->
assert (List.length sub_nodes = 5);
let new_einit,new_etest,new_eincr,new_s1,new_a = list5 sub_nodes in
let new_einit,new_etest,new_eincr,new_s1,new_a
= get_e new_einit,get_e new_etest,
get_e new_eincr,get_s new_s1,get_annot new_a in
NSfor (new_a,new_einit,new_etest,new_eincr,new_s1)
| NSblock sl ->
let new_sl = List.map get_s sub_nodes in
NSblock new_sl
| NSreturn None ->
assert (List.length sub_nodes = 0);
s.nst_node
| NSreturn (Some e) ->
assert (List.length sub_nodes = 1);
let new_e = list1 sub_nodes in
let new_e = get_e new_e in
NSreturn (Some new_e)
| NSbreak | NScontinue | NSgoto _ ->
assert (List.length sub_nodes = 0);
s.nst_node
| NSlabel (str,s1) ->
assert (List.length sub_nodes = 1);
let new_s = list1 sub_nodes in
let new_s = get_s new_s in
NSlabel (str,new_s)
| NSspec (spec,s1) ->
assert (List.length sub_nodes = 2);
let new_s,new_spc = list2 sub_nodes in
let new_s,new_spc = get_s new_s,get_spec new_spc in
NSspec (new_spc,new_s)
| NSdecl (typ,var,None,s1) ->
assert (List.length sub_nodes = 1);
let new_s = list1 sub_nodes in
let new_s = get_s new_s in
NSdecl (typ,var,None,new_s)
| NSdecl (typ,var,Some cinit,s1) ->
assert (List.length sub_nodes = 2);
let new_e,new_s1 = list2 sub_nodes in
let new_e = get_e new_e in
let new_s1 = get_s new_s1 in
let lhs_expr,rhs_expr = match new_e.nexpr_node with
| NEassign (lhs_expr,rhs_expr) -> lhs_expr,rhs_expr
| _ -> assert false in
let new_var = match lhs_expr.nexpr_node with
| NEvar (Var_info new_var) -> new_var
| _ -> assert false
in
assert (ILVar.equal var new_var);
let new_cinit = decode_decl_list rhs_expr in
NSdecl (typ,var,Some new_cinit,new_s1)
| NSswitch (e,c,cases) ->
let new_e = List.hd sub_nodes in
let new_cases = List.tl sub_nodes in
let new_e = get_e new_e in
(* remove [Nintern] node introduced for each [case] *)
let new_cases =
List.map (fun n -> code_children n) new_cases in
let new_cases = List.map (List.map get_s) new_cases in
let new_cases =
List.map2 (fun (cmap,_) sl -> (cmap,sl)) cases new_cases in
NSswitch (new_e,c,new_cases)
in
let new_s = { s with nst_node = new_s } in
create_tmp_node (Nstat new_s)
let change_sub_components_in_expr node sub_nodes =
let e = get_e node in
let new_e = match e.nexpr_node with
| NEnop | NEconstant _ | NEstring_literal _ | NEvar _ ->
assert (List.length sub_nodes = 0);
e.nexpr_node
| NEarrow (e1,zone,var) ->
assert (List.length sub_nodes = 1);
let new_e = list1 sub_nodes in
let new_e = get_e new_e in
NEarrow (new_e,zone,var)
| NEunary (op,e1) ->
assert (List.length sub_nodes = 1);
let new_e = list1 sub_nodes in
let new_e = get_e new_e in
NEunary (op,new_e)
| NEincr (op,e1) ->
assert (List.length sub_nodes = 1);
let new_e = list1 sub_nodes in
let new_e = get_e new_e in
NEincr (op,new_e)
| NEcast (typ,e1) ->
assert (List.length sub_nodes = 1);
let new_e = list1 sub_nodes in
let new_e = get_e new_e in
NEcast (typ,new_e)
| NEmalloc (typ,e1) ->
assert (List.length sub_nodes = 1);
let new_e = list1 sub_nodes in
let new_e = get_e new_e in
NEmalloc (typ,new_e)
| NEseq (e1,e2) ->
assert (List.length sub_nodes = 2);
let new_e1,new_e2 = list2 sub_nodes in
let new_e1,new_e2 = get_e new_e1,get_e new_e2 in
NEseq (new_e1,new_e2)
| NEassign (e1,e2) ->
assert (List.length sub_nodes = 2);
let new_e1,new_e2 = list2 sub_nodes in
let new_e1,new_e2 = get_e new_e1,get_e new_e2 in
NEassign (new_e1,new_e2)
| NEassign_op (e1,op,e2) ->
assert (List.length sub_nodes = 2);
let new_e1,new_e2 = list2 sub_nodes in
let new_e1,new_e2 = get_e new_e1,get_e new_e2 in
NEassign_op (new_e1,op,new_e2)
| NEbinary (e1,op,e2) ->
assert (List.length sub_nodes = 2);
let new_e1,new_e2 = list2 sub_nodes in
let new_e1,new_e2 = get_e new_e1,get_e new_e2 in
NEbinary (new_e1,op,new_e2)
| NEcall c ->
let new_f = List.hd sub_nodes in
let new_args = List.tl sub_nodes in
let new_f = get_e new_f in
let new_args = List.map get_e new_args in
NEcall { c with ncall_fun = new_f; ncall_args = new_args }
| NEcond (e1,e2,e3) ->
assert (List.length sub_nodes = 3);
let new_e1,new_e2,new_e3 = list3 sub_nodes in
let new_e1,new_e2,new_e3
= get_e new_e1,get_e new_e2,get_e new_e3 in
NEcond (new_e1,new_e2,new_e3)
in
let new_e = { e with nexpr_node = new_e } in
create_tmp_node (Nexpr new_e)
let change_sub_components_in_term node sub_nodes =
let t = get_t node in
let new_t = match t.nterm_node with
| NTconstant _ | NTvar _ | NTminint _ | NTmaxint _ ->
assert (List.length sub_nodes = 0);
t.nterm_node
| NTapp a ->
let new_args = sub_nodes in
let new_args = List.map get_t new_args in
NTapp { a with napp_args = new_args }
| NTunop (op,t1) ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTunop (op,new_t)
| NTarrow (t1,zone,var) ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTarrow (new_t,zone,var)
| NTold t1 ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTold new_t
| NTat (t1,label) ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTat (new_t,label)
| NTbase_addr t1 ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTbase_addr new_t
| NToffset t1 ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NToffset new_t
| NTblock_length t1 ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTblock_length new_t
| NTarrlen t1 ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTarrlen new_t
| NTstrlen (t1,zone,var) ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTstrlen (new_t,zone,var)
| NTmin (t1,t2) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2 = list2 sub_nodes in
let new_t1,new_t2 = get_t new_t1,get_t new_t2 in
NTmin (new_t1,new_t2)
| NTmax (t1,t2) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2 = list2 sub_nodes in
let new_t1,new_t2 = get_t new_t1,get_t new_t2 in
NTmax (new_t1,new_t2)
| NTcast (typ,t1) ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NTcast (typ,new_t)
| NTbinop (t1,op,t2) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2 = list2 sub_nodes in
let new_t1,new_t2 = get_t new_t1,get_t new_t2 in
NTbinop (new_t1,op,new_t2)
| NTif (t1,t2,t3) ->
assert (List.length sub_nodes = 3);
let new_t1,new_t2,new_t3 = list3 sub_nodes in
let new_t1,new_t2,new_t3
= get_t new_t1,get_t new_t2,get_t new_t3 in
NTif (new_t1,new_t2,new_t3)
| NTrange (t1,t2opt,t3opt,zone,info) ->
assert (List.length sub_nodes = 3);
let new_t1,new_t2,new_t3 = list3 sub_nodes in
let new_t1 = get_t new_t1 in
