File: cint.ml4

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (5187 lines) | stat: -rw-r--r-- 179,494 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
(**************************************************************************)
(*                                                                        *)
(*  The Why platform for program certification                            *)
(*  Copyright (C) 2002-2008                                               *)
(*    Romain BARDOU                                                       *)
(*    Jean-Franois COUCHOT                                               *)
(*    Mehdi DOGGUY                                                        *)
(*    Jean-Christophe FILLITRE                                           *)
(*    Thierry HUBERT                                                      *)
(*    Claude MARCH                                                       *)
(*    Yannick MOY                                                         *)
(*    Christine PAULIN                                                    *)
(*    Yann RGIS-GIANAS                                                   *)
(*    Nicolas ROUSSET                                                     *)
(*    Xavier URBAIN                                                       *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU General Public                   *)
(*  License version 2, as published by the Free Software Foundation.      *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(*  See the GNU General Public License version 2 for more details         *)
(*  (enclosed in the file GPL).                                           *)
(*                                                                        *)
(**************************************************************************)

(* $Id: cint.ml4,v 1.24 2008/02/05 12:10:47 marche Exp $ *)

(* TO DO:

   - document that inequalities like [x > 1 => x > 2] are not representable
   with constrained octogons

   - treat test [p != 0] as constraint on [arrlen(p)]
   
   - take into account remaining pointer arithmetic to invalidate arrlen

   - transfer for backward propagation should do nothing for Context part

   - replace complex type contraints in module by adding Map argument
   to functors

   - treat allocations in transfer function

   - improve on [guarantee_test] for Make_PointWiseFromAtomic
     allow backward prop for pointwise lattice

   - replace [with module VV = V] with [with module V = V] does not work !

   - implement a real variable packing.

   - make octogon analysis use result of interval analysis, printing
   result only if more precise than previously known result.
   (use "diff" printing)

   - see if adding +/- infty make things simpler
  
   - [transform] introduces blocks. remove them.

   - identify how true and false are encoded: 1 == 1 ? 0 == 1 ?
   This could improve on the analysis.

   - define the conditions under which a logical variable like [arrlen(p)] or
   [strlen(p)] is valid and has the expected meaning w.r.t. the annotations
   from the user.

   - take into account possible non-initialization

   - take into account possible overflow

*)

open Info
open Clogic
open Cast
open Cutil
open Cabsint
open Csymbol
open Pp

let debug = Coptions.debug
let debug_more = false


(*****************************************************************************
 *                                                                           *
 * 		Signatures for integer lattices                              *
 *                                                                           *
 *****************************************************************************)

(* elements of signature to add to [SEMI_LATTICE] and [LATTICE] to make them
   integer semi-lattice and lattice signatures *)

module type INT_DELTA = sig
  (* type of variable associated with a value in this lattice. Used during
     the generation of an equivalent predicate (see [to_predicate]). *)
  module V : PVARIABLE
  (* underlying integer type *)
  module I : INT_VALUE
end

(* general interface of an integer semi-lattice *)

module type INT_SEMI_LATTICE = sig
  include SEMI_LATTICE
  include INT_DELTA
end

(* general interface of an integer lattice *)

module type INT_LATTICE = sig
  include LATTICE      
  include INT_DELTA
end

(* elements of signature to add to [INT_SEMI_LATTICE] and [INT_LATTICE] 
   to make them atomic integer semi-lattice and lattice signatures.
   Any integer lattice should be an atomic lattice or a cluster lattice.
   In an atomic lattice, the abstract value associated to a variable [v] 
   depends only on that variable, whereas in a cluster lattice, this value 
   depends on a cluster of variables to which [v] belongs. *)

module type ATOMIC_DELTA = sig
      (* repeat the basic types *)
  type tt 
  type int_t
  type var_t
  type ipred_t

      (* arithmetic operations *)
  val add : tt -> tt -> tt
  val iadd : tt -> int_t -> tt
  val sub : tt -> tt -> tt
  val isub : tt -> int_t -> tt
  val neg : tt -> tt
  val mul : tt -> tt -> tt
  val imul : tt -> int_t -> tt
  val div : tt -> tt -> tt
  val idiv : tt -> int_t -> tt  

      (* specialized query functions *)
  val get_bounds : tt -> int_t option * int_t option

      (* specialized constructors *)
  val make_singleton : int_t -> tt
  val make_from_bounds : int_t option -> int_t option -> tt

      (* specialized operations *)
  val lower_bound : tt -> int_t option -> tt
  val upper_bound : tt -> int_t option -> tt

      (* conversion to an equivalent (or closer under-approximation) 
	 predicate *)
  val to_pred : var_t -> tt -> ipred_t option
end

(* general interface of an atomic integer semi-lattice *)

module type ATOMIC_SEMI_LATTICE = sig
  include INT_SEMI_LATTICE with type dim_t = unit
  include ATOMIC_DELTA with type tt = t and type int_t = I.t 
  and type var_t = V.t and type ipred_t = V.P.t
end

(* general interface of an atomic integer lattice *)

module type ATOMIC_LATTICE = sig
  include INT_LATTICE with type dim_t = unit
  include ATOMIC_DELTA with type tt = t and type int_t = I.t
  and type var_t = V.t and type ipred_t = V.P.t
end

(* type of dimension used for a cluster lattice. 
   The integer [n] is the number of variables in the cluster, and the map
   is a correspondance between indices in [0..n-1] and variables. *)

type 'v cluster_dim_t = int * 'v Int31Map.t

module type CLUSTER_LATTICE_NODIM = sig
  include INT_LATTICE

  (* transfer functions *)

      (* transfer function of assignment *)
  val eval_assign : backward:bool -> V.t -> V.T.t -> t -> t
      (* transfer function of test *)
  val eval_test : backward:bool -> V.P.t -> t -> t
      (* returns [true] if the abstract value passed as argument guarantees
	 the success of the test *)
  val guarantee_test : V.P.t -> t -> bool
      (* remove the variable passed as argument from the abstract value *)
  val remove_variable : V.t -> t -> t

  (* formatting functions *)

      (* returns the normal form of the abstract value *)
  val normalize : t -> t
      (* returns a possibly more aggressive normalization than [normalize] *)
  val finalize : t -> t
      (* remove in the 1st abstract value the constraints already present in 
	 the 2nd abstract value *)
  val subtract : t -> t -> t
      
  (* interfacing and queries *)
    
      (* conversion to an equivalent (or closer under-approximation) 
	 predicate *)
  val to_pred : t -> V.P.t option
      (* variables whose domain is restrained by the abstract value *)
  val restrained_variables : t -> V.t list
      (* abstract value represents no concrete individual element *)
  val is_empty : t -> bool
      (* abstract value represents all individual elements *)
  val is_full : t -> bool
end

(* general interface of a cluster integer semi-lattice *)

module type CLUSTER_LATTICE = sig
  module VV : PVARIABLE
  include CLUSTER_LATTICE_NODIM 
  with module V = VV and type dim_t = VV.t cluster_dim_t
end

(* elements of signature to add to some cluster lattice to make it
   a multi-cluster lattice, i.e. so that different clusters of variables can
   be followed at the same time. *)

module type PACKED_DELTA = sig
      (* repeat basic type *)
  type var_t
      (* pack the variables passed as argument. Each list of variables in
	 the main list groups the variables in the same pack. *)
  val pack_variables : var_t list list -> unit
      (* is this variable packed ? (taken into account by the analysis) *)
  val is_packed_variable : var_t -> bool
end

module type PACKED_CLUSTER_LATTICE = sig
  include CLUSTER_LATTICE_NODIM with type dim_t = unit
  include PACKED_DELTA with type var_t = V.t
end

(* interface of a constrained integer semi-lattice. 
   This allows us to tag parts of an abstract value as constrained,
   and follow these constraints as they propagate through the code. *)

module type CONSTRAINED_LATTICE_NODIM = sig
  include CLUSTER_LATTICE_NODIM
      
      (* eliminate the variables in the list according to some heuristics.
	 Used to infer invariants that -should- guarantee good behavior.
	 Cannot be simply using some "forget" operator. *)
  val eliminate : V.t list -> t -> t      
      (* returns a new abstract value based on the abstract value passed
	 as argument, with the additional constraint.
	 Similar to [eval_test] except that here the constraint is tagged 
	 so that we can follow it. *)
  val eval_constraint : V.P.t -> t -> t
      (* is this a constrained abstract value (with tags for constraints) ? *)
  val is_constrained : t -> bool
      (* get the unconstrained part of the abstract value. 
	 If the abstract value is morally equivalent to [A -> B], this returns
	 the [A] part only. *)
  val get_unconstrained : t -> t
      (* get the constrained part of the abstract value. 
	 If the abstract value is morally equivalent to [A -> B], this returns
	 the [B] part only. *)
  val get_constrained : t -> t
      (* get the constraints in an abstract value *)
  val make_unconstrained : t -> t
      (* variables whose domain is restrained by the abstract value on
	 the left-hand side of the implication (they may be restrained on
	 the right-hand side too) *)
  val unconstrained_variables : t -> V.t list
end

module type CONSTRAINED_LATTICE = sig
  module VV : PVARIABLE
  include CONSTRAINED_LATTICE_NODIM 
  with module V = VV and type dim_t = VV.t cluster_dim_t
end

module type PACKED_CONSTRAINED_LATTICE = sig
  include CONSTRAINED_LATTICE_NODIM with type dim_t = unit
  include PACKED_DELTA with type var_t = V.t
end
      
(* interface of a bridge used to communicate information between 
   the main context and the conditional parts of a contextual lattice *)

module type CONTEXTUAL_BRIDGE = sig
  type ipredicate

  module Contxt : PACKED_CLUSTER_LATTICE
  module Constr : PACKED_CONSTRAINED_LATTICE 

  val get_unconstrained : Constr.t -> Contxt.t
  val get_constrained : Constr.t -> Constr.t
  val make_unconstrained : Constr.t -> Contxt.t
  val subtract : Constr.t -> Contxt.t -> Constr.t
  val join : ?backward:bool -> Constr.t -> Contxt.t -> Constr.t
  val meet : Constr.t -> Contxt.t -> Constr.t
  val eval_constraint : ipredicate -> Contxt.t -> Constr.t
end

(* interface of a contextual integer semi-lattice. 
   It encapsulates a context part and a constraint part, with the implicit 
   meaning that the context is always true, while the constraint has an hidden
   implication [constrained parts -> unconstrained parts]. *)

module type PACKED_CONTEXTUAL_LATTICE = sig
  include CLUSTER_LATTICE_NODIM with type dim_t = unit
  include PACKED_DELTA with type var_t = V.t

  module Contxt : PACKED_CLUSTER_LATTICE
  module Constr : PACKED_CONSTRAINED_LATTICE 
  module Bridge : CONTEXTUAL_BRIDGE 
  with module Contxt = Contxt and module Constr = Constr

    (* echoes the elimination on the constrained parts *)
  val eliminate : V.t list -> t -> t
    (* remove the variables not satisfying the filter condition *)
  val filter_variables : remove:(V.t -> bool) -> t -> t
    (* returns the main context *)
  val get_context : t -> Contxt.t
    (* updates the main context *)
  val set_context : t -> Contxt.t -> t
    (* keep only main context *)
  val eliminate_conditionals : t -> t
    (* are there conditional informations ? *)
  val has_conditionals : t -> bool
    (* similar to join, expects it adds conditionals *)
  val join_context : t -> t -> t
    (* similar to remove_variable, expects it only does so on conditionals
       for which join was not performed ("joined" field) *)
  val remove_variable_conditionals : V.t -> t -> t
    (* subtract main context from unique conditional. The integer is a unique
     identifier for the conditional being returned. *)
  val format_singleton : t -> int * bool * Constr.t
    (* precise the information in some context
       takes as parameters the value to precise and the contextual value.
       returns the original value with more information in some context. *)
  val add_conditional : t -> do_join:bool -> int * Constr.t -> t
  val add_new_conditional : t -> do_join:bool -> Constr.t -> t
    (* allow uniform transformation to be applied *)
  val transform : (Contxt.t -> Contxt.t) -> (Constr.t -> Constr.t) -> t -> t
    (* [fold] on context/constraint parts *)
  val fold : (Contxt.t -> 'a -> 'a) -> (Constr.t -> 'a -> 'a) -> t -> 'a -> 'a
end

(* interface of a lattice for discribing variable separation *)

module type SEPARATION_LATTICE = sig
  include PACKED_CLUSTER_LATTICE
  val add_separated_pair : V.t -> V.t -> t -> t
  val get_separated_pairs : t -> (V.t * V.t) list
  val fully_separated : V.t -> V.t -> t -> bool
  val from_pred : V.P.t -> t
end

module type READ_WRITE_LATTICE = sig
  include PACKED_CLUSTER_LATTICE
  val eval_read : V.t -> t -> t
  val eval_write : V.t -> t -> t
  val eval_precondition : V.P.t -> t -> t
end


(*****************************************************************************
 *                                                                           *
 * 		Integer lattices used for value analysis                     *
 *                                                                           *
 *****************************************************************************)

module Make_IntervalLattice (V : PVARIABLE) (I : INT_VALUE) 
    : ATOMIC_LATTICE with module V = V and module I = I =
struct
  module V = V     module I = I      type int_t = I.t     type var_t = V.t

  type ipred_t = V.P.t
  type t = 
        (* full range *)
    | IKfull
	(* greater-than interval *)
    | IKleft_bounded of I.t
	(* less-than interval *)
    | IKright_bounded of I.t
	(* regular interval *)
    | IKbounded of I.t * I.t
	(* empty interval *)
    | IKempty
  type tt = t

  type dim_t = unit
  let top () = IKfull
  let bottom () = IKempty
  let init () = IKempty

  let has_bounds i = match i with
    | IKfull | IKempty -> false
    | IKleft_bounded _ | IKright_bounded _ | IKbounded _ -> true

  let get_bounds i = match i with
    | IKfull | IKempty -> None,None
    | IKleft_bounded lb -> Some lb,None
    | IKright_bounded rb -> None,Some rb
    | IKbounded (lb,rb) -> Some lb,Some rb

  let make_from_bounds lb rb = match lb,rb with
    | None,None -> IKfull
    | None,Some rb -> IKright_bounded rb
    | Some lb,None -> IKleft_bounded lb
    | Some lb,Some rb -> 
	if I.le lb rb then
	  IKbounded (lb,rb)
	else 
	  IKempty

  let lower_bound i b =
    let lb,rb = get_bounds i in
    let new_lb = match Option.some lb b with
      | Some nb -> Some nb
      | None -> Option.binapp I.max lb b
    in
    make_from_bounds new_lb rb

  let upper_bound i b =
    let lb,rb = get_bounds i in
    let new_rb = match Option.some rb b with
      | Some nb -> Some nb
      | None -> Option.binapp I.min rb b
    in
    make_from_bounds lb new_rb

  let is_singleton i = match i with
    | IKfull | IKempty | IKleft_bounded _ | IKright_bounded _ -> false
    | IKbounded (lb,rb) -> I.eq lb rb
	
  let get_singleton i = match i with
    | IKfull | IKempty | IKleft_bounded _ | IKright_bounded _ -> assert false
    | IKbounded (lb,rb) -> assert (I.eq lb rb); lb

  let make_singleton c = IKbounded (c,c)

  let equal i1 i2 = i1 = i2

  let pretty fmt i = match i with
    | IKfull -> Format.fprintf fmt "IKfull"
    | IKleft_bounded lb -> 
	Format.fprintf fmt "IKleft_bounded(%a)" I.pretty lb
    | IKright_bounded rb -> 
	Format.fprintf fmt "IKright_bounded(%a)" I.pretty rb
    | IKbounded (lb,rb) -> 
	Format.fprintf fmt "IKbounded(%a,%a)" I.pretty lb I.pretty rb
    | IKempty -> Format.fprintf fmt "IKempty"

  let to_pred v i = match i with
    | IKfull | IKempty -> None
    | IKright_bounded rb -> 
	Some (IPrel (ITvar v, Le, ITconstant (IntConstant (I.to_string rb))))
    | IKleft_bounded lb -> 
	Some (IPrel (ITvar v, Ge, ITconstant (IntConstant (I.to_string lb))))
    | IKbounded (lb,rb) -> 
	if I.eq lb rb then
	  Some (IPrel (ITvar v, Eq, ITconstant (IntConstant (I.to_string rb))))
	else
	  Some (
	    IPand (
	      IPrel (ITvar v, Le, ITconstant (IntConstant (I.to_string rb))),
	      IPrel (ITvar v, Ge, ITconstant (IntConstant (I.to_string lb)))))

  let join ?(backward=false) i1 i2 =
    if has_bounds i1 && (has_bounds i2) then
      let lb1,rb1 = get_bounds i1 in
      let lb2,rb2 = get_bounds i2 in
      let lb = Option.binapp I.min lb1 lb2 in
      let rb = Option.binapp I.max rb1 rb2 in
      make_from_bounds lb rb
    else
      match i1,i2 with
	| IKfull,_ | _,IKfull -> IKfull
	| IKempty,i | i,IKempty -> i
	| _ -> assert false
      
  let meet i1 i2 =
    if has_bounds i1 && (has_bounds i2) then
      let lb1,rb1 = get_bounds i1 in
      let lb2,rb2 = get_bounds i2 in
      let lb = Option.binapp I.max lb1 lb2 in
      let rb = Option.binapp I.min rb1 rb2 in
      make_from_bounds lb rb
    else
      match i1,i2 with
	| IKfull,i | i,IKfull -> i
	| IKempty,_ | _,IKempty -> IKempty
	| _ -> assert false