let new_t2 = match logic_children new_t2 with
| [new_t2] -> Some (get_t new_t2)
| [] -> None
| _ -> assert false (* bad encoding *)
in
let new_t3 = match logic_children new_t3 with
| [new_t3] -> Some (get_t new_t3)
| [] -> None
| _ -> assert false (* bad encoding *)
in
NTrange (new_t1,new_t2,new_t3,zone,info)
in
let new_t = { t with nterm_node = new_t } in
create_tmp_node (Nterm new_t)
let change_sub_components_in_pred node sub_nodes =
let p = get_p node in
let new_p = match p.npred_node with
| NPfalse | NPtrue ->
assert (List.length sub_nodes = 0);
p.npred_node
| NPapp a ->
let new_args = sub_nodes in
let new_args = List.map get_t new_args in
NPapp { a with napp_args = new_args }
| NPrel (t1,rel,t2) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2 = list2 sub_nodes in
let new_t1,new_t2 = get_t new_t1,get_t new_t2 in
NPrel (new_t1,rel,new_t2)
| NPvalid_index (t1,t2) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2 = list2 sub_nodes in
let new_t1,new_t2 = get_t new_t1,get_t new_t2 in
NPvalid_index (new_t1,new_t2)
| NPand (p1,p2) ->
assert (List.length sub_nodes = 2);
let new_p1,new_p2 = list2 sub_nodes in
let new_p1,new_p2 = get_p new_p1,get_p new_p2 in
NPand (new_p1,new_p2)
| NPor (p1,p2) ->
assert (List.length sub_nodes = 2);
let new_p1,new_p2 = list2 sub_nodes in
let new_p1,new_p2 = get_p new_p1,get_p new_p2 in
NPor (new_p1,new_p2)
| NPimplies (p1,p2) ->
assert (List.length sub_nodes = 2);
let new_p1,new_p2 = list2 sub_nodes in
let new_p1,new_p2 = get_p new_p1,get_p new_p2 in
NPimplies (new_p1,new_p2)
| NPiff (p1,p2) ->
assert (List.length sub_nodes = 2);
let new_p1,new_p2 = list2 sub_nodes in
let new_p1,new_p2 = get_p new_p1,get_p new_p2 in
NPiff (new_p1,new_p2)
| NPnot p1 ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NPnot new_p1
| NPforall (q,p1) ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NPforall (q,new_p1)
| NPexists (q,p1) ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NPexists (q,new_p1)
| NPold p1 ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NPold new_p1
| NPat (p1,label) ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NPat (new_p1,label)
| NPnamed (name,p1) ->
assert (List.length sub_nodes = 1);
let new_p1 = list1 sub_nodes in
let new_p1 = get_p new_p1 in
NPnamed (name,new_p1)
| NPif (t1,p2,p3) ->
assert (List.length sub_nodes = 3);
let new_t1,new_p2,new_p3 = list3 sub_nodes in
let new_t1,new_p2,new_p3
= get_t new_t1,get_p new_p2,get_p new_p3 in
NPif (new_t1,new_p2,new_p3)
| NPvalid t1 ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NPvalid new_t
| NPfresh t1 ->
assert (List.length sub_nodes = 1);
let new_t = list1 sub_nodes in
let new_t = get_t new_t in
NPfresh new_t
| NPvalid_range (t1,t2,t3) ->
assert (List.length sub_nodes = 3);
let new_t1,new_t2,new_t3 = list3 sub_nodes in
let new_t1,new_t2,new_t3
= get_t new_t1,get_t new_t2,get_t new_t3 in
NPvalid_range (new_t1,new_t2,new_t3)
| NPseparated (t1,t2) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2 = list2 sub_nodes in
let new_t1,new_t2 = get_t new_t1,get_t new_t2 in
NPseparated (new_t1,new_t2)
| NPfull_separated (t1,t2) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2 = list2 sub_nodes in
let new_t1,new_t2 = get_t new_t1,get_t new_t2 in
NPfull_separated (new_t1,new_t2)
| NPbound_separated (t1,t2,t3,t4) ->
assert (List.length sub_nodes = 2);
let new_t1,new_t2,new_t3,new_t4 = list4 sub_nodes in
let new_t1,new_t2,new_t3,new_t4 =
get_t new_t1,get_t new_t2,get_t new_t3,get_t new_t4 in
NPbound_separated (new_t1,new_t2,new_t3,new_t4)
in
let new_p = { p with npred_node = new_p } in
create_tmp_node (Npred new_p)
let change_sub_components_in_annot node sub_nodes =
let a = get_annot node in
assert (List.length sub_nodes = 4);
let new_inv,new_assinv,new_ass,new_var = list4 sub_nodes in
let new_inv = match logic_children new_inv with
| [new_inv] ->
let new_p = get_p new_inv in
(* remove useless assert, possibly inserted by the analysis *)
begin match new_p.npred_node with
| NPtrue -> None
| _ -> Some new_p
end
| [] -> None
| _ -> assert false (* bad encoding *)
in
let new_assinv = match logic_children new_assinv with
| [new_assinv] ->
let new_p = get_p new_assinv in
(* remove useless assume, possibly inserted by the analysis *)
begin match new_p.npred_node with
| NPtrue -> None
| _ -> Some new_p
end
| [] -> None
| _ -> assert false (* bad encoding *)
in
let new_ass = match logic_children new_ass with
| [new_ass] ->
let new_ass = List.map get_t (logic_children new_ass) in
Some (Loc.dummy_position, new_ass)
| [] -> None
| _ -> assert false (* bad encoding *)
in
let name_var = match a.variant with
| None -> None
| Some (_,so) -> so in
let new_var = match logic_children new_var with
| [new_var] -> Some (get_t new_var,name_var)
| [] -> None
| _ -> assert false (* bad encoding *)
in
let new_a = { invariant = new_inv; assume_invariant = new_assinv;
loop_assigns = new_ass; variant = new_var } in
create_tmp_node (Nannot new_a)
let change_sub_components_in_spec node sub_nodes =
let s = get_spec node in
assert (List.length sub_nodes = 4);
let new_req,new_ass,new_ens,new_dec = list4 sub_nodes in
let new_req = match logic_children new_req with
| [new_req] ->
let new_p = get_p new_req in
(* remove useless assume, possibly inserted by the analysis *)
begin match new_p.npred_node with
| NPtrue -> None
| _ -> Some new_p
end
| [] -> None
| _ -> assert false (* bad encoding *)
in
let new_ass = match logic_children new_ass with
| [new_ass] ->
let new_ass = List.map get_t (logic_children new_ass) in
Some (Loc.dummy_position, new_ass)
| [] -> None
| _ -> assert false (* bad encoding *)
in
let new_ens = match logic_children new_ens with
| [new_ens] -> Some (get_p new_ens)
| [] -> None
| _ -> assert false (* bad encoding *)
in
let name_dec = match s.decreases with
| None -> None
| Some (_,so) -> so in
let new_dec = match logic_children new_dec with
| [new_dec] -> Some (get_t new_dec,name_dec)
| [] -> None
| _ -> assert false (* bad encoding *)
in
let new_s = { requires = new_req; assigns = new_ass;
ensures = new_ens; decreases = new_dec } in
create_tmp_node (Nspec new_s)
let change_sub_components node sub_nodes =
match get_node_kind node with
| NKnone ->
(* forward node for upper level. Rebuild the correct one-level
sub-graph so that the upper level can rely on it if necessary.