  let add i1 i2 =
    if has_bounds i1 && (has_bounds i2) then
      let lb1,rb1 = get_bounds i1 in
      let lb2,rb2 = get_bounds i2 in
      let lb = Option.binapp I.add lb1 lb2 in
      let rb = Option.binapp I.add rb1 rb2 in
      make_from_bounds lb rb
    else
      match i1,i2 with
	| IKempty,_ | _,IKempty -> IKempty
	| IKfull,_ | _,IKfull -> IKfull
	| _ -> assert false

  let iadd i c = 
    if has_bounds i then
      let lb,rb = get_bounds i in
      let lb = Option.app (I.add c) lb in
      let rb = Option.app (I.add c) rb in
      make_from_bounds lb rb
    else i

  let neg i =
    if has_bounds i then
      let lb,rb = get_bounds i in
      let lb,rb = Option.app I.neg rb,Option.app I.neg lb in
      make_from_bounds lb rb
    else i

  let sub i1 i2 = add i1 (neg i2)
    
  let isub i c = 
    if has_bounds i then
      let lb,rb = get_bounds i in
      let lb = Option.app (fun lb -> I.sub lb c) lb in
      let rb = Option.app (fun rb -> I.sub rb c) rb in
      make_from_bounds lb rb
    else i

  let mul i1 i2 =
    let is_zero b = match b with
      | None -> false
      | Some v -> I.is_zero v in
    let zero_or f b1 b2 = 
      if Pair.any is_zero b1 b2 then
	Some I.zero
      else
	f b1 b2 
    in
    if has_bounds i1 && (has_bounds i2) then
      let lb1,rb1 = get_bounds i1 in
      let lb2,rb2 = get_bounds i2 in
      let b1 = zero_or (Option.binapp I.mul) lb1 lb2 in
      let b2 = zero_or (Option.binapp I.mul) lb1 rb2 in
      let b3 = zero_or (Option.binapp I.mul) rb1 lb2 in
      let b4 = zero_or (Option.binapp I.mul) rb1 rb2 in
      let lb = List.fold_left (Option.binapp I.min) b1 [b2;b3] in
      let rb = List.fold_left (Option.binapp I.max) b2 [b3;b4] in
      make_from_bounds lb rb
    else 
      let is_mul_zero = 
	if has_bounds i1 then
	  let lb1,rb1 = get_bounds i1 in
	  Pair.both is_zero lb1 rb1
	else if has_bounds i2 then
	  let lb2,rb2 = get_bounds i2 in
	  Pair.both is_zero lb2 rb2
	else false
      in
      if is_mul_zero then
	match i1,i2 with
	  | IKempty,_ | _,IKempty -> IKempty
	  | IKfull,izero | izero,IKfull -> izero
	  | _ -> assert false
      else
	match i1,i2 with
	  | IKempty,_ | _,IKempty -> IKempty
	  | IKfull,_ | _,IKfull -> IKfull
	  | _ -> assert false
	      
  let imul i c =
    if has_bounds i then
      let lb,rb = get_bounds i in
      let lb = if I.is_zero c then Some c else Option.app (I.mul c) lb in
      let rb = if I.is_zero c then Some c else Option.app (I.mul c) rb in
      make_from_bounds lb rb
    else i

  let idiv i c =
    if has_bounds i then
      let lb,rb = get_bounds i in
      let rev_div c v = I.div v c in
      let lb = if I.is_zero c then None else Option.app (rev_div c) lb in
      let rb = if I.is_zero c then None else Option.app (rev_div c) rb in
      make_from_bounds lb rb
    else i

  (* rough approximation. Only the division by a constant is precisely
     computed. Could be improved on. *)
  let div i1 i2 =
    if is_singleton i2 then
      idiv i1 (get_singleton i2)
    else
      match i1 with
	| IKempty -> IKempty
	| _ -> IKfull

  let widening ws ~old_value ~new_value =
    if has_bounds old_value && (has_bounds new_value) then
      let lb1,rb1 = get_bounds old_value in
      let lb2,rb2 = get_bounds new_value in
      let rec first_match comp b l = match l with
        | [] -> None
	| thres :: r ->
	    if comp b thres then 
	      Some thres 
	    else 
	      first_match comp b r
      in
      let list_threshold = match ws with
        | WidenFast -> []
	| WidenZero -> [I.zero]
	| WidenUnit -> [I.neg I.one; I.zero; I.one]
	| WidenSteps il -> List.map I.of_int il
      in
      let rb =
	match Option.binapp I.le rb2 rb1 with
	  | None -> None
	  | Some true -> rb2
	  | Some false ->
	      let b = match rb2 with Some b -> b | None -> assert false in
	      first_match I.le b list_threshold
      in
      let lb =
	match Option.binapp I.ge lb2 lb1 with
	  | None -> None
	  | Some true -> lb2
	  | Some false ->
	      let b = match lb2 with Some b -> b | None -> assert false in
	      first_match I.ge b (List.rev list_threshold)
      in
      make_from_bounds lb rb
    else
      match old_value,new_value with
        | IKempty,new_value -> new_value
	| _,IKfull -> IKfull
	| _ ->
	    (* the stored value [old_value] is less precise than the new 
	       computed value [new_value], which should not be the case *)
	    assert false
end

module Make_PointWiseFromAtomic (L : ATOMIC_LATTICE)
    : PACKED_CLUSTER_LATTICE with module V = L.V and module I = L.I =
struct 
  module V = L.V    module I = L.I     type int_t = I.t

  include Make_PointWiseLattice(V)(L)

  module VMap = Map.Make (V)

  (* A pointwise lattice is not a relational lattice, therefore the
     evaluation of an assignment is straightforward. We just need to evaluate
     the right-hand side of the assignment and update the map with this new
     abstract value for the assigned variable. *)

  let rec eval_term term pw = match term with
    | ITconstant (IntConstant s) ->
	begin 
	  try L.make_singleton (I.of_string s)
	  with _ -> L.top ()
	end
    | ITconstant (RealConstant _) -> L.top ()
    | ITvar var ->
	find var pw
    | ITunop (op,t1) ->
	let v1 = eval_term t1 pw in
	begin match op with
	  | Clogic.Uminus -> 
	      L.neg v1
	  | Clogic.Uplus | Clogic.Uint_conversion ->
	      v1
	  | Clogic.Utilde | Clogic.Ustar | Clogic.Uamp | Clogic.Uexact 
	  | Clogic.Umodel | Clogic.Uabs_real | Clogic.Usqrt_real 
	  | Clogic.Uround_error | Clogic.Utotal_error | Clogic.Ufloat_of_int
	  | Clogic.Uint_of_float | Clogic.Ufloat_conversion | Clogic.Unot ->
	      L.top ()
	end
    | ITbinop (t1,op,t2) ->
	let v1 = eval_term t1 pw in
	let v2 = eval_term t2 pw in
	begin match op with
	  | Clogic.Badd -> L.add v1 v2
	  | Clogic.Bsub -> L.sub v1 v2
	  | Clogic.Bmul -> L.mul v1 v2
	  | Clogic.Bdiv -> L.div v1 v2
	  | Clogic.Bmod | Clogic.Bpow_real | Clogic.Bbw_and | Clogic.Bbw_xor 
	  | Clogic.Bbw_or | Clogic.Bshift_left | Clogic.Bshift_right 
	      -> L.top ()
	end
    | ITmin _ | ITmax _ -> L.top ()
    | ITany -> L.top ()

  (* not used here: the pointwise lattice is not a relational one *)
  let pack_variables _ = ()
  let is_packed_variable _ = false
  let guarantee_test _ _ = false

  let eval_assign ~backward var term pw =
    assert (not backward);
    let new_val = eval_term term pw in
    replace var new_val pw
    
  (* A test is built from:
     - conjunction, disjunction: these can be translated into [meet] or [join]
     over the abstract domain
     - negation: since the negation of an abstract value is not an abstract
     value in general, we need to push the negation inside the sub-expression.
     This is taken care of by a call to [explicit_pred].
     - relations: every variable involved in the (dis-,in-)equality may have
     its domain reduced by the test. Isolate each variable on the right-hand 
     side or left-hand side to compute the reduced domain.
   *)

  let rec brute_eval_relation p pw = match p with
    | IPrel (ITvar var,op,t1) ->
	let v1 = eval_term t1 pw in
	let vold = find var pw in
	let cstr_val = match op with
	  | Lt -> 
	      let v2 = L.isub v1 (I.of_int 1) in
	      let _,b = L.get_bounds v2 in
	      L.upper_bound vold b
	  | Gt ->
	      let v2 = L.iadd v1 (I.of_int 1) in
	      let b,_ = L.get_bounds v2 in
	      L.lower_bound vold b
	  | Le ->
	      let _,b = L.get_bounds v1 in
	      L.upper_bound vold b
	  | Ge ->
	      let b,_ = L.get_bounds v1 in
	      L.lower_bound vold b
	  | Eq ->
	      L.meet v1 vold
	  | Neq ->
	      (* either a less-than ... *)
	      let v2 = L.isub v1 (I.of_int 1) in
	      let _,b = L.get_bounds v2 in
	      let vlt = L.upper_bound vold b in
	      (* ... or a greater-than ... *)
	      let v2 = L.iadd v1 (I.of_int 1) in
	      let b,_ = L.get_bounds v2 in
	      let vgt = L.lower_bound vold b in
	      (* ... that we combine *)
	      L.join vlt vgt
	in
	replace var cstr_val pw
    | IPrel (t1,op,ITvar var) ->
	let new_p = match op with 
	  | Lt -> IPrel (ITvar var,Gt,t1)
	  | Gt -> IPrel (ITvar var,Lt,t1)
	  | Le -> IPrel (ITvar var,Ge,t1)
	  | Ge -> IPrel (ITvar var,Le,t1)
	  | Eq -> IPrel (ITvar var,Eq,t1)
	  | Neq -> IPrel (ITvar var,Neq,t1)
	in
	brute_eval_relation new_p pw
    | IPrel _ ->
	(* does not deal with more complex relations *)
	pw
    | IPfalse | IPtrue | IPand _ | IPor _ 
    | IPimplies _ | IPiff _ | IPnot _ | IPany | IPfull_separated _ 
    | IPnull_pointer _
    | IPnot_null_pointer _ | IPnull_char_pointed _ | IPnot_null_char_pointed _
	(* should be called only on relations *)
	-> assert false

  let rec eval_test ~backward pred pw = 
    let pred = V.translate_predicate [] (V.P.explicit_pred pred) in
    match pred with
      | IPfalse -> 
	  bottom ()
      | IPtrue | IPany | IPfull_separated _ -> 
	  pw
      | IPand (p1,p2) ->
          let v1 = eval_test ~backward p1 pw in
          let v2 = eval_test ~backward p2 pw in
          meet v1 v2
      | IPor (p1,p2) ->
          let v1 = eval_test ~backward p1 pw in
          let v2 = eval_test ~backward p2 pw in
          join v1 v2
      | IPimplies _ | IPiff _ | IPnot _ ->
	  (* these constructs should have been removed by the call to
	     [explicit_pred] *)
          assert false
      | IPrel (t1,op,t2) ->
          let vars = (V.T.collect_term_vars t1) @ (V.T.collect_term_vars t2) in
	  let init_occur_map =
	    List.fold_left (fun m v -> VMap.add v 1 m) VMap.empty vars 
	  in
	  let preds,_ = 
	    List.fold_left 
	      (fun (pl,m) v -> 
		let noccur = VMap.find v m in
		let vpred = V.P.rewrite_pred_wrt_var pred v noccur in
		let updm = VMap.add v (noccur + 1) m in
		vpred :: pl,updm
	      ) ([],init_occur_map) vars
	  in
	  List.fold_right brute_eval_relation preds pw
      | IPnull_pointer _ | IPnot_null_pointer _ | IPnull_char_pointed _ 
      | IPnot_null_char_pointed _ ->
	  (* these constructs should have been removed by the call to
	     [translate_predicate] *)
          assert false

  let to_pred pw =
    fold (fun v i p_opt ->
      let vp_opt = L.to_pred v i in
      match Option.some p_opt vp_opt with
      | Some p -> Some p
      | None -> Option.binapp (fun p1 p2 -> IPand (p1,p2)) p_opt vp_opt)
      pw None

  let restrained_variables pw =
    fold (fun v i vlist ->
      if L.equal i (L.bottom ()) then
	vlist
      else v :: vlist) pw []

  let is_empty pw = pw = bottom ()
  let is_full pw = pw = top () (* necessary to compare pointwise ? *)
    
  let remove_variable var pw =
    replace var (L.bottom ()) pw

  let normalize pw = pw (* implement here switch to PWAll and PWEmpty *)
  let finalize = normalize

  let subtract pw1 pw2 = pw1 (* minimal implementation *)
end

(* module created does not have a signature. To be used internally, to share
   code between different functors. *)

module Make_InternalPackedFromCluster (V : PVARIABLE) 
  (L : CLUSTER_LATTICE with module VV = V)
  (* : PACKED_CLUSTER_LATTICE with module V = L.V and module I = L.I *) = 
struct
  (* leave this type here so that the OCaml compiler can infer type equality *)
  (* each packed variable has a corresponding abstract value.
     Only the representative variables have an entry in this map. *)
  type t = L.t Map.Make(V).t

  module VMap = Map.Make (V)
  module VSet = Set.Make (V)

  module V = L.V         module I = L.I          type var_t = V.t

    (* Each pack of variables is represented by one of them, chosen as
       representative. For all variables in the pack, this relation is stored
       in [variable_to_rep]. *)
  let variable_to_rep = Hashtbl.create 0
    (* Each representative variable corresponds to a dimension (number of
       variables in the pack) and a pack (correspondance from indices 
       to variables). *)
  let rep_to_dim_and_pack = Hashtbl.create 0
    (* packed variables *)
  let variables = ref VSet.empty
      
  type dim_t = unit

  let bottom () =
    Hashtbl.fold (fun v (dim,pack as d) m -> VMap.add v (L.bottom d) m) 
      rep_to_dim_and_pack VMap.empty

  let top () =
    Hashtbl.fold (fun v (dim,pack as d) m -> VMap.add v (L.top d) m) 
      rep_to_dim_and_pack VMap.empty

  let init = top

  (* functions for packing *)

  let pack_variables vll = 
    let pack_one = function
      | [] -> ()
      | rep_var :: _ as var_list ->
	  let dim,var_map = 
	    List.fold_left 
	      (fun (c,m) v -> 
		 variables := VSet.add v (!variables);
		 Hashtbl.replace variable_to_rep v rep_var;
		 c+1,Int31Map.add c v m
	      ) (0,Int31Map.empty) var_list
	  in
	  Hashtbl.replace rep_to_dim_and_pack rep_var (dim,var_map)
    in
    Hashtbl.clear rep_to_dim_and_pack;
    List.iter pack_one vll

  let is_packed_variable var = VSet.mem var (!variables)