Chained forward nodes can recreate more than one level. *)
let is_structural = fwd_is_structural node in
let is_logical = fwd_is_logical node in
let fwd_node =
if is_structural then create_node (Nintern InternStructural)
else if is_logical then create_node (Nintern InternLogical)
else
(* only forward nodes from the hierarchical graphs should be
reaching here *)
assert false
in
if is_structural then
add_stedge fwd_node sub_nodes
else
add_logedge fwd_node sub_nodes;
fwd_node
| NKdecl ->
let d = get_decl node in
let new_d =
match d.s with
| Some s ->
let new_s,new_spec = list2 sub_nodes in
let new_s,new_spec = get_s new_s,get_spec new_spec in
{ d with s = Some new_s; spec = new_spec }
| _ -> d
in
create_tmp_node (Ndecl new_d)
| NKstat ->
change_sub_components_in_stat node sub_nodes
| NKexpr | NKtest | NKlvalue ->
change_sub_components_in_expr node sub_nodes
| NKterm ->
change_sub_components_in_term node sub_nodes
| NKpred | NKassume | NKassert ->
change_sub_components_in_pred node sub_nodes
| NKannot ->
change_sub_components_in_annot node sub_nodes
| NKspec ->
change_sub_components_in_spec node sub_nodes
(* extraction of graph from normalized AST *)
let rec from_term (t : nterm) =
let tnode = create_node (Nterm t) in
begin
match t.nterm_node with
| NTconstant _ | NTvar _ | NTminint _ | NTmaxint _ -> ()
| NTapp a ->
let args_nodes = List.map from_term a.napp_args in
(* logic *) add_logedge tnode args_nodes
| NTunop (_,t1) | NTarrow (t1,_,_) | NTold t1 | NTat (t1,_)
| NTbase_addr t1 | NToffset t1 | NTblock_length t1
| NTarrlen t1 | NTstrlen (t1,_,_) | NTcast (_,t1) ->
let t1node = from_term t1 in
(* logic *) add_logedge tnode [t1node]
| NTbinop (t1,_,t2) | NTmin (t1,t2) | NTmax (t1,t2) ->
let t1node = from_term t1 in
let t2node = from_term t2 in
(* logic *) add_logedge tnode [t1node; t2node]
| NTif (t1,t2,t3) ->
let t1node = from_term t1 in
let t2node = from_term t2 in
let t3node = from_term t3 in
(* logic *) add_logedge tnode [t1node; t2node; t3node]
| NTrange (t1,t2opt,t3opt,_,_) ->
let t1node = from_term t1 in
let t2node = create_node (Nintern InternLogical) in
begin match t2opt with
| Some t2 ->
let t2optnode = from_term t2 in
(* logic *) add_logedge t2node [t2optnode]
| None -> ()
end;
let t3node = create_node (Nintern InternLogical) in
begin match t3opt with
| Some t3 ->
let t3optnode = from_term t3 in
(* logic *) add_logedge t3node [t3optnode]
| None -> ()
end;
(* logic *) add_logedge tnode [t1node; t2node; t3node]
end;
tnode
let rec from_pred ?(is_assume=false) ?(is_funpre=false)
?(is_assert=false) ?(is_invariant=false) ?(writes=w_empty)
(p : npredicate) =
let pnode =
if is_invariant then
if is_assume then Nassinv (p,writes)
else if is_assert then Ninv (p,writes)
else assert false
else if is_assume then Nassume p
else if is_funpre then Npre p
else if is_assert then Nassert p
else Npred p
in
let pnode = create_node pnode in
begin
match p.npred_node with
| NPfalse | NPtrue -> ()
| NPapp a ->
let args_nodes = List.map from_term a.napp_args in
(* logic *) add_logedge pnode args_nodes
| NPrel (t1,_,t2) | NPvalid_index (t1,t2) | NPseparated (t1,t2)
| NPfull_separated (t1,t2) ->
let t1node = from_term t1 in
let t2node = from_term t2 in
(* logic *) add_logedge pnode [t1node; t2node]
| NPbound_separated (t1,t2,t3,t4) ->
let t1node = from_term t1 in
let t2node = from_term t2 in
let t3node = from_term t3 in
let t4node = from_term t4 in
(* logic *) add_logedge pnode [t1node; t2node; t3node; t4node]
| NPand (p1,p2) | NPor (p1,p2) | NPimplies (p1,p2) | NPiff (p1,p2) ->
let p1node = from_pred p1 in
let p2node = from_pred p2 in
(* logic *) add_logedge pnode [p1node; p2node]
| NPnot p1 | NPforall (_,p1) | NPexists (_,p1) | NPold p1
| NPat (p1,_) | NPnamed (_,p1) ->
let p1node = from_pred p1 in
(* logic *) add_logedge pnode [p1node]
| NPif (t1,p2,p3) ->
let t1node = from_term t1 in
let p2node = from_pred p2 in
let p3node = from_pred p3 in
(* logic *) add_logedge pnode [t1node; p2node; p3node]
| NPvalid t1 | NPfresh t1 ->
let t1node = from_term t1 in
(* logic *) add_logedge pnode [t1node]
| NPvalid_range (t1,t2,t3) ->
let t1node = from_term t1 in
let t2node = from_term t2 in
let t3node = from_term t3 in
(* logic *) add_logedge pnode [t1node; t2node; t3node]
end;
pnode
let from_spec ?(is_function=false) (s : nspec) =
let requires_node = create_node (Nintern InternLogical) in
let reqnode_opt = match s.requires with
| Some p ->
let reqnode = from_pred ~is_funpre:is_function p in
(* logic *) add_logedge requires_node [reqnode];
Some reqnode
| None ->
if is_function then
(* create a node [requires true] that will serve as a hook to
improve on the assumed precondition *)
let ptrue = { npred_node = NPtrue; npred_loc = Loc.dummy_position }
in
let reqnode = from_pred ~is_funpre:is_function ptrue in
(* logic *) add_logedge requires_node [reqnode];
Some reqnode
else
None
in
let assigns_node = create_node (Nintern InternLogical) in
begin match s.assigns with
| Some (_, tl) ->
(* differenciate [None] from [Some([])] *)
let assnode = create_node (Nintern InternLogical) in
(* logic *) add_logedge assigns_node [assnode];
let tnodes = List.map from_term tl in
add_logedge assnode tnodes
| None -> ()
end;
let ensures_node = create_node (Nintern InternLogical) in
begin match s.ensures with
| Some p ->
let ensnode = from_pred p in
(* logic *) add_logedge ensures_node [ensnode]
| None -> ()
end;
let decreases_node = create_node (Nintern InternLogical) in
begin match s.decreases with
| Some (t,_) ->
let decnode = from_term t in
(* logic *) add_logedge decreases_node [decnode]
| None -> ()
end;
let snode = create_node (Nspec s) in
(* logic *) add_logedge snode [requires_node; assigns_node;
ensures_node; decreases_node];
snode,reqnode_opt
let from_annot (a : nloop_annot) writes =
let assigns_node = create_node (Nintern InternLogical) in
begin match a.loop_assigns with
| Some (_,tl) ->
(* differenciate [None] from [Some([])] *)
let assnode = create_node (Nintern InternLogical) in
(* logic *) add_logedge assigns_node [assnode];
let tnodes = List.map from_term tl in
add_logedge assnode tnodes
| None -> ()
end;
let invariant_node = create_node (Nintern InternLogical) in
let invnode_opt = match a.invariant with
| Some p ->
let invnode = from_pred
~is_invariant:true ~writes ~is_assert:true p
in
(* logic *) add_logedge invariant_node [invnode];
Some invnode
| None ->
(* create a node [assert true] that will serve as a hook to improve
on the asserted invariant *)
let ptrue = { npred_node = NPtrue; npred_loc = Loc.dummy_position }
in
let invnode = from_pred
~is_invariant:true ~writes ~is_assert:true ptrue
in
(* logic *) add_logedge invariant_node [invnode];
Some invnode
in
let assume_invariant_node = create_node (Nintern InternLogical) in
let assinvnode_opt = match a.assume_invariant with
| Some p ->
let assinvnode = from_pred
~is_invariant:true ~writes ~is_assume:true p in
(* logic *) add_logedge assume_invariant_node [assinvnode];
Some assinvnode
| None ->
(* create a node [assume true] that will serve as a hook to improve
on the assumed invariant *)
let ptrue = { npred_node = NPtrue; npred_loc = Loc.dummy_position }
in
let assinvnode = from_pred
~is_invariant:true ~writes ~is_assume:true ptrue
in
(* logic *) add_logedge assume_invariant_node [assinvnode];
Some assinvnode
in
let variant_node = create_node (Nintern InternLogical) in
begin match a.variant with
| Some (t,_) ->
let varnode = from_term t in
(* logic *) add_logedge variant_node [varnode]
| None -> ()
end;
let anode = create_node (Nannot a) in
(* logic *) add_logedge anode
[invariant_node; assume_invariant_node; assigns_node; variant_node];
anode,invnode_opt,assinvnode_opt
(* shared code between the creation of a simple expression node and
the creation of a test node. The parameter [is_test] tells if the node
created should be an expression or a test. The parameter [neg_test] is
used to specify the opposite of the test should be created.
The parameter [is_lvalue] specifies a lvalue is created.
[in_incr] is set for an lvalue inside an increment/decrement operation.
[in_opassign] is set for an lvalue inside an op-assignment.
*)
let rec from_expr start_node ?(is_test=false) ?(neg_test=false)
?(is_lvalue=false) ?(in_incr=false) ?(in_opassign=false) (e : nexpr) =
let e = match e.nexpr_node with
| NEassign_op (e1,op,e2) ->
(* create an expression [e12] for the right-hand side of
the assignment, in order to get rid of the opassign node *)
let e12 = { e with nexpr_node = NEbinary (e1,op,e2) } in
{ e with nexpr_node = NEassign (e1,e12) }
| _ -> e
in
let make_test_to_zero e =
let sub_e = sub_skip_casts e in
match sub_e.nexpr_node with
| NEvar (Var_info v) ->
if var_is_pointer v then
let null_var = Info.default_var_info "null" in
(* Info.set_assigned null_var; *)
Cenv.set_var_type (Var_info null_var) v.var_type false;
let null_expr =
{ sub_e with nexpr_node = NEvar (Var_info null_var) } in
{ e with nexpr_node = NEbinary (e,Bneq_pointer,null_expr) }
else e
| _ -> e
in
let rec pure e = match e.nexpr_node with
| NEnop | NEconstant _ | NEstring_literal _ | NEvar _
-> true
| NEarrow (e1,_,_) | NEunary (_,e1) | NEcast (_,e1)
-> pure e1
| NEbinary (e1,_,e2) | NEseq (e1,e2)
-> pure e1 && pure e2
| NEcond (e1,e2,e3)
-> pure e1 && pure e2 && pure e3
| NEmalloc _ | NEincr _ | NEassign _ | NEassign_op _ | NEcall _
-> false
in
let negative_lazy = match e.nexpr_node with
| NEbinary (_,(Band | Bor),_) when neg_test -> true
| _ -> false
in
let negative_not = match e.nexpr_node with
| NEunary (Unot,_) when neg_test -> true
| _ -> false
in
let push_not_inside = match e.nexpr_node with
| NEunary (Unot,e1) when is_test && not neg_test ->
begin match e1.nexpr_node with
| NEunary (Unot,_) -> true
| NEbinary (_,(Band | Bor),_) -> true
| _ -> false
end
| _ -> false
in
let e =
if negative_lazy then
match e.nexpr_node with
| NEbinary (e1,(Band | Bor as op),e2) ->
let not_e1 = { e1 with nexpr_node = NEunary (Unot, e1) } in
let not_e2 = { e2 with nexpr_node = NEunary (Unot, e2) } in
begin match op with
| Bor ->
{ e with nexpr_node = NEbinary (not_e1,Band,not_e2) }
| Band ->
{ e with nexpr_node = NEbinary (not_e1,Bor,not_e2) }
| _ -> assert false