  (* lattice operations *)

  let equal pack1 pack2 =
    Hashtbl.fold 
      (fun v _ is_eq -> is_eq && 
	let elt1 = VMap.find v pack1 and elt2 = VMap.find v pack2 in
	L.equal elt1 elt2
      ) rep_to_dim_and_pack true

  let pretty fmt = VMap.iter (fun _ elt -> L.pretty fmt elt)

  let join ?(backward=false) pack1 pack2 =
    Hashtbl.fold
      (fun v _ m ->
	let elt1 = VMap.find v pack1 and elt2 = VMap.find v pack2 in
	let elt = L.join ~backward elt1 elt2 in
	VMap.add v elt m
      ) rep_to_dim_and_pack VMap.empty

  let meet pack1 pack2 =
    Hashtbl.fold
      (fun v _ m ->
	let elt1 = VMap.find v pack1 and elt2 = VMap.find v pack2 in
	let elt = L.meet elt1 elt2 in
	VMap.add v elt m
      ) rep_to_dim_and_pack VMap.empty

  let widening ws ~old_value ~new_value =
    Hashtbl.fold
      (fun v _ m ->
	let elt1 = VMap.find v old_value and elt2 = VMap.find v new_value in
	let elt = L.widening ws ~old_value:elt1 ~new_value:elt2 in
	VMap.add v elt m
      ) rep_to_dim_and_pack VMap.empty

  let to_pred pack =
    VMap.fold 
      (fun _ elt p_opt ->
	match p_opt,L.to_pred elt with
	| None,None -> None
	| None,Some p | Some p,None -> Some p
	| Some p1,Some p2 -> Some (IPand (p1,p2))
      ) pack None

  let eval_assign ~backward var term pack =
    if is_packed_variable var then
      let rep_var = Hashtbl.find variable_to_rep var in
      let elt = VMap.find rep_var pack in
      let new_elt = L.eval_assign ~backward var term elt in
      VMap.add rep_var new_elt pack
    else pack

  let eval_test ~backward pred pack =
    match pred with
      | IPfalse -> bottom ()
      | _ -> 
	  let test_vars = V.P.collect_predicate_vars pred in
	  let packed_vars = List.filter is_packed_variable test_vars in
	  let rep_vars = List.map (Hashtbl.find variable_to_rep) packed_vars in
	  let rep_set = List.fold_right VSet.add rep_vars VSet.empty in
	  VMap.mapi
	    (fun rep_var elt ->
	      if VSet.mem rep_var rep_set then
		(* some variables in this pack occur in the test *)
		L.eval_test ~backward pred elt
	      else elt
	    ) pack

  let guarantee_test pred pack =
    match pred with
      | IPtrue -> true
      | _ -> 
	  let test_vars = V.P.collect_predicate_vars pred in
	  let packed_vars = List.filter is_packed_variable test_vars in
	  let rep_vars = List.map (Hashtbl.find variable_to_rep) packed_vars in
	  let rep_set = List.fold_right VSet.add rep_vars VSet.empty in
	  VMap.fold
	    (fun rep_var elt do_guarantee ->
	      do_guarantee ||
	      if VSet.mem rep_var rep_set then
		(* some variables in this pack occur in the test *)
		L.guarantee_test pred elt
	      else false
	    ) pack false

  let restrained_variables pack =
    VMap.fold (fun _ elt varl -> (L.restrained_variables elt) @ varl) pack []

  let is_empty pack = 
    VMap.fold (fun _ elt empty -> empty && L.is_empty elt) pack true

  let is_full pack = 
    VMap.fold (fun _ elt full -> full && L.is_full elt) pack true

  let remove_variable var pack =
    if is_packed_variable var then
      let rep_var = Hashtbl.find variable_to_rep var in
      let elt = VMap.find rep_var pack in
      let new_elt = L.remove_variable var elt in
      VMap.add rep_var new_elt pack
    else pack
    
  let normalize pack = VMap.mapi (fun _ elt -> L.normalize elt) pack
  let finalize pack = VMap.mapi (fun _ elt -> L.finalize elt) pack

  let subtract pack1 pack2 =
    Hashtbl.fold
      (fun v _ m ->
	 let elt1 = VMap.find v pack1 and elt2 = VMap.find v pack2 in
	 let elt = L.subtract elt1 elt2 in
	 VMap.add v elt m
      ) rep_to_dim_and_pack VMap.empty
end

module Make_PackedFromCluster (V : PVARIABLE) 
    (L : CLUSTER_LATTICE with module VV = V)
    : PACKED_CLUSTER_LATTICE with module V = L.V and module I = L.I 
      and type t = L.t Map.Make(V).t = 
struct
  include Make_InternalPackedFromCluster (V) (L)
end

module Make_PackedFromConstrained (V : PVARIABLE) 
    (L : CONSTRAINED_LATTICE with module VV = V)
    : PACKED_CONSTRAINED_LATTICE with module V = L.V and module I = L.I
      and type t = L.t Map.Make(V).t = 
struct
  include Make_InternalPackedFromCluster (V) (L)

  let eval_constraint pred pack =
    match pred with
      | IPfalse -> bottom ()
      | _ -> 
	  let test_vars = V.P.collect_predicate_vars pred in
	  let packed_vars = List.filter is_packed_variable test_vars in
	  let rep_vars = List.map (Hashtbl.find variable_to_rep) packed_vars in
	  let rep_set = List.fold_right VSet.add rep_vars VSet.empty in
	  VMap.mapi
	    (fun rep_var elt ->
	      if VSet.mem rep_var rep_set then
		(* some variables in this pack occur in the test *)
		L.eval_constraint pred elt
	      else elt
	    ) pack

  let is_constrained pack =
    VMap.fold (fun _ elt is_cstr -> is_cstr || L.is_constrained elt) pack false

  let get_unconstrained pack = VMap.map L.get_unconstrained pack

  let get_constrained pack = VMap.map L.get_constrained pack

  let make_unconstrained pack = VMap.map L.make_unconstrained pack

  let unconstrained_variables pack = 
    VMap.fold (fun _ elt vlist -> L.unconstrained_variables elt @ vlist)
      pack []

  let subtract pack1 pack2 =
    Hashtbl.fold
      (fun v _ m ->
	let elt1 = VMap.find v pack1 and elt2 = VMap.find v pack2 in
	let elt = L.subtract elt1 elt2 in
	VMap.add v elt m
      ) rep_to_dim_and_pack VMap.empty

  let eliminate var_list pack =
    if debug_more then Coptions.lprintf 
	"[eliminate] list of written variables %a@."
	(print_list comma V.pretty) var_list;
    VMap.mapi (fun rep_var elt -> L.eliminate var_list elt) pack
end

(* a simple octogon with its dimension and the variables it represents *)
type ('v,'map) oct_t =
    { 
      dimension : int;
      variables : 'v Int31Map.t; (* map from indices to variables *)
      indices   : 'map; (* reverse map from variables to indices *)
      octogon   : Oct.oct 
    }

(* module created does not have a signature. To be used internally, to share
   code between different functors. *)

module Make_InternalOctogonLattice (V : PVARIABLE) (I : INT_VALUE)
    (* : CLUSTER_LATTICE with module VV = V and module I = I *) =
struct
  (* leave this type here so that the OCaml compiler can infer type equality *)
  type t = (V.t,int Map.Make(V).t) oct_t
  type dim_t = int * V.t Int31Map.t

  module VMap = Map.Make (V)
  module VSet = Set.Make (V)

  module V = V     module VV = V     module I = I     type var_t = V.t

  (* lattice values *)

    (* exploit the fact [bottom] and [top] were made functions to build
       the correct bottom and top elements from the information on 
       packed variables *)
  let bottom (dim,vars) = 
    { dimension = dim; variables = vars; octogon = Oct.empty dim;
      indices = Int31Map.fold (fun i v m -> VMap.add v i m) vars VMap.empty }

  let top (dim,vars) =
    { dimension = dim; variables = vars; octogon = Oct.universe dim;
      indices = Int31Map.fold (fun i v m -> VMap.add v i m) vars VMap.empty }

  let init = top

  let is_empty oct = Oct.is_empty oct.octogon
  let is_full oct = Oct.is_universe oct.octogon

  (* lattice operations *)

  let equal oct1 oct2 = Oct.is_equal oct1.octogon oct2.octogon

  let pretty fmt oct =
    let var_name i = V.to_string (Int31Map.find i oct.variables) in
    Oct.foctprinter var_name fmt oct.octogon

  let get_widening_strategy ws = match ws with
    | WidenFast -> Oct.WidenFast
    | WidenZero -> Oct.WidenZero
    | WidenUnit -> Oct.WidenUnit
    | WidenSteps il ->
	let vl = List.map float_of_int il in
	let va = Array.of_list vl in
	Oct.WidenSteps (Oct.vnum_of_float va)

  (* the stored value is [oct1] and the new computed value is [oct2] *)
  let widening ws ~old_value ~new_value =
    let ws = get_widening_strategy ws in
    { old_value with octogon = 
	Oct.widening old_value.octogon new_value.octogon ws }

  (* query functions *)

  let is_targetted_variable oct v = 
    try ignore(VMap.find v oct.indices); true with Not_found -> false

  let followed_indices ?(tagged=false) ?(untagged=false) oct =
    if debug_more then Coptions.lprintf 
      "[followed_indices] tagged ? %B untagged ? %B on %a@."
      tagged untagged pretty oct;
    if is_empty oct then 
      Int31Set.empty 
    else
      let classify_vars = 
	if tagged then
	  Oct.get_tagged_vars oct.octogon
	else if untagged then
	  Oct.get_untagged_vars oct.octogon
	else
	  Oct.get_restrained_vars oct.octogon
      in
      let classify_vars = Oct.int_of_vnum classify_vars in
      let _,idx_set =
	Array.fold_left
	  (fun (idx,iset) tag_opt -> match tag_opt with
	  | None -> 
	      (* [Oct.int_of_num] failed on num = 0 or 1. Impossible. *)
	      assert false
	  | Some is_cstr ->
	      if is_cstr <> 0 then
		(* [idx] is the index of a restrained/constrained variable *)
		idx + 1,Int31Set.add idx iset
	      else 
		idx + 1,iset
	  ) (0,Int31Set.empty) classify_vars
      in
      idx_set

  let followed_variables ?(tagged=false) ?(untagged=false) (oct : t) =
    let idx_set = followed_indices ~tagged ~untagged oct in
    Int31Set.fold (fun i varl -> (Int31Map.find i oct.variables) :: varl)
      idx_set []
      
  let restrained_variables oct = followed_variables oct

  let remove_variable var oct = 
    let idx = VMap.find var oct.indices in
    let new_octogon = Oct.forget oct.octogon idx in
    { oct with octogon = new_octogon }

  (* interfacing *)

  let internal_to_pred minimize oct = 
    (* take care of special empty case separately *)
    if is_empty oct || Oct.is_universe oct.octogon then
      None
    else
      let v_name i = "v" ^ (string_of_int i) in
      let v_num s = int_of_string (String.sub s 1 (String.length s - 1)) in
      let lex = 
	Genlex.make_lexer 
	  ["+"; "-"; "<"; "<="; ">"; ">="; "="; ","; "{"; "}";"=>"] in
      let rec parse_atom = parser
	| [< 'Genlex.Int n >] -> 
	    ITconstant (IntConstant (string_of_int n))
	| [< 'Genlex.Ident id >] -> 
	    ITvar (Int31Map.find (v_num id) oct.variables)
	| [<>] -> failwith "[to_pred] atom parsing error"
      and parse_term = parser
	| [< t1 = parse_atom; t2 = parse_term_rest t1 >] -> t2
	| [<>] -> failwith "[to_pred] term parsing error"
      and parse_term_rest t1 = parser
	| [< 'Genlex.Kwd "+"; t2 = parse_atom >] ->
	    ITbinop (t1,Clogic.Badd,t2)
	| [< 'Genlex.Kwd "-"; t2 = parse_atom >] ->
	    ITbinop (t1,Clogic.Bsub,t2)
	| [<>] -> t1
      and parse_relation = parser
	| [< t1 = parse_term; p = parse_relation_rest t1 >] -> p
	| [<>] -> failwith "[to_pred] relation parsing error"
      and parse_relation_rest t1 = parser
	| [< 'Genlex.Kwd "<"; p = parse_term_or_relation t1 Clogic.Lt >]
	  -> p
	| [< 'Genlex.Kwd "<="; p = parse_term_or_relation t1 Clogic.Le >]
	  -> p
	| [< 'Genlex.Kwd ">"; p = parse_term_or_relation t1 Clogic.Gt >]
	  -> p
	| [< 'Genlex.Kwd ">="; p = parse_term_or_relation t1 Clogic.Ge >]
	  -> p
	| [< 'Genlex.Kwd "="; p = parse_term_or_relation t1 Clogic.Eq >] 
	  -> p
      and parse_term_or_relation t1 op = parser
	| [< t2 = parse_term; 
	     p = parse_term_or_relation_rest (IPrel (t1,op,t2)) t2 >] -> p
	| [<>] -> failwith "[to_pred] term or relation parsing error"
      and parse_term_or_relation_rest p1 t2 = parser
	| [< 'Genlex.Kwd "<"; t3 = parse_term >] ->
	    IPand (p1, IPrel (t2,Clogic.Lt,t3))
	| [< 'Genlex.Kwd "<="; t3 = parse_term >] ->
	    IPand (p1, IPrel (t2,Clogic.Le,t3))
	| [< 'Genlex.Kwd ">"; t3 = parse_term >] ->
	    IPand (p1, IPrel (t2,Clogic.Gt,t3))
	| [< 'Genlex.Kwd ">="; t3 = parse_term >] ->
	    IPand (p1, IPrel (t2,Clogic.Ge,t3))
	| [< 'Genlex.Kwd "="; t3 = parse_term >] ->
	    IPand (p1, IPrel (t2,Clogic.Eq,t3))
	| [<>] -> p1
      and parse_relation_list = parser
	| [< p1 = parse_relation; p2 = parse_relation_list_rest p1 >] -> p2
	| [<>] -> failwith "[to_pred] list of relations parsing error"
      and parse_relation_list_rest p1 = parser
	| [< 'Genlex.Kwd ","; p2 = parse_relation_list >] ->
	    IPand (p1,p2)
	| [<>] -> p1
      and parse_predicate = parser
	| [< 'Genlex.Kwd "{"; p = parse_predicate_rest; >] -> p
	| [<>] -> failwith "[to_pred] predicate parsing error"
      and parse_predicate_rest = parser
	| [< 'Genlex.Kwd "}" >] -> 
	    (* allow here an empty left-hand side of an implication.
	       It is useful if the context is not only determined by
	       the octogon but also by another lattice.
	    *)
	    IPtrue
	| [< p = parse_relation_list; 'Genlex.Kwd "}" >] -> p
	| [<>] -> failwith "[to_pred] rest of predicate parsing error"
      and parse_octogon = parser
	| [< p1 = parse_predicate; p2 = parse_octogon_rest p1 >] -> p2
	| [<>] -> failwith "[to_pred] octogon parsing error"
      and parse_octogon_rest p1 = parser
	| [< 'Genlex.Kwd "=>"; p2 = parse_predicate >] ->
	    IPimplies (p1,p2)
	| [<>] -> p1
      in
      let buf = Buffer.create 100 in
      let fmt = Format.formatter_of_buffer buf in
      let moct = minimize oct in
      Oct.foctprinter v_name fmt moct.octogon;
      Format.pp_print_flush fmt ();
      let s = Buffer.contents buf in
      if debug_more then Coptions.lprintf 
	  "[to_pred] %a vs %s@." (Oct.foctprinter v_name) moct.octogon s;
      Some (parse_octogon (lex (Stream.of_string s)))

  (* flat types and functions taken from Min's example analysis *)

  type flat_term =
    | FIrand                          (* random expression *)
    | FIlinear of float array         (* linear expression *)

  type flat_predicate =
    | FBrand                          (* random expression *)
    | FBand of flat_predicate list    (* and *)
    | FBor of flat_predicate list     (* or *)
    | FBtest of float array           (* linear test *)
    | FBtrue                          (* true *)
    | FBfalse                         (* false *)

  let rec flatify_term t oct =
    let n = oct.dimension in
    let rec randup = function
      | ITconstant (IntConstant s) | ITconstant (RealConstant s) -> 
	  begin 
	    try 
	      let a = Array.make (n+1) 0. in 
	      a.(n) <- float_of_string s;
	      FIlinear a
	    with Failure "float_of_string" -> FIrand
	  end
      | ITvar s ->
	  begin try 
	    let idx = VMap.find s oct.indices in
	    let s2 = Int31Map.find idx oct.variables in
	    if V.equal s s2 then
	      let a = Array.make (n+1) 0. in 
	      a.(idx) <- 1.; 
	      FIlinear a
	    else
	      FIrand
	  with Not_found -> FIrand end
      | ITunop (op,t1) -> 
	  begin match op with
	    | Clogic.Uminus -> 
		begin match randup t1 with
		  | FIrand -> FIrand
		  | FIlinear a1 ->
		      let a = Array.make (n+1) 0. in
		      for i=0 to n do a.(i) <- (-. a1.(i)) done;
		      FIlinear a
		end
	    | Clogic.Uplus | Clogic.Uint_conversion ->
		randup t1
	    | Clogic.Utilde | Clogic.Ustar | Clogic.Uamp | Clogic.Uexact 
	    | Clogic.Umodel | Clogic.Uabs_real | Clogic.Usqrt_real 
	    | Clogic.Uround_error | Clogic.Utotal_error | Clogic.Ufloat_of_int
	    | Clogic.Uint_of_float | Clogic.Ufloat_conversion | Clogic.Unot ->
		FIrand
	  end
      | ITbinop (t1,op,t2) ->
	  begin match op with
	    | Clogic.Badd -> 
		begin match randup t1,randup t2 with
		  | FIrand,_ | _,FIrand -> FIrand
		  | FIlinear a1,FIlinear a2 ->
		      let a = Array.make (n+1) 0. in
		      for i=0 to n do a.(i) <- a1.(i) +. a2.(i) done;
		      FIlinear a
		end   
	    | Clogic.Bsub -> 
		begin match randup t1,randup t2 with
		  | FIrand,_ | _,FIrand -> FIrand
		  | FIlinear a1,FIlinear a2 ->
		      let a = Array.make (n+1) 0. in
		      for i=0 to n do a.(i) <- a1.(i) -. a2.(i) done;
		      FIlinear a
		end   
	    | Clogic.Bmul ->
		begin match randup t1,randup t2 with
		  | FIrand,_ | _,FIrand -> FIrand
		  | FIlinear a1,FIlinear a2 ->
		      begin try
			for i=0 to n-1 do 
			  if a1.(i)<>0. then raise Not_found done;
			let a = Array.make (n+1) 0. in
			for i=0 to n do a.(i) <- a1.(n) *. a2.(i) done;
			FIlinear a
		      with Not_found ->
			begin try
			  for i=0 to n-1 do 
			    if a2.(i)<>0. then raise Not_found done;
			  let a = Array.make (n+1) 0. in
			  for i=0 to n do a.(i) <- a2.(n) *. a1.(i) done;
			  FIlinear a
			with Not_found -> FIrand
			end
		      end
		end
	    | Clogic.Bdiv | Clogic.Bmod | Clogic.Bpow_real
	    | Clogic.Bbw_and | Clogic.Bbw_xor 
	    | Clogic.Bbw_or | Clogic.Bshift_left | Clogic.Bshift_right 
		-> FIrand
	  end
      | ITmax tlist | ITmin tlist as minmax_t ->
	    (* 
	    let v_of_t t = match t with
	      | ITvar s ->
		  let idx = VMap.find s oct.indices in
		  let s2 = Int31Map.find idx oct.variables in
		  if V.equal s s2 then
		    (* variable is followed by octagon *)
		    s
		  else
		    raise Not_found
	      | _ -> raise Not_found
	    in
	    let _ = List.map v_of_t tlist in 
	    *)
	    let vminmax = V.generate_variable minmax_t in
	    let idx = 
	      try
		VMap.find vminmax oct.indices
	      with Not_found -> 
		raise (V.Introduce_variable vminmax)
	    in
	    let s2 = Int31Map.find idx oct.variables in
	    if V.equal vminmax s2 then
	      (* variable is followed by octagon *)
	      let a = Array.make (n+1) 0. in 
	      a.(idx) <- 1.; 
	      FIlinear a
	    else
	      raise (V.Introduce_variable vminmax)
      | ITany -> FIrand
    in randup t

  let flatify_predicate ?(guarantee=false) p oct =
    let n = oct.dimension in
    let restr_vars = restrained_variables oct in
    if debug_more then Coptions.lprintf 
      "[flatify_predicate] restr_vars %a@." 
      (print_list comma V.pretty) restr_vars;
    let p = V.translate_predicate restr_vars (V.P.explicit_pred p) in
    let rec simpl = function
      | IPfalse -> FBfalse
      | IPtrue -> FBtrue
      | IPand (p1,p2) -> 
	  FBand [simpl p1; simpl p2]
      | IPor (p1,p2) ->
	  FBor [simpl p1; simpl p2]
      | IPimplies _ | IPiff _ | IPnot _ ->
	  (* these constructs should have been removed by the call to
	     [explicit_pred] *)
          assert false
      | IPany -> FBrand
      | IPfull_separated _ -> FBrand (* or FBtrue ? *)
      | IPrel (t1,Clogic.Eq,t2) ->
	  FBand [simpl (IPrel (t1,Clogic.Le,t2)); 
		 simpl (IPrel (t1,Clogic.Ge,t2))]
      | IPrel (t1,Clogic.Neq,t2) ->
	  FBor [simpl (IPrel (t1,Clogic.Lt,t2)); 
		simpl (IPrel (t1,Clogic.Gt,t2))]
      | IPrel (t1,Clogic.Gt,t2) -> 
	  simpl (IPrel (t2,Clogic.Lt,t1))
      | IPrel (t1,Clogic.Ge,t2) -> 
	  simpl (IPrel (t2,Clogic.Le,t1))
      | IPrel (t1,Clogic.Lt,t2) ->
	  simpl (IPrel(t1,Clogic.Le,
		       ITbinop (t2,Clogic.Bsub,ITconstant (IntConstant "1"))))
      | IPrel (t1,Clogic.Le,t2) ->
	  begin match flatify_term t1 oct,flatify_term t2 oct with
	    | FIrand,_ | _,FIrand -> FBrand
	    | FIlinear a1,FIlinear a2 ->
		let a = Array.make (n+1) 0. in
		for i=0 to n do a.(i) <- a2.(i) -. a1.(i) done;
		FBtest a
	  end
      | IPnull_pointer _ | IPnot_null_pointer _ | IPnull_char_pointed _ 
      | IPnot_null_char_pointed _ ->
	  (* these constructs should have been removed by the call to
	     [translate_predicate] *)
          assert false
    in simpl p

  (* transfer functions *)

  let eval_assign ~backward var term oct =
    let idx = VMap.find var oct.indices in
    let new_octogon = match flatify_term term oct with
      | FIrand     -> 
	  (* same effect on forward and backward propagation *)
	  Oct.forget oct.octogon idx
      | FIlinear a -> 
	  if backward then
	    Oct.substitute_var oct.octogon idx (Oct.vnum_of_float a)
	  else
	    Oct.assign_var oct.octogon idx (Oct.vnum_of_float a)
    in
    { oct with octogon = new_octogon }

  (* exception raised by [eval_flat] when in guarantee mode to signal that 
     the test cannot be guaranteed due to some random part (or non-linear part
     that would have been translated to a random part).
     
     Non-convex parts (i.e. a disjunction) are treated differently,
     e.g. the test 
          [a != b] 
     which would be translated in 
          [a <= b-1 || a >= b+1]
     does not raise the exception [No_guarantee], although an octogon cannot
     in general guarantee such a non-convex test.
     See below.
   *)

  exception No_guarantee

  type or_collect_t =
    | Join of (t -> t -> t)
    | Meet of (t -> t -> t)

  let eval_flat ?(guarantee=false) ?(tagging=false) ~or_collect orig_oct pred =
    if debug_more then Coptions.lprintf 
      "[eval_flat] orig_oct %a@." pretty orig_oct;
    let rec eval oct = function
      | FBrand              -> 
	  if guarantee then
	    (* cannot guarantee anything if the predicate contains 
	       random parts *)
	    raise No_guarantee
	  else oct
      | FBtrue              -> oct
      | FBfalse             -> bottom (oct.dimension,oct.variables)
      | FBand l             -> List.fold_left eval oct l
      | FBtest f            ->
	  let num_var = ref 0 in
	  for i=0 to oct.dimension-1 do if f.(i) <> 0. then incr num_var done;
	  if guarantee && !num_var > 2 then 
	    (* The octagon domain cannot take into account exactly tests
	       with more than 2 variable involved, so we conservatively
	       consider the test cannot be guaranteed. *)
	    raise No_guarantee;
	  let new_octogon =
	    if tagging then
	      (* evaluating backward a constraint means tagging it to allow
		 following its transformation throughout the code *)
	      Oct.add_tagged_constraint oct.octogon (Oct.vnum_of_float f)
	    else 
	      Oct.add_constraint oct.octogon (Oct.vnum_of_float f)
	  in
	  { oct with octogon = new_octogon }
      | FBor l              ->
	  if guarantee then
	    (* cannot guarantee anything if the predicate contains 
	       non-convex parts. We should therefore raise the exception 
	       [No_guarantee]. 

	       Here we can do better since the result of this call will only
	       be compared to the initial octogon [orig_oct]. 
	       We can return any sub-result that is equal to [orig_oct],
	       and we can ignore those sub-results that raise [No_guarantee].
	       If all sub-results raise this exception, it is equivalent to 
	       return the bottom element.

	       It should also be noted that in the guarantee mode, since 
	       [eval_flat] does not perform any [join] operation, it returns
	       an octogon in normalized form if its argument was in normalized
	       form.
	     *)
	    let _,bottom_or_orig =
	      List.fold_left 
		(fun (found_orig,acc_oct as acc) e -> 
		  if found_orig then
		    acc
		  else
		    try 
		      let sub_oct = eval oct e in
		      if equal sub_oct orig_oct then
			true,orig_oct
		      else
			false,acc_oct
		    with No_guarantee -> false,acc_oct
		) (false,bottom (oct.dimension,oct.variables)) l
	    in bottom_or_orig
	  else
	    match or_collect with
	      | Join join ->
		  List.fold_left (fun acc e -> join (eval oct e) acc) 
		    (bottom (oct.dimension,oct.variables)) l
	      | Meet meet ->
		  let list_oct = List.map (eval oct) l in
		  let acc_oct = match list_oct with
		    | [] -> assert false (* not expected in code around *)
		    | fst_oct :: rest_oct ->
			List.fold_right meet rest_oct fst_oct
		  in
		  if is_empty acc_oct then 
		    (* if all octogons in [l] are empty, return empty, 
		       otherwise conflict may arise from operating the [meet]
		       over the or-ed conditions. In that case, return 
		       the current [oct]. *)
		    if List.length (List.filter is_empty list_oct) 
		      = List.length list_oct
		    then acc_oct else oct
		  else acc_oct
    in
    let res = eval orig_oct pred in
    if debug_more then Coptions.lprintf 
      "[eval_flat] result %a@." pretty res;
    res

  let eval_test_or_constraint ~tagging ~or_collect pred oct =
    let pred = flatify_predicate pred oct in
    eval_flat ~tagging ~or_collect oct pred

  let internal_guarantee_test ~or_collect pred oct =
    try
      let pred = flatify_predicate ~guarantee:true pred oct in
      let test_oct = eval_flat ~guarantee:true ~or_collect oct pred
	(* no need to normalize [test_oct], it should already be *)
      in
      (* if the predicate does not contain random parts and no more than
	 2 variables involved in every test, it has been taken into account
	 exactly by the octogon domain.
	 In that case, the test is guaranteed by the original [close_oct]
	 iff the new octogon [test_oct] is equal to it. *)
      equal oct test_oct
    with No_guarantee ->
      (* cannot guarantee anything if the predicate contains random parts 
	 or more than 2 variables in some test *)
      false

end

module Make_OctogonLattice (V : PVARIABLE) (I : INT_VALUE)
    : CLUSTER_LATTICE with module VV = V and module I = I 
      and type t = (V.t,int Map.Make(V).t) oct_t =
struct
  include Make_InternalOctogonLattice (V) (I)

  let join ?(backward=false) oct1 oct2 =
    { oct1 with octogon = Oct.union oct1.octogon oct2.octogon }

  let meet oct1 oct2 =
    { oct1 with octogon = Oct.inter oct1.octogon oct2.octogon }

  (* same transfer function for forward/backward test *)
  let eval_test ~backward = 
    eval_test_or_constraint ~tagging:false ~or_collect:(Join join)

  (* normalized form of an octogon: closed octogon *)
  let rec normalize oct = { oct with octogon = Oct.close oct.octogon }
  let finalize = normalize

  (* minimal form of an octogon *)
  let minimize oct = 
    { oct with octogon = Oct.m_to_oct (Oct.m_from_oct oct.octogon) }

  let subtract oct1 oct2 = 
    let oct1 = minimize oct1 in
    let oct2 = normalize oct2 in
    if debug_more then Coptions.lprintf 
      "[subtract] oct1 is %a@.oct2 is %a@." pretty oct1 pretty oct2;
    let new_octogon = Oct.subtract oct1.octogon oct2.octogon in
    { oct1 with octogon = new_octogon }

  let to_pred oct = internal_to_pred minimize (normalize oct)

  let guarantee_test pred oct =
    internal_guarantee_test ~or_collect:(Join join) pred (normalize oct)
end

module Make_ConstrainedOctogonLattice (V : PVARIABLE) (I : INT_VALUE)
    (NO : CLUSTER_LATTICE with module VV = V and module I = I 
			  and type t = (V.t,int Map.Make(V).t) oct_t)
    : CONSTRAINED_LATTICE with module VV = V and module I = I 
      and type t = (V.t,int Map.Make(V).t) oct_t =
struct
  include Make_InternalOctogonLattice (V) (I)

  module VarElim = VarElimination (V)

  let is_constrained oct =
    assert (Oct.hastags oct.octogon = Oct.hastags2 oct.octogon);
    Oct.hastags oct.octogon

  let get_unconstrained oct =
    let new_octogon = Oct.remove_tagged_constraints oct.octogon in
    { oct with octogon = new_octogon }

  let get_constrained oct =
    let new_octogon = Oct.remove_untagged_constraints oct.octogon in
    { oct with octogon = new_octogon }

  let make_unconstrained oct =
    let new_octogon = Oct.remove_tags oct.octogon in
    { oct with octogon = new_octogon }

  let make_constrained oct =
    let new_octogon = Oct.makeall_tags oct.octogon in
    { oct with octogon = new_octogon }

  let join_meet ~join loper roper oct1 oct2 =
    if is_constrained oct1 && is_constrained oct2 then
      let loct1 = get_unconstrained oct1 and roct1 = get_constrained oct1 in
      if debug_more then Coptions.lprintf 
	"[join/meet] loct1 is %a@.roct1 is %a@." pretty loct1 pretty roct1;
      let loct2 = get_unconstrained oct2 and roct2 = get_constrained oct2 in
      if debug_more then Coptions.lprintf 
	"[join/meet] loct2 is %a@.roct2 is %a@." pretty loct2 pretty roct2;
      let loct = Oct.close (loper loct1.octogon loct2.octogon) in
      if debug_more then Coptions.lprintf 
	"[join/meet] loct is %a@." pretty { oct1 with octogon = loct };
      let roct = roper roct1.octogon roct2.octogon in
      if debug_more then Coptions.lprintf 
	"[join/meet] roct is %a@." pretty { oct1 with octogon = roct };
      (*
	now if [loct] contains some inequality, e.g. x <= c or x - y <= c,
	then the corresponding inequality in [roct] should be ignored, if any.
	Indeed, constrained octogons cannot represent formulas of the form
            x > 1 => x > 2
	therefore the safe approximation in that case is to choose
            x > 1 => {}
	rather than 
            {}    => x > 2
      *)
      let res = { oct1 with octogon = Oct.complete loct roct } in
      if debug_more then Coptions.lprintf 
	"[join/meet] result is %a@." pretty res;
      res
    else if join && (is_constrained oct1 || is_constrained oct2) then
      (* one is not constrained *)
      let constr_oct,oct = 
	if is_constrained oct1 then oct1,oct2 else oct2,oct1
      in
      (* [constr_oct] contains the full context *)
      let unconstr_oct = get_unconstrained constr_oct in
      let merge_oct = make_unconstrained constr_oct in
      let join_oct = NO.join merge_oct oct in
      (* [sub_oct] is new rhs from join *)
      let sub_oct = NO.subtract join_oct unconstr_oct in
      (* AJOUTER CHAMP POUR SIGNIFIER JOIN FAIT, APRES TEST SUR sub_oct *)
      let rhs_oct = make_constrained sub_oct in
      let new_constr_oct = NO.meet unconstr_oct rhs_oct in
      new_constr_oct
    else 
      (* both unconstrained *)
      bottom (oct1.dimension,oct1.variables)

  let double_join oct1 oct2 =
    let loct1 = get_unconstrained oct1 and roct1 = get_constrained oct1 in
    let loct2 = get_unconstrained oct2 and roct2 = get_constrained oct2 in
    let loct = Oct.close (Oct.union loct1.octogon loct2.octogon) in
    let roct = Oct.union roct1.octogon roct2.octogon in
    { oct1 with octogon = Oct.complete loct roct }

  let join ?(backward=false) = 
    if backward then 
      double_join
    else
      join_meet ~join:true Oct.inter Oct.union

  let meet oct1 oct2 = (*join_meet ~join:false Oct.inter Oct.inter*)
    if is_constrained oct1 && is_constrained oct2 then
      join oct1 oct2
    else (* at least one is not constrained *)
      NO.meet oct1 oct2

  (* equivalent to the normal octogon [meet], used internally to put together
     some unconstrained part and some constrained part *)
  let inter oct1 oct2 =
    { oct1 with octogon = Oct.inter oct1.octogon oct2.octogon }

  (* normalized form of a constrained octogon *)
  let internal_normalize ~remove_left_full oct = 
    if is_constrained oct then
      let oct =
	if remove_left_full then
	  (* transform an octogon representing an implication with an empty
	     left part to an equivalent octogon with no implication *)
	  let left_oct = get_unconstrained oct in
	  let left_oct =
	    { left_oct with octogon = Oct.close left_oct.octogon } in
	  if debug_more then Coptions.lprintf 
	      "[normalize] normalized from %a@." pretty oct;
	  if is_full left_oct then make_unconstrained oct else oct
	else oct
      in
      if debug_more then Coptions.lprintf 
	  "[normalize] normalized to %a@." pretty oct;
      (* close the resulting octogon *)
      { oct with octogon = Oct.close oct.octogon }
    else
      (* constrained octogon without constraint is equivalent to empty one *)
      bottom (oct.dimension,oct.variables)

  (* external normalization function *)
  let normalize = internal_normalize ~remove_left_full:false
  let finalize = normalize

  (* function used only once on octogon, because it may remove the constraint
     left part if it is full. If reapplied, it would return the empty octogon.
     Used for printing or other queries not returning the resulting octogon.
   *)
(* CHANGE DUE TO ADDED CONTEXT OUTSIDE OF OCTOGON *)
  let normalize_only_once = internal_normalize ~remove_left_full:false

  (* minimal form of an octogon *)
  let minimize oct = 
    let unconstr_oct = get_unconstrained oct in
    let constr_oct = get_constrained oct in
    (* minimization by switching to hollow form of octogon and back only works
       on untagged octogons (so that closed octogon has appropriate 
       properties). This makes it necessary here to separate the tagged and
       untagged parts of the initial octogon to minimize the first one only. *)
    let unconstr_moct = 
      { oct with octogon = Oct.m_to_oct (Oct.m_from_oct unconstr_oct.octogon) }
    in
    inter unconstr_moct constr_oct

  let to_pred oct = internal_to_pred minimize (normalize_only_once oct)

  let guarantee_test pred oct = 
    internal_guarantee_test ~or_collect:(Join join) pred
      (get_unconstrained (normalize_only_once oct))