end
| _ -> assert false
else if negative_not then
match e.nexpr_node with
| NEunary (Unot,e1) -> make_test_to_zero e1
| _ -> assert false
else if push_not_inside then
e (* code for [Unot] below takes care of the negation *)
else if neg_test then
{ e with nexpr_node = NEunary (Unot, make_test_to_zero e) }
else if is_test then
make_test_to_zero e
else e
in
(* effect of [neg_test] taken into account at this point,
ignore it, except for [Unot], when not in [negative_lazy] mode *)
let enode =
if is_test then Ntest e
else if is_lvalue then
if in_incr then Nlvalue (e,IncrDecr)
else if in_opassign then Nlvalue (e,OpAssign)
else Nlvalue (e,Assign)
else Nexpr e
in
let enode = create_node enode in
begin
match e.nexpr_node with
| NEnop | NEconstant _ | NEstring_literal _ | NEvar _ ->
(* oper *) add_opedge start_node enode
| NEunary (Unot,e1) when push_not_inside ->
assert (is_test && not neg_test);
let e1node =
from_expr ~is_test ~neg_test:(not neg_test) start_node e1 in
(* oper *) add_opedge e1node enode;
(* struct *) add_stedge enode [e1node]
| NEarrow (e1,_,_) | NEunary (_,e1)
| NEcast (_,e1) | NEmalloc (_,e1) ->
let e1node = from_expr start_node e1 in
(* oper *) add_opedge e1node enode;
(* struct *) add_stedge enode [e1node]
| NEincr (_,e1) ->
let e1node =
from_expr ~is_lvalue:true ~in_incr:true start_node e1 in
(* oper *) add_opedge e1node enode;
(* struct *) add_stedge enode [e1node]
| NEseq (e1,e2) ->
let e1node = from_expr start_node e1 in
let e2node = from_expr e1node e2 in
(* oper *) add_opedge e2node enode;
(* struct *) add_stedge enode [e1node; e2node]
| NEassign (e1,e2) ->
let e1node,e2node =
if Coptions.evaluation_order.Coptions.assign_left_to_right then
let e1node = from_expr ~is_lvalue:true start_node e1 in
let e2node = from_expr e1node e2 in
(* oper *) add_opedge e2node enode;
e1node,e2node
else
let e2node = from_expr start_node e2 in
let e1node = from_expr ~is_lvalue:true e2node e1 in
(* oper *) add_opedge e1node enode;
e1node,e2node
in
(* struct *) add_stedge enode [e1node; e2node]
| NEassign_op (e1,op,e2) ->
assert false (* expression should have been modified above *)
| NEbinary (e1,Band,e2) when is_test ->
(* do not take [neg_test] into account, already done *)
(* AND succeeds only when both [e1] and [e2] succeed *)
let e1node = from_expr ~is_test start_node e1 in
let e2node = from_expr ~is_test e1node e2 in
(* oper *) add_opedge e2node enode;
(* if the and-test is free from side-effects, the order of
evaluation of [e1] and [e2] should not matter. We ensure this
by merging a path where [e1] is evaluated before [e2] with
a path where [e2] is evaluated before [e1]. *)
if pure e then
begin
let e2node = from_expr ~is_test start_node e2 in
let e1node = from_expr ~is_test e2node e1 in
(* oper *) add_opedge e1node enode
end;
(* struct *) add_stedge enode [e1node; e2node]
| NEbinary (e1,Bor,e2) when is_test ->
(* do not take [neg_test] into account, already done *)
(* OR succeeds whenever [e1] succeeds,
or [e1] fails and [e2] succeeds *)
let e1node = from_expr ~is_test start_node e1 in
let e2node =
if pure e then
from_expr ~is_test start_node e2
else
let nege1node =
from_expr ~is_test ~neg_test:true start_node e1 in
from_expr ~is_test nege1node e2
in
(* oper *) add_opedge e1node enode;
(* oper *) add_opedge e2node enode;
(* struct *) add_stedge enode [e1node; e2node]
| NEbinary (e1,_,e2) ->
let e1node,e2node =
if Coptions.evaluation_order.Coptions.binary_left_to_right then
let e1node = from_expr start_node e1 in
let e2node = from_expr e1node e2 in
(* oper *) add_opedge e2node enode;
e1node,e2node
else
let e2node = from_expr start_node e2 in
let e1node = from_expr e2node e1 in
(* oper *) add_opedge e1node enode;
e1node,e2node
in
(* struct *) add_stedge enode [e1node; e2node]
| NEcall c ->
let expr_list = c.ncall_fun :: c.ncall_args in
let expr_list,list_reversal =
if Coptions.evaluation_order.Coptions.call_left_to_right then
expr_list,false
else
List.rev expr_list,true
in
let anode,anodes =
List.fold_left
(fun (startn,nlist) e ->
let en = from_expr startn e in
en,en::nlist
) (start_node,[]) expr_list
in
(* get back the function and the arguments in the correct order.
Take into account the fact that the call to [List.fold_left]
already reverses the list. *)
let anodes = if list_reversal then anodes else List.rev anodes in
(* oper *) add_opedge anode enode;
(* struct *) add_stedge enode anodes
| NEcond (e1,e2,e3) ->
let true_node = from_expr ~is_test:true start_node e1 in
let false_node =
from_expr ~is_test:true ~neg_test:true start_node e1 in
let e2node = from_expr true_node e2 in
let e3node = from_expr false_node e3 in
(* oper *) add_opedge e2node enode;
(* oper *) add_opedge e3node enode;
(* struct *) add_stedge enode [true_node; e2node; e3node]
end;
enode
type context_descr =
{
(* target for [continue] statements in loops *)
loop_starts : Node.t list;
(* target for [break] statements in loops and switches *)
loop_switch_ends : Node.t list;
(* context of \old logical terms *)
function_begin : Node.t;
(* target of return and last statement of function.