  (* noop in forward mode, normal test in backward mode *)
  let eval_test ~backward pred oct = 
    if backward then
      eval_test_or_constraint ~tagging:false ~or_collect:(Join double_join) pred oct
    else oct

  let eval_constraint pred oct =
    (* current use expects unconstrained or constrained [oct] here *)
    eval_test_or_constraint ~tagging:true ~or_collect:(Join join) pred oct
    
  let subtract oct1 oct2 =
    if equal oct1 oct2 then
      top (oct1.dimension,oct1.variables)
    else
      (* only unconstrained parts can be safely subtracted. Otherwise we would
	 have to tell whether a particular inequality in the octogon is 
	 contrained or not. It could be added if necessary. *)
      let oct1 = minimize oct1 in
      let oct2 = get_unconstrained oct2 in
      let new_octogon = Oct.subtract oct1.octogon oct2.octogon in
      { oct1 with octogon = new_octogon }
	
  let constrained_variables oct = followed_variables ~tagged:true oct

  let unconstrained_variables oct = followed_variables ~untagged:true oct

  let eliminate remove_vars oct =
    if debug then Coptions.lprintf 
      "[eliminate] initial oct %a@." pretty oct;
    (* get those variables from [remove_vars] that are in the current pack *)
    let remove_vars =
      List.filter (fun v -> is_targetted_variable oct v) remove_vars
    in
    if debug then Coptions.lprintf 
      "[eliminate] list of written variables %a@."
      (print_list comma V.pretty) remove_vars;
    let remove_vars =
      List.fold_right (fun v s -> VSet.add v s) remove_vars VSet.empty
    in

    let rec elim oct =
      (* keep only minimal relations to increase the chance of finding 
	 the adequate necessary inequality with Fourier-Motzkin *)
      let full_oct = normalize oct in
      let oct = minimize full_oct in
      if debug_more then Coptions.lprintf 
	"[eliminate] minimal oct %a@." pretty oct;
      let cstr_vars = constrained_variables oct in
      if debug_more then Coptions.lprintf 
	"[eliminate] list of constrained variables %a@."
	(print_list comma V.pretty) cstr_vars;
      (* deal with constrained variables only *)
      let _,new_oct = List.fold_left (fun (cur_full_oct,cur_oct) cstr_var ->
        if VSet.mem cstr_var remove_vars then
(*	  let idx = VMap.find cstr_var cur_oct.indices in*)
	  (* perform Fourier-Motzkin elimination instead of forget
	     operation on constrained variables *)
(*
	  let new_octogon = Oct.fourier_motzkin cur_oct.octogon idx in
	  let new_oct = { cur_oct with octogon = new_octogon } in
	  if is_constrained new_oct then
	    (* Fourier-Motzkin captured the constraint, continue. *)
	    new_oct
	  else
*)
	    (* Fourier-Motzkin with constants *)
	    let p_full_oct = match to_pred cur_full_oct with
		(* constrained octogon must have an associate predicate *)
	      | Some p -> p | None -> assert false
	    in
	    let p_oct = match to_pred cur_oct with
		(* constrained octogon must have an associate predicate *)
	      | Some p -> p | None -> assert false
	    in
	    let p_fm = 
	      VarElim.fourier_motzkin cstr_var ~full:p_full_oct p_oct in
	    if debug then Coptions.lprintf
	      "[eliminate] Result of Fourier-Motzkin is %a@." 
	      V.P.pretty p_fm;
	    let new_oct = 
	      remove_variable cstr_var (eval_constraint p_fm cur_oct)
	    in
	    if debug_more then Coptions.lprintf 
	      "[eliminate] fourier-motzkin on %a@." V.pretty cstr_var;
	    if is_constrained new_oct then
	      (* Fourier-Motzkin captured the constraint, continue. *)
	      normalize new_oct,new_oct
	    else
	      (* try transitivity instead of Fourier-Motzkin *)
	      let p_trans = VarElim.transitivity cstr_var p_oct in
	      let new_oct =
		remove_variable cstr_var (eval_constraint p_trans cur_oct)
	      in
	      normalize new_oct,new_oct
	else cur_full_oct,cur_oct
      ) (full_oct,oct) cstr_vars 
      in
      let new_cstr_vars = constrained_variables new_oct in
      let new_cstr_vars = 
	List.filter (fun v -> not (List.mem v cstr_vars)) new_cstr_vars
      in
      if List.length new_cstr_vars = 0 then
	(* no new constrained variables, elimination by Fourier-Motzkin is 
	   finished *)
	new_oct
      else
	elim new_oct
    in

    let new_oct =
      if is_constrained oct then
	(* octogon is constrained. Treat specially constrained variables. *)
	elim oct
      else oct
    in
(*      let new_oct =
	List.fold_left 
	  (fun cur_oct v ->
	     let cstr_vars = constrained_variables cur_oct in
	     if debug_more then Coptions.lprintf 
	       "[eliminate] list of constrained variables %a@."
	       (print_list comma V.pretty) cstr_vars;
	     let cstr_vars =
	       List.fold_right (fun v s -> VSet.add v s) cstr_vars VSet.empty
	     in
	     let idx = VMap.find v cur_oct.indices in
	     let new_octogon =
	       if VSet.mem v cstr_vars then
		 (* perform Fourier-Motzkin elimination instead of forget
		    operation on constrained variables *)
		 begin
		   if debug_more then Coptions.lprintf 
		     "[eliminate] fourier-motzkin on %a@."
		     V.pretty v;
		   Oct.fourier_motzkin cur_oct.octogon idx
		 end
	       else
		 Oct.forget cur_oct.octogon idx
	     in
	     { cur_oct with octogon = new_octogon }
	  ) oct vl
      in
      if debug_more then Coptions.lprintf 
	  "[eliminate] new octogon %a@." pretty new_oct;
      new_oct
    else
*)
    (* normal octogon or constrained octogon after Fourier-Motzkin elimination.
       Forget variables. *)
    let new_octogon =
      VSet.fold (fun v cur_oct -> 
	let idx = VMap.find v oct.indices in Oct.forget cur_oct idx
      ) remove_vars new_oct.octogon
    in
    { oct with octogon = new_octogon }
end

module Make_ContextualLattice (V : PVARIABLE) (I : INT_VALUE) 
    (Ctxt : PACKED_CLUSTER_LATTICE with module V = V)
    (Cstr : PACKED_CONSTRAINED_LATTICE with module V = V)
    (Brdg : CONTEXTUAL_BRIDGE 
    with module Contxt = Ctxt and module Constr = Cstr)
    : PACKED_CONTEXTUAL_LATTICE 
    with module V = V and module I = I and module Contxt = Ctxt 
    and module Constr = Cstr and module Bridge = Brdg =
struct
  module V = V         module I = I         type var_t = V.t

  module VSet = Set.Make (V)

  module Contxt = Ctxt
  module Constr = Cstr
  module Bridge = Brdg

  (* global counter that uniquely identifies conditional abstract values *)
  let next_id = ref 0

  type cond_t = { joined : bool; do_join : bool; cond : Constr.t }

  type t = 
     {
       main_context : Contxt.t;
       (* conditionals are identified by a unique integer.
	  The conditional may be [Constr.bottom], which means that in 
	  this branch this conditional cannot give information. 
	  This is useful when joining conditionals (e.g. after an [if]) to
	  propagate the fact the conditional cannot be used anymore. 
       *)
       conditionals : cond_t Int31Map.t;
     }

  type dim_t = unit

  let bottom () = { main_context = Contxt.bottom (); 
		    conditionals = Int31Map.empty; }
  let top () = { main_context = Contxt.top (); 
		 conditionals = Int31Map.empty; }

  let init = top

  let mapcond f cond =
    { joined = cond.joined; do_join = cond.do_join; cond = f cond.cond; }
  let opcond f cond = f cond.cond
  let binopcond f cond1 cond2 = f cond1.cond cond2.cond
  let crcond ~joined ~do_join cond = 
    { joined = joined; do_join = do_join; cond = cond; }
  let nwcond ~do_join cond = 
    { joined = false; do_join = do_join; cond = cond; }
  let jncond cond = { joined = true; do_join = true; cond = cond; }

  (* functions for packing *)

  let pack_variables var_llist =
    Contxt.pack_variables var_llist; Constr.pack_variables var_llist

  let is_packed_variable var = 
    Contxt.is_packed_variable var || Constr.is_packed_variable var

  (* lattice operations *)

  let eliminate_conditionals ctxt = { ctxt with conditionals = Int31Map.empty }

  let normalize_separately ctxt =
    let new_main = Contxt.normalize ctxt.main_context in
    let new_cond = Int31Map.map (mapcond Constr.normalize) ctxt.conditionals in
    let new_cond = Int31Map.fold (fun cid cond m ->
      (* remove unconstrained conditionals *)
      if Constr.is_constrained cond.cond then
	Int31Map.add cid cond m
      else m) new_cond Int31Map.empty
    in { main_context = new_main; conditionals = new_cond; }

  let normalize ctxt =
    let ctxt = normalize_separately ctxt in
    if Contxt.is_empty ctxt.main_context then
      (* when the main context becomes empty, remove all conditional
	 information, so that future joins do no take this into account *)
      eliminate_conditionals ctxt
    else
      (* if the left part of a conditional is implied by the main context,
	 add its right part to the main context *)
      let new_main =
	Int31Map.fold (fun cid { cond=cond } cur_main ->
	  if Constr.is_constrained cond then
	    let left_cond = Bridge.get_unconstrained cond in
	    let cur_main = Contxt.normalize cur_main in
	    if debug_more then Coptions.lprintf
		"[eval_test] cur_main %a@." Contxt.pretty cur_main;
	    let cur_test = Contxt.normalize (Contxt.meet cur_main left_cond) in
	    if debug_more then Coptions.lprintf
		"[eval_test] cur_test %a@." Contxt.pretty cur_test;
	    if Contxt.equal cur_main cur_test then
	      (* left part of the conditional is implied by current context *)
	      let unconstr_cond = Bridge.make_unconstrained cond in
	      if debug_more then Coptions.lprintf
		  "[eval_test] add unconstr_cond %a@." 
		  Contxt.pretty unconstr_cond;
	      (* remove conditional, incorporated to main context *)
	      Contxt.meet cur_main unconstr_cond
	    else cur_main
	  else 
	    (* should be forbidden by normalization performed before *)
	    assert false)
	  ctxt.conditionals ctxt.main_context
      in 
      (* in any case, keep the conditional, for correction of future joins
	 with information from other paths *)
      { ctxt with main_context = new_main }

  let finalize ctxt =
    let ctxt = normalize ctxt in
    (* further reduce the context by removing conditionals
       - whose left part is implied by the main context
       (their right part being pushed into this main context by the call to
       [normalize] above)
       - whose right part is implied by the main context, which makes them
       uninformative
    *)
    let cur_main = ctxt.main_context in
    let new_cond = 
      Int31Map.fold (fun cid cond cur_cond ->
	if Constr.is_constrained cond.cond then
	  let joined = cond.joined and do_join = cond.do_join 
				   and cond = cond.cond in
	  let left_cond = Bridge.get_unconstrained cond in
	  let cur_test = Contxt.normalize (Contxt.meet cur_main left_cond) in
	  if Contxt.equal cur_main cur_test then
	    (* left part of the conditional is implied by current context *)
	    cur_cond
	  else 
	    let right_cond = 
	      Bridge.make_unconstrained (Bridge.get_constrained cond) in
	    let cur_test = Contxt.normalize (Contxt.meet cur_main right_cond)
	    in
	    if Contxt.equal cur_main cur_test then
	      (* right part of the conditional is implied by current context *)
	      cur_cond
	    else 
	      (* remove the already known main context from the conditional
		 currently examined, in order to minimize it *)
	      let new_cond = Bridge.subtract cond ctxt.main_context in
	      Int31Map.add cid (crcond ~joined ~do_join new_cond) cur_cond
	else
	  (* should be forbidden by normalization performed before *)
	  assert false)
	ctxt.conditionals Int31Map.empty
    in 
    (* keep the main context computed by [normalize] *)
    { ctxt with conditionals = new_cond; }

  let equal ctxt1 ctxt2 =
    Contxt.equal ctxt1.main_context ctxt2.main_context
    && Int31Map.equal (binopcond Constr.equal)
      ctxt1.conditionals ctxt2.conditionals
      
  let pretty fmt ctxt =
    let cond_list = Int31Map.fold (fun _ cond cl ->
      if Constr.is_empty cond.cond then
	cl
      else cond :: cl) ctxt.conditionals []
    in
    Format.fprintf fmt "main: %a@\ncond: %a" Contxt.pretty ctxt.main_context
      (print_list comma (fun fmt cond -> Constr.pretty fmt cond.cond)) 
      cond_list

  let join ?(backward=false) ctxt1 ctxt2 =
    let new_main = 
      Contxt.join ~backward ctxt1.main_context ctxt2.main_context 
    in
    (* join corresponding conditionals in [ctxt1] and [ctxt2].
       remove simply conditionals that do not have a counterpart. *)
    let new_cond = 
      Int31Map.fold (fun cid cond1 m ->
	try
	  let do_join = cond1.do_join in
	  let cond2 = Int31Map.find cid ctxt2.conditionals in
	  let cond = Constr.join ~backward cond1.cond cond2.cond in
	  Int31Map.add cid (nwcond ~do_join cond) m
  	with Not_found -> m)
	ctxt1.conditionals Int31Map.empty
    in
    { main_context = new_main; conditionals = new_cond; }

  let join_context ctxt1 ctxt2 =
    let new_main = Contxt.join ctxt1.main_context ctxt2.main_context in
    (* join corresponding conditionals in [ctxt1] and [ctxt2].
       join conditionals that do not have a counterpart with the main
       context from the opposite abstract value. *)
    let new_cond = 
      Int31Map.fold (fun cid cond1 m ->
(*	try
	  let cond2 = Int31Map.find cid ctxt2.conditionals in
	  let cond = Constr.join cond1.cond cond2.cond in
	  Int31Map.add cid (jncond cond) m
  	with Not_found -> 
*)
          if not cond1.do_join then Int31Map.add cid cond1 m else
	  let lhs_cond1 = Bridge.get_unconstrained cond1.cond in
	  let add_cond1 = Bridge.meet cond1.cond ctxt1.main_context in
	  if debug_more then Coptions.lprintf
	    "[join_context] add_cond1 %a and ctxt2.main_context %a@." 
	    Constr.pretty add_cond1 Contxt.pretty ctxt2.main_context;
	  let cond = Bridge.join add_cond1 ctxt2.main_context in
	  let rhs_cond = Bridge.get_constrained cond in
	  if debug_more then Coptions.lprintf
	    "[join_context] rhs_cond %a and lhs_cond1 %a@." 
	    Constr.pretty rhs_cond Contxt.pretty lhs_cond1;
	  let cond = Bridge.meet rhs_cond lhs_cond1 in
	  let cond = 
	    if Constr.is_constrained cond then jncond cond
	    else cond1
	  in
	  if debug then Coptions.lprintf
	    "[join_context] Transform condition %a@.[join_context] into %a@."
	    Constr.pretty cond1.cond Constr.pretty cond.cond;
	  Int31Map.add cid cond m)
	ctxt1.conditionals Int31Map.empty
    in
    let new_cond =
      Int31Map.fold (fun cid cond2 m ->
	try
	  let _ = Int31Map.find cid ctxt1.conditionals in
	  m (* already taken care of above *)
  	with Not_found -> 
          if not cond2.do_join then Int31Map.add cid cond2 m else
	  let lhs_cond2 = Bridge.get_unconstrained cond2.cond in
	  let add_cond2 = Bridge.meet cond2.cond ctxt2.main_context in
	  if debug_more then Coptions.lprintf
	    "[join_context] add_cond2 %a and ctxt1.main_context %a@." 
	    Constr.pretty add_cond2 Contxt.pretty ctxt1.main_context;
	  let cond = Bridge.join add_cond2 ctxt1.main_context in
	  let rhs_cond = Bridge.get_constrained cond in
	  if debug_more then Coptions.lprintf
	    "[join_context] rhs_cond %a and lhs_cond2 %a@." 
	    Constr.pretty rhs_cond Contxt.pretty lhs_cond2;
	  let cond = Bridge.meet rhs_cond lhs_cond2 in
	  let cond = 
	    if Constr.is_constrained cond then jncond cond
	    else cond2
	  in
	  if debug then Coptions.lprintf
	    "[join_context] Transform condition %a@.[join_context] into %a@."
	    Constr.pretty cond2.cond Constr.pretty cond.cond;
	  Int31Map.add cid cond m)
	ctxt2.conditionals new_cond
    in
    let new_oct = { main_context = new_main; conditionals = new_cond; } in
    if debug then Coptions.lprintf
      "[join_context] Resulting in context@.[join_context] %a@."
      pretty new_oct;
    new_oct

  let meet ctxt1 ctxt2 =
    let new_main = Contxt.meet ctxt1.main_context ctxt2.main_context in
    (* meet corresponding conditionals in [ctxt1] and [ctxt2].
       add simply conditionals that do not have a counterpart. *)
    let new_cond = 
      Int31Map.fold (fun cid cond1 m ->
	try
	  let do_join = cond1.do_join in
	  let cond2 = Int31Map.find cid ctxt2.conditionals in
	  let cond = Constr.meet cond1.cond cond2.cond in
	  Int31Map.add cid (nwcond ~do_join cond) m
	with Not_found -> Int31Map.add cid cond1 m)
	ctxt1.conditionals ctxt2.conditionals
    in
    { main_context = new_main; conditionals = new_cond; }

  let widening ws ~old_value ~new_value = 
    (* widening has a meaning only for main context *)
    assert (Int31Map.is_empty old_value.conditionals);
    assert (Int31Map.is_empty new_value.conditionals);
    let new_main = 
      Contxt.widening ws old_value.main_context new_value.main_context in
    { old_value with main_context = new_main }

  let to_pred ctxt =
    let pred_main = Contxt.to_pred ctxt.main_context in
    let pred_cond = Int31Map.map (opcond Constr.to_pred) ctxt.conditionals in
    Int31Map.fold (fun _ p1_opt p2_opt -> match p1_opt,p2_opt with
    | None,None -> None
    | None,Some p | Some p,None -> Some p
    | Some p1,Some p2 -> Some (IPand (p1,p2)))
      pred_cond pred_main 