Set only if needed. *)
function_end : Node.t option;
(* targets for [goto] statements, and sources for [label] ones *)
label_aliases : Node.t StringMap.t ref
}
(* Whenever a [goto] or [label] is found, this function is called
and returns a node that represents the label, and updates
globally all the contexts *)
let update_context_for_label ctxt lab =
try
StringMap.find lab (!(ctxt.label_aliases))
with Not_found ->
let lab_node = create_node (Nintern InternOperational) in
ctxt.label_aliases := StringMap.add lab lab_node (!(ctxt.label_aliases));
lab_node
let rec from_stat (ctxt : context_descr) start_node (s : nstatement) =
(* structural statement node, for statement [s] *)
let stsnode = create_node (Nstat s) in
(* operational statement node for [s]. It is equal to [stsnode] in the cases
where the control flow ends up in the node representing the statement. *)
let opsnode = match s.nst_node with
| NSdecl _ ->
(* A declaration should be put in the operational graph before
the statements that follow it. Since these statements are
a sub-field of the declaration, we create an internal node
to serve in place of the declaration as end-node. *)
create_node (Nintern InternOperational)
| _ -> stsnode
in
begin
match s.nst_node with
| NSnop | NSlogic_label _ ->
(* oper *) add_opedge start_node opsnode
| NSassert p ->
let pnode = from_pred ~is_assert:true p in
(* oper *) add_opedge start_node pnode;
(* oper *) add_opedge pnode opsnode;
(* logic *) add_logedge stsnode [pnode];
(* assert node is -only- its self-end *)
(* logic *) add_begedge stsnode ctxt.function_begin;
(* logic *) add_endedge stsnode opsnode
| NSassume p ->
let pnode = from_pred ~is_assume:true p in
(* oper *) add_opedge start_node pnode;
(* oper *) add_opedge pnode opsnode;
(* logic *) add_logedge stsnode [pnode];
(* assume node is -only- its self-end *)
(* logic *) add_begedge stsnode ctxt.function_begin;
(* logic *) add_endedge stsnode opsnode
| NSexpr e ->
let enode = from_expr start_node e in
(* oper *) add_opedge enode opsnode;
(* struct *) add_stedge stsnode [enode]
| NSif (e,s1,s2) ->
let then_node = from_expr ~is_test:true start_node e in
let else_node =
from_expr ~is_test:true ~neg_test:true start_node e in
let sts1node,ops1node = from_stat ctxt then_node s1 in
let sts2node,ops2node = from_stat ctxt else_node s2 in
(* oper *) add_opedge ops1node opsnode;
(* oper *) add_opedge ops2node opsnode;
(* struct *) add_stedge stsnode [then_node; sts1node; sts2node]
| NSwhile (a,e,s1) ->
(* source of backward edge in loop *)
let bwd_node = create_node (Nintern InternOperationalBwdSrc) in
(* node that merges backward and upward flows *)
let mrg_node = create_node (Nintern InternOperationalBwdDest) in
(* connect backward edge *)
(* oper *) add_opedge start_node mrg_node;
(* oper *) add_backedge bwd_node mrg_node;
let loop_effect =
Ceffect.ef_union (Ceffect.statement ~with_local:true s1)
(Ceffect.expr ~with_local:true e) in
let write_vars =
HeapVarSet.elements (loop_effect.Ceffect.assigns_var) in
let write_under_pointers =
HeapVarSet.elements (loop_effect.Ceffect.assigns_under_pointer)
in
let read_under_pointers =
HeapVarSet.elements (loop_effect.Ceffect.reads_under_pointer)
in
let writes = { write_vars = write_vars;
read_under_pointers = read_under_pointers;
write_under_pointers = write_under_pointers; } in
let anode,invnode_opt,assinvnode_opt = from_annot a writes in
let loop_node = match invnode_opt,assinvnode_opt with
| None,None -> mrg_node
| Some inode,None | None,Some inode ->
(* oper *) add_opedge mrg_node inode;
inode
| Some invnode,Some assinvnode ->
(* assume part of invariant has no successor *)
(* oper *) add_opedge mrg_node assinvnode;
(* oper *) add_opedge mrg_node invnode;
(* logic *) add_invedge invnode assinvnode;
(* logic *) add_invedge assinvnode invnode;
invnode
in
let test_node = from_expr ~is_test:true loop_node e in
let stop_node =
from_expr ~is_test:true ~neg_test:true loop_node e in
let upd_ctxt =
{ ctxt with
loop_starts = bwd_node :: ctxt.loop_starts;
loop_switch_ends = opsnode :: ctxt.loop_switch_ends } in
(* widening node is first node -in- the loop *)
let widen_node = create_node (Nwiden { count = 0 }) in
(* oper *) add_opedge test_node widen_node;
let sts1node,ops1node = from_stat upd_ctxt widen_node s1 in
(* oper *) add_opedge ops1node bwd_node; (* before [e]'s eval *)
(* oper *) add_opedge stop_node opsnode; (* after [e]'s eval *)
(* struct *) add_stedge stsnode [test_node; sts1node];
(* logic *) add_logedge stsnode [anode];
(* the logical "annot" node is linked to the start and end nodes *)
(* [bwd_node] is the end node of the loop *)
(* logic *) add_begedge anode ctxt.function_begin;
(* logic *) add_endedge anode bwd_node
| NSdowhile (a,s1,e) ->
(* source of backward edge in loop *)
let bwd_node = create_node (Nintern InternOperationalBwdSrc) in
(* node that merges backward and upward flows *)
let mrg_node = create_node (Nintern InternOperationalBwdDest) in
(* connect backward edge *)
(* oper *) add_opedge start_node mrg_node;
(* oper *) add_backedge bwd_node mrg_node;
let fwd_node = create_node (Nintern InternOperational) in
let upd_ctxt =
{ ctxt with
loop_starts = fwd_node :: ctxt.loop_starts;
loop_switch_ends = opsnode :: ctxt.loop_switch_ends } in
(* widening node is first node -in- the loop *)
let widen_node = create_node (Nwiden { count = 0 }) in
(* oper *) add_opedge mrg_node widen_node;
let sts1node,ops1node = from_stat upd_ctxt widen_node s1 in
let loop_effect =
Ceffect.ef_union (Ceffect.statement ~with_local:true s1)
(Ceffect.expr ~with_local:true e) in
let write_vars =
HeapVarSet.elements (loop_effect.Ceffect.assigns_var) in
let write_under_pointers =
HeapVarSet.elements (loop_effect.Ceffect.assigns_under_pointer)
in
let read_under_pointers =
HeapVarSet.elements (loop_effect.Ceffect.reads_under_pointer)
in
let writes = { write_vars = write_vars;
read_under_pointers = read_under_pointers;
write_under_pointers = write_under_pointers; } in
let anode,invnode_opt,assinvnode_opt = from_annot a writes in
let loop_node = match invnode_opt,assinvnode_opt with
| None,None -> fwd_node
| Some inode,None | None,Some inode ->
(* oper *) add_opedge fwd_node inode;
inode
| Some invnode,Some assinvnode ->