  let restrained_variables ctxt =
    let set_of_list l = List.fold_right VSet.add l VSet.empty in
    let vset = Int31Map.fold 
	(fun _ cond s ->
	  VSet.fold VSet.add 
	    (set_of_list (Constr.restrained_variables cond.cond)) s
	) ctxt.conditionals 
	(set_of_list (Contxt.restrained_variables ctxt.main_context))
    in
    VSet.fold (fun x l -> x :: l) vset []

  let remove_variable var ctxt =
    let new_main = Contxt.remove_variable var ctxt.main_context in
    let new_cond = 
      Int31Map.map (mapcond (Constr.remove_variable var)) ctxt.conditionals 
    in { main_context = new_main; conditionals = new_cond; }

  let remove_variable_conditionals var ctxt =
    let new_cond = 
      Int31Map.map (fun cond ->
		      if cond.joined then cond 
		      else (mapcond (Constr.remove_variable var)) cond
		   ) ctxt.conditionals 
    in { main_context = ctxt.main_context; conditionals = new_cond; }

  let filter_variables ~remove ctxt =
    let restr_vars = restrained_variables ctxt in
    let remove_vars = List.filter remove restr_vars in
    List.fold_right remove_variable remove_vars ctxt

  let eval_assign ~backward var term ctxt =
    let new_main = 
      Contxt.eval_assign ~backward var term ctxt.main_context 
    in
    if Contxt.is_empty new_main then
      (* when the main context becomes empty, remove all conditional
	 information, so that future joins do no take this into account *)
      { main_context = new_main; conditionals = Int31Map.empty; }
    else
      let new_cond = Int31Map.map 
	(mapcond (Constr.eval_assign ~backward var term)) ctxt.conditionals
      in
      { main_context = new_main; conditionals = new_cond; }

  let eval_test ~backward pred ctxt =
    (* keep only constrained conditionals *)
    let ctxt = normalize_separately ctxt in
    let new_main = Contxt.eval_test ~backward pred ctxt.main_context 
    in
    if backward then
      (* during backward propagation, only dispatch test on conditionals *)
      let new_cond = Int31Map.map
	  (mapcond (Constr.eval_test ~backward pred)) ctxt.conditionals in
      { main_context = new_main; conditionals = new_cond; }
    else if Contxt.is_empty new_main then
      (* when the main context becomes empty, remove all conditional
	 information, so that future joins do no take this into account *)
      { main_context = new_main; conditionals = Int31Map.empty; }
    else
      let new_cond = Int31Map.map
	  (mapcond (Constr.eval_test ~backward pred)) ctxt.conditionals in
      (* if the left part of a conditional is implied by the main context,
	 add its right part to the main context.
	 Do this repeatedly until no more conditional is implied. *)
      let rec add_implied_cond cur_main cur_cond =
	let change = ref false in
	let new_main,new_cond =
	  Int31Map.fold (fun cid cond (cur_main,cur_cond) ->
	    if Constr.is_constrained cond.cond then
	      let left_cond = Bridge.get_unconstrained cond.cond in
	      let cur_main = Contxt.normalize cur_main in
	      if debug_more then Coptions.lprintf
		"[eval_test] cur_main %a@." Contxt.pretty cur_main;
	      let cur_test = Contxt.normalize (Contxt.meet cur_main left_cond)
	      in
	      if debug_more then Coptions.lprintf
		"[eval_test] cur_test %a@." Contxt.pretty cur_test;
	      if Contxt.equal cur_main cur_test then
		(* left part of the conditional is implied by current context *)
		let unconstr_cond = Bridge.make_unconstrained cond.cond in
		if debug_more then Coptions.lprintf
		  "[eval_test] add unconstr_cond %a@." 
		  Contxt.pretty unconstr_cond;
		(* remove conditional, incorporated to main context *)
		change := true;
		Contxt.meet cur_main unconstr_cond, cur_cond
	      else 
		(* keep conditional *)
		cur_main, Int31Map.add cid cond cur_cond
	    else 
	      (* should be forbidden by normalization performed before *)
	      assert false)
	    cur_cond (cur_main,Int31Map.empty)
	in
	if !change then add_implied_cond new_main new_cond
	else new_main,new_cond
      in
      let new_main,new_cond = add_implied_cond new_main new_cond
      in { main_context = new_main; conditionals = new_cond; }

  let guarantee_test pred ctxt = Contxt.guarantee_test pred ctxt.main_context

  let eliminate var_list ctxt =
    let new_main = 
      List.fold_right Contxt.remove_variable var_list ctxt.main_context in
    let new_cond = 
      Int31Map.map (mapcond (Constr.eliminate var_list)) ctxt.conditionals 
    in { main_context = new_main; conditionals = new_cond; }

  let get_context ctxt = ctxt.main_context

  let set_context ctxt main = { ctxt with main_context = main; }

  let has_conditionals ctxt = not (Int31Map.is_empty ctxt.conditionals)

  let format_singleton ctxt =
    let cond_list =
      Int31Map.fold (fun cid cond cl -> (cid,cond) :: cl) ctxt.conditionals []
    in
    match cond_list with
    | [cid,cond] ->
	if Constr.is_constrained cond.cond then
	  (* remove the already known main context from the conditional
	     currently examined, in order to minimize it *)
	  cid, cond.do_join, Bridge.subtract cond.cond ctxt.main_context
	else
	  (* return the initial constraint, so that future calls to 
	     [Constr.is_constrained] return [false] *)
	  cid, cond.do_join, cond.cond
    | _ -> failwith ("[format_singleton] should be passed only"
		       ^ " unique conditionals")

  let is_empty ctxt =
    let ctxt = normalize ctxt in Contxt.is_empty ctxt.main_context

  let is_full ctxt = 
    let ctxt = normalize ctxt in Contxt.is_full ctxt.main_context

  let add_conditional ctxt ~do_join (cid,cond) =
    let new_cond = Int31Map.add cid (nwcond ~do_join cond) ctxt.conditionals in
    { ctxt with conditionals = new_cond; }

  let add_new_conditional ctxt ~do_join cond =
    let new_cid = !next_id in incr next_id; 
    add_conditional ctxt ~do_join (new_cid,cond)

  let transform f g ctxt =
    let new_main = f ctxt.main_context in
    let new_cond = Int31Map.map (mapcond g) ctxt.conditionals in
    { main_context = new_main; conditionals = new_cond; }    

  let fold f g ctxt init =
    Int31Map.fold (fun _ cond acc -> g cond.cond acc) ctxt.conditionals 
      (f ctxt.main_context init)

  let subtract ctxt1 ctxt2 =
    let new_main = Contxt.subtract ctxt1.main_context ctxt2.main_context in
    let new_cond =
      Int31Map.fold (fun cid cond1 m ->
	try
	  let do_join = cond1.do_join in
	  let cond2 = Int31Map.find cid ctxt2.conditionals in
	  let new_cond = Constr.subtract cond1.cond cond2.cond in
	  if Constr.is_constrained new_cond then
	    Int31Map.add cid (nwcond ~do_join new_cond) m
	  else m
  	with Not_found -> Int31Map.add cid cond1 m)
	ctxt1.conditionals Int31Map.empty
    in
    { main_context = new_main; conditionals = new_cond; }
      
end

module Make_SeparationLattice (V : PVARIABLE) (I : INT_VALUE) 
    : SEPARATION_LATTICE with module V = V and module I = I =
struct
  module V = V         module I = I         type var_t = V.t

  module VSet = Set.Make (V)
  module VPair = Pair.Make (V) (V)
  module VPSet = Set.Make (VPair)

  type t = VPSet.t

  type dim_t = unit

  let top () = VPSet.empty
  let bottom () = VPSet.empty
  let init = bottom

  let equal = VPSet.equal

  let pretty fmt seps =
    let sepl = VPSet.fold (fun sep sl -> sep :: sl) seps [] in
    print_list comma (fun fmt sep -> Format.fprintf fmt "full_separated(%a,%a)"
	V.pretty (fst sep) V.pretty (snd sep)) fmt sepl
    
  let join ?(backward=false) = VPSet.inter

  let meet = VPSet.union

  let widening ws ~old_value ~new_value = join old_value new_value

  (* not used here *)
  let pack_variables _ = ()
  let is_packed_variable _ = false
  let guarantee_test _ _ = false

  let add_separated_pair v1 v2 seps = 
    if V.equal v1 v2 then seps else VPSet.add (v1,v2) seps

  let get_separated_pairs seps =
    VPSet.fold (fun sep sl -> sep :: sl) seps []

  let fully_separated v1 v2 seps =
    VPSet.exists (fun sep -> (V.equal (fst sep) v1 && V.equal (snd sep) v2)
    || (V.equal (fst sep) v2 && V.equal (snd sep) v1)) seps

  let eval_test ~backward pred seps = 
    let preds = V.P.get_conjuncts pred in
    (* allow pointer arithmetic *)
    let rec get_pair t1 t2 = match t1,t2 with
      | ITvar v1,ITvar v2 -> Some (v1,v2)
      | ITbinop (t1,_,_),t2 -> get_pair t1 t2
      | t1,ITbinop (t2,_,_) -> get_pair t1 t2
      | _ -> None
    in
    List.fold_left 
      (fun seps p -> match p with
	 | IPfull_separated (t1,t2) -> 
	     begin match get_pair t1 t2 with
	       | None -> seps
	       | Some (v1,v2) ->
		   add_separated_pair v1 v2 seps
	     end
	 | _ -> seps) seps preds
      
  let sep_to_pred sep = 
    Some (IPfull_separated (ITvar (fst sep),ITvar (snd sep)))

  let from_pred pred = eval_test ~backward:false pred (bottom ())

  let to_pred seps =
    VPSet.fold (fun sep p_opt ->
      match p_opt,sep_to_pred sep with
      | None,None -> None
      | None,Some p | Some p,None -> Some p
      | Some p1,Some p2 -> Some (IPand (p1,p2))) seps None

  let restrained_variables seps =
    let vset = VPSet.fold (fun sep s ->
      VSet.add (fst sep) (VSet.add (snd sep) s)) seps VSet.empty
    in
    VSet.fold (fun x l -> x :: l) vset []

  let remove_variable var seps =
    VPSet.filter 
      (fun sep -> not (V.equal var (fst sep) || V.equal var (snd sep))) seps

  let normalize seps = seps
  let finalize = normalize

  let subtract = VPSet.diff

  let is_empty = VPSet.is_empty
  let is_full _ = false

  let eval_assign ~backward var term seps = remove_variable var seps

end

module Make_ReadWriteLattice (V : PVARIABLE) (I : INT_VALUE)
    (S : SEPARATION_LATTICE with module V = V and module I = I)
    : READ_WRITE_LATTICE with module V = V and module I = I =
struct
  module V = V         module I = I         type var_t = V.t

  type access_t =
    | Read of V.t
    | Write of V.t
    | Param of V.t

  module AccessNode =
  struct
    type t = access_t
    let equal = ( = )
    let compare = Pervasives.compare
    let hash = Hashtbl.hash
    let get_variable = function
      | Read v -> v
      | Write v -> v
      | Param v -> v
  end

  module Self = Graph.Persistent.Graph.Concrete (AccessNode)

  type t = Self.t
  type dim_t = unit

  let top () = Self.empty
  let bottom () = Self.empty
  let init = bottom

  let equal g1 g2 = (g1 == g2)

  let join ?(backward=false) g1 g2 =
    let g = Self.fold_vertex (fun v g -> Self.add_vertex g v) g1 g2 in
    Self.fold_edges (fun v1 v2 g -> Self.add_edge g v1 v2) g1 g

  let meet _ _ = failwith "Not implemented"

  let widening ws ~old_value ~new_value = join old_value new_value

  (* not used here *)
  let pack_variables _ = ()
  let is_packed_variable _ = false
  let guarantee_test _ _ = false

  let eval_test ~backward pred g = g
    
  let edge_to_pred v1 v2 = 
    let v1 = AccessNode.get_variable v1 in
    let v2 = AccessNode.get_variable v2 in
    Some (IPfull_separated (ITvar v1,ITvar v2))

  let to_pred g =
    Self.fold_edges (fun v1 v2 p_opt ->
      match p_opt,edge_to_pred v1 v2 with
      | None,None -> None
      | None,Some p | Some p,None -> Some p
      | Some p1,Some p2 -> Some (IPand (p1,p2))) g None

  let pretty fmt g = match to_pred g with
    | None -> Format.fprintf fmt "empty graph"
    | Some p -> V.P.pretty fmt p

  let restrained_variables _ = failwith "Not implemented"

  let remove_variable var g = 
    let new_g = Self.remove_vertex g (Read var) in
    let new_g = Self.remove_vertex new_g (Write var) in
    Self.remove_vertex new_g (Param var)
    
  let normalize g = g
  let finalize = normalize

  let subtract g1 g2 =
    Self.fold_edges (fun v1 v2 g -> Self.remove_edge g v1 v2) g2 g1

  let is_empty = Self.is_empty
  let is_full _ = false

  let eval_assign ~backward var term g = remove_variable var g

  let eval_read v g =
    if debug_more then Coptions.lprintf
      "[eval_read] read %a, current %a@." V.pretty v pretty g;
    Self.add_vertex g (Read v)

  let eval_write v g =
    if debug_more then Coptions.lprintf
      "[eval_write] write %a, current %a@." V.pretty v pretty g;
    let new_g = Self.add_vertex g (Write v) in
    Self.fold_vertex 
      (fun w g -> match w with
	 | Write _ | Param _ -> g
	 | Read _ -> Self.add_edge g w (Write v)) g new_g

  let eval_precondition p g =
    if debug_more then Coptions.lprintf
      "[eval_separation] sep %a, current %a@." 
      V.P.pretty p pretty g;
    let sepl = S.get_separated_pairs (S.from_pred p) in
    List.fold_left 
      (fun new_g (v1,v2) ->
	 let new_g = Self.add_vertex new_g (Param v1) in
	 let new_g = Self.add_vertex new_g (Param v2) in
	 Self.add_edge new_g (Param v1) (Param v2)
      ) g sepl
end

module Make_PredicateLattice (V : PVARIABLE) (I : INT_VALUE) 
  : PACKED_CLUSTER_LATTICE with module V = V and module I = I =
struct
  module V = V         module I = I         type var_t = V.t
  
  type state_t = {
    (* abstract state captured by the current predicate abstraction *)
    state : bool V.PM.t;
    (* dependencies between variables and the predicates they appear in *)
    deps : V.PS.t V.M.t;
  }

  type t = NORMAL of state_t | EMPTY

  type dim_t = unit

  let bottom () = EMPTY
  let top () = NORMAL { state = V.PM.empty; deps = V.M.empty; }
  let init = top

  let is_full = function
    | EMPTY -> false
    | NORMAL ps -> V.PM.is_empty ps.state

  let is_empty = function
    | EMPTY -> true
    | NORMAL _ -> false

  (* [state] field captures all relevant information for 
     an external description *)
  let equal ps1 ps2 = match ps1,ps2 with
    | EMPTY,EMPTY -> true
    | EMPTY,_ | _,EMPTY -> false
    | NORMAL ps1,NORMAL ps2 -> V.PM.equal ( = ) ps1.state ps2.state

  let rec norm_term t = match t with
    | ITconstant _ | ITvar _ | ITmax _ | ITmin _ -> t
    | ITunop (op,t1) -> ITunop (op,norm_term t1)
    | ITbinop (t1,op,t2) -> ITbinop (norm_term t1,op,norm_term t2)
    | ITany -> failwith "term ITany"

  let norm_predicate p = 
    try match p with
      | IPrel (t1,Eq,t2) -> Some (IPrel (norm_term t1,Eq,norm_term t2),true)
      | IPrel (t1,Neq,t2) -> Some (IPrel (norm_term t1,Eq,norm_term t2),false)
      | IPnull_pointer t1 -> Some (IPnull_pointer (norm_term t1),true)
      | IPnot_null_pointer t1 -> Some (IPnull_pointer (norm_term t1),false)
      | IPnull_char_pointed (t1,t2) -> 
	  Some (IPnull_char_pointed (norm_term t1,norm_term t2),true)
      | IPnot_null_char_pointed (t1,t2) -> 
	  Some (IPnull_char_pointed (norm_term t1,norm_term t2),false)
      | IPimplies _ | IPiff _ | IPnot _ ->
	  (* these constructs should have been removed by the call to
	     [explicit_pred] *)
          assert false
      | IPand _ ->
	  (* these constructs should have been removed by the call to
	     [get_conjuncts] *)
	  assert false
      | IPfalse | IPtrue | IPrel _ | IPor _ | IPfull_separated _ | IPany -> 
	  None
    with Failure "term ITany" -> None

  let denorm_predicate p = function
    | true -> p
    | false -> IPnot p

  let pretty fmt = function
    | EMPTY -> Format.fprintf fmt "EMPTY"
    | NORMAL ps ->
	let pl = 
	  V.PM.fold (fun p b acc_l -> denorm_predicate p b :: acc_l) ps.state []
	in
	Format.fprintf fmt "NORMAL(%a)"
	  (print_list (fun fmt () -> Format.fprintf fmt " && ") V.P.pretty) pl

  let join ?(backward=false) ps1 ps2 = match ps1,ps2 with
    | EMPTY,ps | ps,EMPTY -> ps
    | NORMAL ps1,NORMAL ps2 ->
	let new_state = 
	  V.PM.fold (fun p b1 acc_m ->
		       try
			 let b2 = V.PM.find p ps2.state in
			 if b1 = b2 then
			   (* [ps1] and [ps2] agree on the predicate [p] *)
			   V.PM.add p b1 acc_m
			 else acc_m
		       with Not_found -> acc_m
  		    ) ps1.state V.PM.empty
	in
	(* do not recompute exact dependencies, rather compute a superset of
	   the current dependencies *)
	let new_deps = 
	  V.M.fold (fun v ps1 acc_m ->
		      try 
			let ps2 = V.M.find v ps2.deps in
			V.M.add v (V.PS.union ps1 ps2) acc_m
		      with Not_found ->
			V.M.add v ps1 acc_m
		   ) ps1.deps ps2.deps
	in
	NORMAL { state = new_state; deps = new_deps; }
	  
  let meet ps1 ps2 = match ps1,ps2 with
    | EMPTY,ps | ps,EMPTY -> EMPTY
    | NORMAL ps1,NORMAL ps2 ->
	try
	  let new_state = 
	    V.PM.fold (fun p b1 acc_m ->
			 try
			   let b2 = V.PM.find p ps2.state in
			   if b1 = b2 then
			     (* [ps1] and [ps2] agree on the predicate [p] *)
			     V.PM.add p b1 acc_m
			   else 
			     failwith "No agreement"
			 with Not_found -> V.PM.add p b1 acc_m
  		      ) ps1.state ps2.state
	  in
	  (* exact dependencies are here the sum of [ps1] and [ps2] current
	     dependencies *)
	  let new_deps = 
	    V.M.fold (fun v ps1 acc_m ->
			try 
			  let ps2 = V.M.find v ps2.deps in
			  V.M.add v (V.PS.union ps1 ps2) acc_m
			with Not_found ->
			  V.M.add v ps1 acc_m
		     ) ps1.deps ps2.deps
	  in
	  NORMAL { state = new_state; deps = new_deps; }

	with Failure "No agreement" -> EMPTY

  let widening ws ~old_value ~new_value = old_value

  let is_packed_variable v = true
  let pack_variables _ = ()

  let normalize = function
    | EMPTY -> EMPTY
    | NORMAL ps ->
	(* compute the most accurate dependencies *)
	let new_deps =
	  V.PM.fold (fun p _ acc_m ->
		       let p_vars = V.P.collect_predicate_vars p in
		       List.fold_left (fun m v ->
					 try
					   let pset = V.M.find v m in
					   let new_pset = V.PS.add p pset in
					   V.M.add v new_pset m
					 with Not_found ->
					   let new_pset = V.PS.singleton p in
					   V.M.add v new_pset m
				      ) acc_m p_vars
		    ) ps.state V.M.empty
	in
	NORMAL { state = ps.state; deps = new_deps; }
	
  let finalize = normalize

  let restrained_variables ps = match normalize ps with
    | EMPTY -> []
    | NORMAL ps ->
	V.M.fold (fun v _ acc_l -> v :: acc_l) ps.deps []
	  
  let to_pred = function
    | EMPTY -> None
    | NORMAL ps ->
	let plist = 
	  V.PM.fold (fun p b acc_l -> denorm_predicate p b :: acc_l) ps.state []
	in
	match V.P.make_conjunct plist with
	  | IPtrue -> None
	  | p -> Some p

  let subtract ps1 ps2 = match ps1,ps2 with
    | EMPTY,_ -> EMPTY
    | ps1,EMPTY -> ps1
    | NORMAL ps1,NORMAL ps2 ->
	let new_state = 
	  V.PM.fold (fun p b1 acc_m ->
		       try
			 let b2 = V.PM.find p ps2.state in
			 if b1 = b2 then
			   (* [ps1] and [ps2] agree on the predicate [p] *)
			   acc_m
			 else 
			   V.PM.add p b1 acc_m
		       with Not_found -> V.PM.add p b1 acc_m
  		    ) ps1.state V.PM.empty
	in
	NORMAL { state = new_state; deps = ps1.deps; }	

  let remove_variable var = function
    | EMPTY -> EMPTY
    | NORMAL ps ->
	begin try 
	  let pset = V.M.find var ps.deps in
	  let new_state = 
	    V.PM.fold (fun p b acc_m ->
			 if V.PS.mem p pset then acc_m
			 else V.PM.add p b acc_m
		      ) ps.state V.PM.empty
	  in
	  (* do not recompute exact dependencies, rather compute 
	     a superset of the current dependencies *)
	  let new_deps = V.M.remove var ps.deps in
	  NORMAL { state = new_state; deps = new_deps; }
	with Not_found ->
	  NORMAL ps
	end

  let guarantee_test _ _ = false

  let singleton p = 
    let p = V.translate_predicate [] (V.P.explicit_pred p) in
    if debug_more then Coptions.lprintf
      "[singleton] translated predicate %a@." V.P.pretty p;
    match norm_predicate p with
      | None -> top ()
      | Some (p,b) -> 
	  let p_vars = V.P.collect_predicate_vars p in
	  let singl_state = V.PM.add p b V.PM.empty in
	  let p_singl = V.PS.singleton p in
	  let singl_deps =
	    List.fold_left (fun acc_m v -> V.M.add v p_singl acc_m)
	      V.M.empty p_vars
	  in
	  if debug_more then Coptions.lprintf
	    "[singleton] norm predicate (%a,%B)@." V.P.pretty p b;
	  NORMAL { state = singl_state; deps = singl_deps; }

  let eval_test ~backward pred = function _ -> top()
(* Bug with predicate and strcpy
    | EMPTY -> EMPTY
    | NORMAL _ as ps -> 
	let plist = V.P.get_conjuncts pred in
	let pslist = List.map singleton plist in
	List.fold_left meet ps pslist
*)

  let eval_assign ~backward var term ps = remove_variable var ps

end

module Make_InternalPairLattice (V : PVARIABLE) (I : INT_VALUE) 
  (L1 : PACKED_CLUSTER_LATTICE with module V = V and module I = I)
  (L2 : PACKED_CLUSTER_LATTICE with module V = V and module I = I) 
(*  : PACKED_CLUSTER_LATTICE with module V = V and module I = I 
			   and type t = L1.t * L2.t *) =
struct
  module V = V         module I = I         type var_t = V.t

  include Make_PairLattice(L1)(L2)

  let eval_assign ~backward var term (v1,v2) =
    (L1.eval_assign ~backward var term v1, L2.eval_assign ~backward var term v2)

  let eval_test ~backward pred (v1,v2) =
    (L1.eval_test ~backward pred v1, L2.eval_test ~backward pred v2)

  let remove_variable var (v1,v2) =
    (L1.remove_variable var v1, L2.remove_variable var v2)

  let normalize (v1,v2) = (L1.normalize v1, L2.normalize v2)

  let finalize (v1,v2) = (L1.finalize v1, L2.finalize v2)

  let subtract (v1,v2) (v3,v4) = (L1.subtract v1 v3, L2.subtract v2 v4)

  let restrained_variables (v1,v2) =
    L1.restrained_variables v1 @ (L2.restrained_variables v2)

  let is_empty (v1,v2) = L1.is_empty v1 || (L2.is_empty v2)

  let is_full (v1,v2) = L1.is_full v1 || (L2.is_full v2)
    
  let pack_variables vllist = L1.pack_variables vllist; L2.pack_variables vllist

  let is_packed_variable var =
    L1.is_packed_variable var || L2.is_packed_variable var

end

module Make_ClusterPairLattice (V : PVARIABLE) (I : INT_VALUE) 
  (L1 : PACKED_CLUSTER_LATTICE with module V = V and module I = I)
  (L2 : PACKED_CLUSTER_LATTICE with module V = V and module I = I) 
  : PACKED_CLUSTER_LATTICE with module V = V and module I = I 
			   and type t = L1.t * L2.t =
struct
  
  include Make_InternalPairLattice(V)(I)(L1)(L2)

  let guarantee_test pred (v1,v2) =
    L1.guarantee_test pred v1 || (L2.guarantee_test pred v2)

  let to_pred (v1,v2) = 
    match L1.to_pred v1,L2.to_pred v2 with
      | None,p | p,None -> p
      | Some p1,Some p2 -> Some (V.P.make_conjunct [p1;p2])

end

module Make_ConstrainedPairLattice (V : PVARIABLE) (I : INT_VALUE) 
  (L1 : PACKED_CLUSTER_LATTICE with module V = V and module I = I)
  (L2 : PACKED_CONSTRAINED_LATTICE with module V = V and module I = I) 
  : PACKED_CONSTRAINED_LATTICE with module V = V and module I = I 
			       and type t = L1.t * L2.t =
struct
  
  include Make_InternalPairLattice(V)(I)(L1)(L2)

  let guarantee_test pred (v1,v2) =
    L1.guarantee_test pred v1 || 
      (L1.is_full v1 && L2.guarantee_test pred v2)

  let to_pred (v1,v2) =
    match L1.to_pred v1,L2.to_pred v2 with
      | None,p | p,None -> p
      | Some p1,Some p2 -> 
	  let lhs_p2,rhs_p2 = V.P.get_implicants p2 in
	  let new_lhs = V.P.make_conjunct [p1;lhs_p2] in
	  Some (V.P.make_implication new_lhs rhs_p2)
    
  let eliminate vlist (v1,v2) = (v1,L2.eliminate vlist v2)

  let eval_constraint pred (v1,v2) = (v1,L2.eval_constraint pred v2)

  let is_constrained (v1,v2) = L2.is_constrained v2

  let get_unconstrained (v1,v2) = (v1,L2.get_unconstrained v2)

  let get_constrained (v1,v2) = (L1.top(),L2.get_constrained v2)

  let make_unconstrained (v1,v2) = (v1,L2.make_unconstrained v2)

  let unconstrained_variables (v1,v2) = 
    L1.restrained_variables v1 @ (L2.unconstrained_variables v2)

end


(*****************************************************************************
 *                                                                           *
 * 		Concrete modules for integer value analysis		     *
 *                                                                           *
 *****************************************************************************)

(* type used for generated terms *)
let int_term_type = Ctypes.c_int

(* type of a variable for integer analysis:
   - [Vvar v] describes a normal variable [v]
   - [Varrlen v] describes a logical variable, the application of the logical
   function [arrlen] to the normal variable [v]. The intended meaning is 
   the length of the typed array of elements pointed-to by [v] (possibly 1).
   - [Vstrlen v] describes a logical variable, the application of the logical
   function [strlen] to the normal variable [v]. The intended meaning is 
   the length of the string pointed-to by [v].
   - [Vterm t] represents the term [t]
*)
module Var : sig
  type var_t = 
    | Vvar of var_info
    | Varrlen of var_info
    | Vstrlen of var_info
    | Vterm of var_t int_term
  include PVARIABLE with type t = var_t
  val get_variable : t -> var_info
  val is_strlen : t -> bool
  val is_arrlen : t -> bool
  val safe_access_predicate : 
    ?read_string:bool -> ?after_read_string:bool 
    -> var_info -> t int_term -> t int_predicate
  val string_predicate : var_info -> t int_predicate
  val pointer_predicate : ?non_null:bool -> var_info -> t int_predicate
  val arrlen_term : T.t -> T.t
  val strlen_term : T.t -> T.t
end = struct

  type var_t = 
    | Vvar of var_info
    | Varrlen of var_info
    | Vstrlen of var_info
    | Vterm of var_t int_term

  module Self : ELEMENT_OF_CONTAINER with type t = var_t = 
  struct
    type t = var_t
    let compare = Pervasives.compare
    let equal = ( = )
    let hash = Hashtbl.hash
    let rec pretty fmt v = match v with
      | Vvar v -> Format.fprintf fmt "%s" v.var_name
      | Varrlen v -> Format.fprintf fmt "\\arrlen(%s)" v.var_name
      | Vstrlen v -> Format.fprintf fmt "\\strlen(%s)" v.var_name
      | Vterm _ -> Format.fprintf fmt "(term)" 
  end

  include Self

  exception Introduce_variable of t

  module S = Set.Make (Self)
  module M = Map.Make (Self)
  module H = Hashtbl.Make (Self)

  type iterm = t int_term
  type ipredicate = t int_predicate

  module T = TermOfVariable (Self)
  module P = PredicateOfVariable (Self) (T)

  module TS = Set.Make (T)
  module TM = Map.Make (T)
  module TH = Hashtbl.Make (T)

  module PS = Set.Make (P)
  module PM = Map.Make (P)
  module PH = Hashtbl.Make (P)

  let rec to_string v = match v with
    | Vvar v -> v.var_name
    | Varrlen v -> "\\arrlen(" ^ v.var_name ^ ")"
    | Vstrlen v -> "\\strlen(" ^ v.var_name ^ ")"
    | Vterm t -> "(term)"

  let get_variable = function
    | Vvar v | Varrlen v | Vstrlen v -> v
    | Vterm _ ->
	failwith "No single variable for term meta-variables"
  let is_strlen = function
    | Vvar _ | Varrlen _ | Vterm _ -> false
    | Vstrlen _ -> true
  let is_arrlen = function
    | Vvar _ | Vstrlen _ | Vterm _ -> false
    | Varrlen _ -> true

  let safe_access_predicate 
      ?(read_string=false) ?(after_read_string=false) v t_off =
    (* build the safe access predicate *)
    let t_upbound,op_upbound = 
      if read_string then ITvar (Vstrlen v),Clogic.Le
      else if after_read_string then ITvar (Vstrlen v),Clogic.Lt
      else ITvar (Varrlen v),Clogic.Lt
    in
    (* after string read ? offset < strlen(v) 
       string read ?       offset <= strlen(v) 
       other ?             offset < arrlen(v)
    *)
    let p_upsafe = IPrel (t_off,op_upbound,t_upbound) in
    let t_downbound = ITconstant (IntConstant "0") in
    (* offset >= 0 *)
    let p_downsafe = IPrel (t_off,Clogic.Ge,t_downbound) in
    IPand (p_upsafe,p_downsafe) 

  let string_predicate v =
    (* build the predicate that [v] is a string *)
    let strlen = ITvar (Vstrlen v) in
(*    let arrlen = ITvar (Varrlen v) in*)
    let zero = ITconstant (IntConstant "0") in
    (* 0 <= strlen(v) *)
    let p_lower = IPrel (zero,Clogic.Le,strlen) in
(*    (* strlen(v) < arrlen(v) *)
    let p_upper = IPrel (strlen,Clogic.Lt,arrlen) in
    IPand (p_lower,p_upper)
*)
    p_lower

  let pointer_predicate ?(non_null=false) v =
    (* build the predicate that [v] is a "valid" pointer: either null or
       pointing to some valid memory block *)
    let arrlen = ITvar (Varrlen v) in
    let zero = ITconstant (IntConstant "0") in
    (* non_null ? arrlen(v) > 0 
       other ?    arrlen(v) >= 0
    *)
    let op = if non_null then Clogic.Lt else Clogic.Le in
    IPrel (zero,op,arrlen)

  let translate_predicate restrained_variables p = 
    let rec trans = function
      | IPnull_pointer (ITvar (Vvar v)) -> IPany
      | IPnull_pointer _ -> IPany
      | IPnot_null_pointer (ITvar (Vvar v)) -> IPany
      | IPnot_null_pointer _ -> IPany
      | IPnull_char_pointed (ITvar (Vvar v), off) -> 
	  let strlen_var = Vstrlen v in
	  if not Coptions.absint_as_proof 
	    || List.mem strlen_var restrained_variables then
	    (* [p[offset] == 0] translated by [strlen(p) == offset] 
	       for strings *)
	    IPrel (ITvar strlen_var, Eq, off)
	  else
	    IPany
      | IPnull_char_pointed _ -> IPany
      | IPnot_null_char_pointed (ITvar (Vvar v), off) -> 
	  let strlen_var = Vstrlen v in
	  if not Coptions.absint_as_proof 
	    || List.mem strlen_var restrained_variables then
	    (* [p[offset] != 0] translated by [strlen(p) > offset] 
	       for strings *)
	    IPrel (ITvar (Vstrlen v), Gt, off)
	  else
	    IPany
      | IPnot_null_char_pointed _ -> IPany
      | IPfalse | IPtrue | IPany | IPrel _ | IPfull_separated _ as p -> p
      | IPand (p1,p2) -> IPand (trans p1, trans p2)
      | IPor (p1,p2) -> IPor (trans p1, trans p2)
      | IPimplies (p1,p2) -> IPimplies (trans p1, trans p2)
      | IPiff (p1,p2) -> IPiff (trans p1, trans p2)
      | IPnot p1 -> IPnot (trans p1)
    in
    trans p

  let generate_variable t = Vterm t

  let strlen_term t = match t with
  | ITvar (Vvar v) -> ITvar (Vstrlen v)
  | _ -> ITany

  let rec arrlen_term t = match t with
  | ITvar (Vvar v) -> ITvar (Varrlen v)
  | ITbinop (t1,op,t2) -> 
      begin match arrlen_term t1 with
      | ITany -> ITany
      | arrt1 -> ITbinop (arrt1,op,t2)
      end
  | _ -> ITany

end

module VarAsPVARIABLE : PVARIABLE 
  with type t = Var.t and type S.t = Var.S.t and type 'a M.t = 'a Var.M.t
  and type 'a H.t = 'a Var.H.t 

  and type PS.t = Var.PS.t and type 'a PM.t = 'a Var.PM.t
  and type 'a PH.t = 'a Var.PH.t

  and type TS.t = Var.TS.t and type 'a TM.t = 'a Var.TM.t
  and type 'a TH.t = 'a Var.TH.t
= Var

module VarMap = Map.Make (Var)
module VarSet = Set.Make (Var)