(* assume part of invariant has no successor *)
(* oper *) add_opedge fwd_node assinvnode;
(* oper *) add_opedge fwd_node invnode;
(* logic *) add_invedge invnode assinvnode;
(* logic *) add_invedge assinvnode invnode;
invnode
in
let test_node = from_expr ~is_test:true loop_node e in
let stop_node =
from_expr ~is_test:true ~neg_test:true loop_node e in
(* oper *) add_opedge ops1node fwd_node;
(* oper *) add_opedge test_node bwd_node;(* before [s1]'s eval *)
(* oper *) add_opedge stop_node opsnode;
(* struct *) add_stedge stsnode [sts1node; test_node];
(* logic *) add_logedge stsnode [anode];
(* the logical "annot" node is linked to the start and end nodes *)
(* [bwd_node] is the end node of the loop *)
(* logic *) add_begedge anode ctxt.function_begin;
(* logic *) add_endedge anode bwd_node
| NSfor (a,einit,etest,eincr,s1) ->
(* source of backward edge in loop *)
let bwd_node = create_node (Nintern InternOperationalBwdSrc) in
(* node that merges backward and upward flows *)
let mrg_node = create_node (Nintern InternOperationalBwdDest) in
(* connect backward edge *)
let einit_node = from_expr start_node einit in
(* oper *) add_opedge einit_node mrg_node;
(* oper *) add_backedge bwd_node mrg_node;
let loop_effect =
Ceffect.ef_union (Ceffect.expr ~with_local:true etest)
(Ceffect.ef_union (Ceffect.statement ~with_local:true s1)
(Ceffect.expr ~with_local:true eincr))
in
let write_vars =
HeapVarSet.elements (loop_effect.Ceffect.assigns_var) in
let write_under_pointers =
HeapVarSet.elements (loop_effect.Ceffect.assigns_under_pointer)
in
let read_under_pointers =
HeapVarSet.elements (loop_effect.Ceffect.reads_under_pointer)
in
let writes = { write_vars = write_vars;
read_under_pointers = read_under_pointers;
write_under_pointers = write_under_pointers; } in
let anode,invnode_opt,assinvnode_opt = from_annot a writes in
let loop_node = match invnode_opt,assinvnode_opt with
| None,None -> mrg_node
| Some inode,None | None,Some inode ->
(* oper *) add_opedge mrg_node inode;
inode
| Some invnode,Some assinvnode ->
(* assume part of invariant has no successor *)
(* oper *) add_opedge mrg_node assinvnode;
(* oper *) add_opedge mrg_node invnode;
(* logic *) add_invedge invnode assinvnode;
(* logic *) add_invedge assinvnode invnode;
invnode
in
let test_node = from_expr ~is_test:true loop_node etest in
let stop_node =
from_expr ~is_test:true ~neg_test:true loop_node etest in
let fwd_node = create_node (Nintern InternOperational) in
let upd_ctxt =
{ ctxt with
loop_starts = fwd_node :: ctxt.loop_starts;
loop_switch_ends = opsnode :: ctxt.loop_switch_ends } in
(* widening node is first node -in- the loop *)
let widen_node = create_node (Nwiden { count = 0 }) in
(* oper *) add_opedge test_node widen_node;
let sts1node,ops1node = from_stat upd_ctxt widen_node s1 in
let eincr_node = from_expr fwd_node eincr in
(* oper *) add_opedge ops1node fwd_node;
(* oper *) add_opedge eincr_node bwd_node; (* before [etest] *)
(* oper *) add_opedge stop_node opsnode; (* after [etest]'s eval *)
(* struct *) add_stedge stsnode [einit_node; test_node;
eincr_node; sts1node];
(* logic *) add_logedge stsnode [anode];
(* the logical "annot" node is linked to the start and end nodes *)
(* [bwd_node] is the end node of the loop *)
(* logic *) add_begedge anode ctxt.function_begin;
(* logic *) add_endedge anode bwd_node
| NSblock sl ->
let (opbnode,stsnodes) =
List.fold_left
(fun (startopnode,sts1nodes) s1 ->
let sts1node,ops1node = from_stat ctxt startopnode s1 in
ops1node,sts1node::sts1nodes
) (start_node,[]) sl in
let stsnodes = List.rev stsnodes in
(* oper *) add_opedge opbnode opsnode;
(* struct *) add_stedge stsnode stsnodes
| NSreturn None ->
(* oper *) add_opedge start_node opsnode;
begin match ctxt.function_end with
| Some function_end ->
(* logic *) force_add_opedge stsnode function_end
| None -> ()
end
| NSreturn (Some e) ->
let enode = from_expr start_node e in
(* oper *) add_opedge enode opsnode;
(* struct *) add_stedge stsnode [enode];
begin match ctxt.function_end with
| Some function_end ->
(* logic *) force_add_opedge stsnode function_end
| None -> ()
end
| NSbreak ->
(* oper *) add_opedge start_node opsnode;
(* oper *) force_add_opedge opsnode (List.hd ctxt.loop_switch_ends);
| NScontinue ->
(* oper *) add_opedge start_node opsnode;
(* Originally this edge was a backward one, crucial to make
the topological walk work properly. Not the case anymore since
loops have 2 special nodes for the back edge. *)
(* oper *) add_opedge opsnode (List.hd ctxt.loop_starts)
| NSgoto (_,lab) ->
(* no problem of widening here since only forward gotos are
accepted. Otherwise we should add a widening node in the induced
loop. *)
(* oper *) add_opedge start_node opsnode;
let label_node = update_context_for_label ctxt lab.label_info_name in
(* oper *) force_add_opedge opsnode label_node
| NSspec (spc,s1) ->
let sts1node,ops1node = from_stat ctxt start_node s1 in
(* oper *) add_opedge ops1node opsnode;
(* struct *) add_stedge stsnode [sts1node];
(* ignore precondition for the moment *)
let spcnode,_ = from_spec spc in
(* logic *) add_logedge stsnode [spcnode];
(* the logical "spec" node is linked to the start and end nodes *)
(* logic *) add_begedge spcnode start_node;
(* logic *) add_endedge spcnode stsnode
| NSlabel (lab,s1) ->
let label_node = update_context_for_label ctxt lab.label_info_name in
(* oper *) add_opedge start_node label_node;
let sts1node,ops1node = from_stat ctxt label_node s1 in
(* oper *) add_opedge ops1node opsnode;
(* struct *) add_stedge stsnode [sts1node]
| NSdecl (_,_,None,s1) ->
(* here structural statement node and operational statement node
are not the same. [stsnode] is used in the operational graph
before nodes for [s1]. *)
(* oper *) add_opedge start_node stsnode;
let sts1node,ops1node = from_stat ctxt stsnode s1 in
(* oper *) add_opedge ops1node opsnode;
(* struct *) add_stedge stsnode [sts1node]
| NSdecl (_,var,Some cinit,s1) ->
(* create an assignment expression node so that the treatment
of this initialization is shared with normal assignment *)
let rec first_expr cinit = match cinit with
| Iexpr e -> Some e
| Ilist clinit ->
List.fold_left (fun e_opt cinit ->
begin match e_opt with
| None -> first_expr cinit
| _ -> e_opt
end) None clinit
in
let base_expr = match cinit with
| Iexpr e -> e
| Ilist il ->
begin match first_expr (Ilist il) with
| None ->
(* initialization list cannot be totally empty *)
assert false
| Some e -> e
end
in
(* to be matched with [decode_decl_list] above *)
let rec encode_decl_list cinit = match cinit with
| Iexpr e -> e
| Ilist clinit ->
(* special encoding of [Ilist il] in the form of a fake call
to [NEnop] so that:
- assignments in the initialization expression are taken
into account
- decoding is easy and safe *)
let encoded_clinit = List.map encode_decl_list clinit in
let fake_caller = { base_expr with nexpr_node = NEnop } in
let fake_call =
{ ncall_fun = fake_caller;
ncall_args = encoded_clinit;
ncall_zones_assoc = [] } in
{ base_expr with nexpr_node = NEcall fake_call }
in
let var_expr =
{ base_expr with nexpr_node = NEvar (Var_info var) } in
let encoded_expr = match cinit with
| Iexpr e -> e
| Ilist il -> encode_decl_list cinit in
let explicit_assign = NEassign (var_expr,encoded_expr) in
let explicit_assign =
{ base_expr with nexpr_node = explicit_assign } in
(* here structural statement node and operational statement node
are not the same. [stsnode] is used in the operational graph
before nodes for [s1]. *)
(* oper *) add_opedge start_node stsnode;
let enode = from_expr stsnode explicit_assign in
let sts1node,ops1node = from_stat ctxt enode s1 in
(* oper *) add_opedge ops1node opsnode;
(* struct *) add_stedge stsnode [enode;sts1node]
| NSswitch (e,_,cases) ->
let enode = from_expr start_node e in
let upd_ctxt =
{ ctxt with
loop_starts = ctxt.loop_starts;
loop_switch_ends = opsnode :: ctxt.loop_switch_ends } in
let cnodes = List.map
(fun (_,sl) ->
let opcnode,stclnodes =
List.fold_left
(fun (startopnode,s1nodes) s1 ->
let sts1node,ops1node =
from_stat upd_ctxt startopnode s1 in
ops1node,sts1node::s1nodes
) (enode,[]) sl
in
(* [cnode] is the node representing this [case], which is
the same as the last statement in the list of statements
for this [case], when this list is not empty.
[clnodes] is the list of statements in this [case]. *)
opcnode,List.rev stclnodes
) cases
in
let last_cnode =
List.fold_left
(fun prev_cnode (cnode,clnodes) ->
begin match clnodes with
| [] -> (* no statement in this [case] *)
prev_cnode
| first_node::_ ->
(* in case of fallthrough, control passes from
the last statement of a [case] to the first
statement of next [case].
If [prev_cnode] is a [break], call to
[add_opedge] will do nothing. *)
(* oper *) add_opedge prev_cnode first_node;
cnode
end) enode cnodes
in
(* control flows from end of last case to end of switch *)
(* oper *) add_opedge last_cnode opsnode;
(* in absence of stable way of recognizing presence of [default]
case in switch (emptiness of integer map is not stable),
we consider the control always flows from start to end
of switch *)
(* oper *) add_opedge start_node opsnode;
let first_nodes =
List.map (fun (_,clnodes) ->
(* special encoding so that [switch] can be seen as
a correct structured tree: a node [Nintern] is
created for every [case] and serves as
intermediate *)
let fnode =
create_node (Nintern InternStructural) in
begin match clnodes with
| [] -> ()
| _ -> (* struct *) add_stedge fnode clnodes
end;
fnode) cnodes
in
(* struct *) add_stedge stsnode (enode::first_nodes)
end;
stsnode,opsnode
let rec from_decl d =
if debug_more then Coptions.lprintf
"[from_decl] treating function %s@." d.name;
(* clear all heap variables to avoid name clash between
different fucntions *)
Hashtbl.clear Ceffect.heap_vars;
let dnode = create_node (Ndecl d) in
(* In order to be able to transform any [ensures] part of
a function, we must create an end node for the function body,
so that all parts of information are known under the same name
at that point. It is also used to provide a single entry point
for backward propagation.
All return statements and the last statement should be linked
to this end node.
This transformation may lead to a less precise analysis.
Maybe it could be restricted to functions that have an [ensures]
part. It could be restricted further to functions that need it
to translate their [ensures] part.
*)
let end_node = create_node (Nintern InternOperational) in
begin match d.s with
| Some s ->
let start_ctxt =
{
loop_starts = [];
loop_switch_ends = [];
function_begin = dnode;
function_end = Some end_node;
label_aliases = ref StringMap.empty
} in
let spcnode,reqnode_opt = from_spec ~is_function:true d.spec in
let func_node = match reqnode_opt with
| None -> dnode
| Some reqnode ->
(* oper *) add_opedge dnode reqnode;
reqnode
in
let stsnode,opsnode = from_stat start_ctxt func_node s in
(* oper *) add_opedge opsnode end_node;
(* struct *) add_stedge dnode [stsnode];
(* logic *) add_logedge dnode [spcnode];
(* the logical "spec" node is linked to the start and end nodes *)
(* logic *) add_begedge spcnode dnode; (* begin of decl is itself *)
(* logic *) add_endedge spcnode end_node
| None -> ()
end;
(* clear all heap variables to avoid polluting real effects *)
Hashtbl.clear Ceffect.heap_vars;
dnode,end_node
let from_file file =
internal_graph := Some (Self.create ());
(* only return functions that should be verified *)
let file =
List.filter (fun func -> Coptions.verify func.f.fun_name) file in
List.map from_decl file
let to_decl node =
match get_node_kind node with
| NKdecl -> get_decl node
| _ -> failwith "[to_decl] should be called only on declaration"
let to_file nodes =
let decls = List.map to_decl nodes in
internal_graph := None;
decls
let collect_vars () =
fold_operational Forward ~roots:[]
(fun node (used_vars,decl_vars) ->
match get_node_kind node with
| NKexpr | NKtest | NKlvalue ->
(* only on code, not on logical part *)
let used_vars =
if expr_is_local_var node then
let var = termexpr_var_get node in
ILVarSet.add var used_vars
else
used_vars
in
used_vars,decl_vars
| NKstat ->
let decl_vars =
if stat_is_decl node then
let var = decl_stat_get_var node in
ILVarSet.add var decl_vars
else
decl_vars
in
used_vars,decl_vars
| _ -> used_vars,decl_vars
) (ILVarSet.empty,ILVarSet.empty)
end
(* Local Variables: *)
(* compile-command: "make -C .." *)
(* End: *)
|