(* basic integer module based on Int32 *)
module Int : INT_VALUE with type t = int32 =
struct
  include Int32
  let length a b = add (sub b a) 1l
  let is_one a = a = one
  let is_zero a = a = zero
  let eq a b = a = b
  let lt a b = (compare a b < 0)
  let le a b = (compare a b <= 0)
  let gt a b = (compare a b > 0)
  let ge a b = (compare a b >= 0)
  let min a b = if le a b then a else b
  let max a b = if gt a b then a else b
  let pretty fmt a = Format.fprintf fmt "%ld" a
end

(* specialized intermediate language for integer analysis, built upon 
   CFGLangFromNormalized *)
module IntLangFromNormalized : sig

  include CFG_LANG_EXTERNAL

  (* query functions *)

    (* is this expression a binary arithmetic operation ? *)
  val expr_is_int_arith_binop : Node.t -> bool
    (* is this expression a binary logical operation ? *)
  val expr_is_logic_binop : Node.t -> bool
    (* is this expression a binary comparison operation ? *)
  val expr_is_compar_binop : Node.t -> bool
    (* get the operands of this binary operation *)
  val binop_get_operands : Node.t -> Node.t * Node.t
    (* is this expression a unary arithmetic operation ? *)
  val expr_is_int_arith_unop : Node.t -> bool
    (* is this expression a unary logical operation ? *)
  val expr_is_logic_unop : Node.t -> bool
    (* get the operand of this unary arithmetic operation *)
  val unop_get_operand : Node.t -> Node.t
    (* is this expression an addition ? *)
  val expr_is_add : Node.t -> bool
    (* is this expression a substraction ? *)
  val expr_is_sub : Node.t -> bool
    (* is this expression a multiplication ? *)
  val expr_is_mul : Node.t -> bool
    (* is this expression a division ? *)
  val expr_is_div : Node.t -> bool
    (* is this expression a negation ? *)
  val expr_is_neg : Node.t -> bool
    (* is this expression an identity ? Used for [Uplus] and [Uint_conversion]
       unary operators. *)
  val expr_is_id : Node.t -> bool
    (* is this expression a logical and ? *)
  val expr_is_and : Node.t -> bool
    (* is this expression a logical or ? *)
  val expr_is_or : Node.t -> bool
    (* is this expression a logical not ? *)
  val expr_is_not : Node.t -> bool
    (* is this expression a less than comparison ? *)
  val expr_is_less_than : Node.t -> bool
    (* is this expression a greater than comparison ? *)
  val expr_is_greater_than : Node.t -> bool
    (* is this expression a less or equal comparison ? *)
  val expr_is_less_or_equal : Node.t -> bool
    (* is this expression a greater or equal comparison ? *)
  val expr_is_greater_or_equal : Node.t -> bool
    (* is this expression an equality test ? *)
  val expr_is_equal : Node.t -> bool
    (* is this expression a disequality test ? *)
  val expr_is_not_equal : Node.t -> bool

  (* transformations *)

    (* push logical not inside as far as possible *)
  val push_not_inside : Node.t -> Node.t
    (* expand equal as 2 inequalities *)
  val expand_equal : Node.t -> Node.t
    (* takes as input a node and a term corresponding to the same assignment.
       In case it is an increment/decrement, patch it to add/subtract 1. *)
  val patch_term_for_incr_decr : Node.t -> Var.T.t -> Var.T.t
    (* translate an expression into a side-effect free term *)
  val from_expr : Node.t -> Var.T.t
    (* translate an test into a side-effect free predicate *)
  val from_test : Node.t -> Var.P.t
    (* translate a normalized predicate into an integer predicate *)
  val from_pred : Node.t -> Var.P.t

  (* constructors *)

    (* create a new assume statement *)
  val change_in_assume_stat : Node.t -> Var.P.t -> Node.t
    (* modify an existing assume/assert predicate. The optional node gives
       already known information. *)
  val grow_predicate : Node.t -> Node.t option -> Var.P.t -> Node.t
    (* create a predicate that expresses a safe access, if given a node
       targetted by the analysis. The first argument tells whether a given
       variable is to be considered or not. *)
  val memory_access_safe_predicate : 
    (Var.t -> bool) -> Var.t list -> Node.t -> Var.P.t option
    (* return a predicate that expresses call precondition, if any *)
  val call_precondition : Node.t -> Var.P.t option
    (* create a predicate that expresses a variable is a string, when 
       accessing a string in test (against zero) *)
  val string_access_predicate : Node.t -> Var.P.t option
    (* change type of dereference expression to make it a safe access *)
  val make_safe_access : Node.t -> Node.t
    (* derefence is safe by construction (e.g. array initialization) *)
  val is_safe_access : Node.t -> bool

end = struct
  
  include CFGLangFromNormalized

  let expr_is_selected_binop select node = match get_expr node with
    | NEbinary (_,op,_) -> select op
    | _ -> false

  let expr_is_int_arith_binop node = 
    let is_arith op = match op with
      | Badd_int _ | Bsub_int _ | Bmul_int _ | Bdiv_int _ -> true
      | _ -> false
    in
    expr_is_selected_binop is_arith node

  let expr_is_logic_binop node = 
    let is_logic op = match op with
      | Band | Bor -> true
      | _ -> false
    in
    expr_is_selected_binop is_logic node

  let expr_is_compar_binop node =
    let is_compar op = match op with
      | Blt | Bgt | Ble | Bge | Beq | Bneq -> true
      | _ -> false
    in
    expr_is_selected_binop is_compar node

  let binop_get_operands node = match get_expr node with
    | NEbinary (e1,_,e2) -> 
	create_tmp_node (Nexpr e1),create_tmp_node (Nexpr e2)
    | _ -> assert false

  let expr_is_selected_unop select node = match get_expr node with
    | NEunary (op,_) -> select op
    | _ -> false

  let expr_is_int_arith_unop node = 
    let is_arith op = match op with
      | Uplus | Uminus | Uint_conversion -> true
      | _ -> false
    in
    expr_is_selected_unop is_arith node

  let expr_is_logic_unop node =
    let is_logic op = match op with
      | Unot -> true
      | _ -> false
    in
    expr_is_selected_unop is_logic node

  let unop_get_operand node = match get_expr node with
    | NEunary (_,e1) -> 
	create_tmp_node (Nexpr e1)
    | _ -> assert false

  (* arithmetic operations *)

  let expr_is_add node = match get_expr node with
    | NEbinary (_,Badd_int _,_) -> true
    | _ -> false

  let expr_is_sub node = match get_expr node with
    | NEbinary (_,Bsub_int _,_) -> true
    | _ -> false

  let expr_is_mul node = match get_expr node with
    | NEbinary (_,Bmul_int _,_) -> true
    | _ -> false

  let expr_is_div node = match get_expr node with
    | NEbinary (_,Bdiv_int _,_) -> true
    | _ -> false

  let expr_is_neg node = match get_expr node with
    | NEunary (Uminus,e1) -> true
    | _ -> false

  let expr_is_id node = match get_expr node with
    | NEunary ((Uplus | Uint_conversion),e1) -> true
    | _ -> false

  (* logical operations *)

  let expr_is_and node = match get_expr node with
    | NEbinary (_,Band,e1) -> true
    | _ -> false

  let expr_is_or node = match get_expr node with
    | NEbinary (_,Bor,e1) -> true
    | _ -> false

  let expr_is_not node = match get_expr node with
    | NEunary (Unot,e1) -> true
    | _ -> false

  (* comparison operators *)
	
  let expr_is_less_than node = match get_expr node with
    | NEbinary (_,Blt,_) -> true
    | _ -> false

  let expr_is_greater_than node = match get_expr node with
    | NEbinary (_,Bgt,_) -> true
    | _ -> false

  let expr_is_less_or_equal node = match get_expr node with
    | NEbinary (_,Ble,_) -> true
    | _ -> false

  let expr_is_greater_or_equal node = match get_expr node with
    | NEbinary (_,Bge,_) -> true
    | _ -> false

  let expr_is_equal node = match get_expr node with
    | NEbinary (_,Beq,_) -> true
    | _ -> false

  let expr_is_not_equal node = match get_expr node with
    | NEbinary (_,Bneq,_) -> true
    | _ -> false

  let push_not_inside node =
    let rec push_not e = match e.nexpr_node with
      | NEbinary (e1,Band,e2) ->
	  let new_e1 = push_not e1 in
	  let new_e2 = push_not e2 in
	  { e with nexpr_node = NEbinary (new_e1,Bor,new_e2) }
      | NEbinary (e1,Bor,e2) ->
	  let new_e1 = push_not e1 in
	  let new_e2 = push_not e2 in
	  { e with nexpr_node = NEbinary (new_e1,Band,new_e2) }
      | NEunary (Unot,e1) ->
	  e1
      | NEbinary (e1,Blt,e2) ->
	  { e with nexpr_node = NEbinary (e1,Bge,e2) }
      | NEbinary (e1,Ble,e2) ->
	  { e with nexpr_node = NEbinary (e1,Bgt,e2) }
      | NEbinary (e1,Bgt,e2) ->
	  { e with nexpr_node = NEbinary (e1,Ble,e2) }
      | NEbinary (e1,Bge,e2) ->
	  { e with nexpr_node = NEbinary (e1,Blt,e2) }
      | NEbinary (e1,Beq,e2) ->
	  { e with nexpr_node = NEbinary (e1,Bneq,e2) }
      | NEbinary (e1,Bneq,e2) ->
	  { e with nexpr_node = NEbinary (e1,Beq,e2) }
      | _ -> e
    in
    let sub_node = unop_get_operand node in
    let new_e = push_not (get_e sub_node) in
    create_tmp_node (Nexpr new_e)

  let expand_equal node =
    let e = get_e node in
    let new_e = match e.nexpr_node with
      | NEbinary (e1,Beq,e2) -> 
	  let le = { e with nexpr_node = NEbinary (e1,Ble,e2) } in
	  let ge = { e with nexpr_node = NEbinary (e1,Bge,e2) } in
	  { e with nexpr_node = NEbinary (le,Band,ge) }
      | NEbinary (e1,Bneq,e2) -> 
	  let le = { e with nexpr_node = NEbinary (e1,Blt,e2) } in
	  let ge = { e with nexpr_node = NEbinary (e1,Bgt,e2) } in
	  { e with nexpr_node = NEbinary (le,Bor,ge) }
      | _ -> assert false
    in
    create_tmp_node (Nexpr new_e)

  let patch_term_for_incr_decr node t =
    match get_expr node with
      | NEincr (op,_) ->
	  begin match op with
	    | Uprefix_inc | Upostfix_inc ->
		ITbinop (t,Clogic.Badd,ITconstant (IntConstant "1"))
	    | Uprefix_dec | Upostfix_dec ->
		ITbinop (t,Clogic.Bsub,ITconstant (IntConstant "1"))
	  end
      | _ -> t

  (* takes as input an unary operator of type Cast.unary_operator.
     returns the corresponding operator in Clogic.term_unop, if any.
     It uses locally [Clogic.Uexact] to denote an operator with no effect on
     the value of its operand, to be removed by its caller. *)
  let from_unop op = match op with
    | Uplus | Uint_conversion -> 
	Some Clogic.Uexact
    | Uminus -> 
	Some Clogic.Uminus
    | Unot | Ustar | Uamp | Utilde 
    | Ufloat_of_int | Uint_of_float | Ufloat_conversion ->
	None

  type binop_relation =
    | Binop of term_binop
    | Relation of relation

  (* takes as input an binary operator of type Cast.binary_operator.
     returns either the corresponding operator in Clogic.term_binop 
     or the corresponding relation in Clogic.relation, if any. *)
  let from_binop op = match op with
    | Badd | Badd_int _ | Badd_float _ | Badd_pointer_int -> 
	Some (Binop Clogic.Badd)
    | Bsub | Bsub_int _ | Bsub_float _ | Bsub_pointer ->
	Some (Binop Clogic.Bsub)
    | Bmul | Bmul_int _ | Bmul_float _ ->
	Some (Binop Clogic.Bmul)
    | Bdiv | Bdiv_int _ | Bdiv_float _ ->
	Some (Binop Clogic.Bdiv)
    | Bmod | Bmod_int _ ->
	Some (Binop Clogic.Bmod)
    | Blt | Blt_int | Blt_float _ | Blt_pointer ->
	Some (Relation Clogic.Lt)
    | Bgt | Bgt_int | Bgt_float _ | Bgt_pointer ->
	Some (Relation Clogic.Gt)
    | Ble | Ble_int | Ble_float _ | Ble_pointer ->
	Some (Relation Clogic.Le)
    | Bge | Bge_int | Bge_float _ | Bge_pointer ->
	Some (Relation Clogic.Ge)
    | Beq| Beq_int | Beq_float _ | Beq_pointer ->
	Some (Relation Clogic.Eq)
    | Bneq | Bneq_int | Bneq_float _ | Bneq_pointer ->
	Some (Relation Clogic.Neq)
    | Bbw_and | Bbw_xor | Bbw_or | Band | Bor | Bshift_left | Bshift_right ->
	None

  type term_predicate = 
    | Term of Var.t int_term
    | Predicate of Var.t int_predicate

  (* translates the expression [e] into the closest term (for an expression)
     or the closest predicate (for a test), forgetting any side-effect 
     during the evaluation of [e] *)
  let rec from_expr_or_test ?(test=false) e = match e.nexpr_node with
    | NEnop -> 
	(* not denoting any value. This should not occur. *)
	assert false
    | NEconstant c ->
	Term (ITconstant c)
    | NEvar (Var_info v) ->
	if test && var_is_pointer v then 
	  Predicate (IPnot_null_pointer (ITvar (Var.Vvar v)))
	else
	  Term (ITvar (Var.Vvar v))
    | NEunary (op,e1) ->
	begin match from_unop op with
	  | None -> 
	      begin match op with
	        | Unot -> 
		    let p1 = from_test e1 in
		    Predicate (IPnot p1)
		| _ -> Term ITany
	      end
	  | Some op ->
	      let pt = from_expr_or_test ~test e1 in
	      begin match op with
	        | Uexact ->
		    (* [Uexact] used here to mean the operation is useless *)
		    pt
		| _ ->
		    begin match pt with
		      | Term t1 -> Term (ITunop (op,t1))
		      | Predicate _ -> Term ITany
		    end
 	      end
	end
    | NEbinary (e1,op,e2) ->
	begin match from_binop op with
	  | None -> 
	      begin match op with
	        | Band -> 
		    let p1 = from_test e1 in
		    let p2 = from_test e2 in
		    Predicate (IPand (p1,p2))
	        | Bor -> 
		    let p1 = from_test e1 in
		    let p2 = from_test e2 in
		    Predicate (IPor (p1,p2))
		| _ -> Term ITany
	      end
	  | Some (Binop op) ->
	      let t1 = from_expr e1 in
	      let t2 = from_expr e2 in
	      Term (ITbinop (t1,op,t2))
	  | Some (Relation op) ->
	      let is_zero e = match e.nexpr_node with
		| NEconstant (IntConstant "0") -> true
		| _ -> false
	      in
	      let destroy_null_test =
		if test then
		  match op with 
		    | Eq ->
			if is_zero (sub_skip_casts e1) then
			  Some (true,false,e2)
			else if is_zero (sub_skip_casts e2) then
			  Some (true,false,e1)
			else None
		    | Neq ->
			if is_zero (sub_skip_casts e1) then
			  Some (false,true,e2)
			else if is_zero (sub_skip_casts e2) then
			  Some (false,true,e1)
			else None
		    | _ -> None
		else None
	      in
	      match destroy_null_test with
		| None ->
		    let t1 = from_expr e1 in
		    let t2 = from_expr e2 in
		    Predicate (IPrel (t1,op,t2))
		| Some (test_null,test_not_null,etest) ->
		    if test_not_null then
		      Predicate (from_test etest)
		    else if test_null then
		      Predicate (IPnot (from_test etest))
		    else assert false
	end
    | NEincr (op,e1) ->
	let t1 = from_expr e1 in
	begin match op with
	  | Uprefix_inc | Uprefix_dec ->
	      (* since we ignore side-effects here, pre-increment and
		 pre-decrement have no effect. In fact their effect is already
		 taken care of. *)
	      Term t1
	  | Upostfix_inc ->
	      (* reverse the effect of the increment *)
	      Term (ITbinop (t1,Clogic.Bsub,ITconstant (IntConstant "1")))
	  | Upostfix_dec ->
	      (* reverse the effect of the decrement *)
	      Term (ITbinop (t1,Clogic.Badd,ITconstant (IntConstant "1")))
	end
    | NEseq (_,e2) ->
	(* since we ignore side-effects here, the first expression in 
	   the sequence has no effect *)
	Term (from_expr e2)
    | NEassign (e1,e2) ->
	(* since we ignore side-effects here, the assignment is equivalent
	   to its left-hand side, unless it is a post-increment/decrement,
	   in which case we must reverse the corresponding operation.
	   To increase precision, we could add the fact it should be equal to 
	   the right-hand side too, under some conditions that guarantee
	   the assignment did not change the rhs value. *)
	if test then
	  (* take into account the common case of testing a string end by 
	     simultaneously copying its value *)
	  let e2node = create_tmp_node (Nexpr (sub_skip_casts e2)) in
	  if expr_is_deref e2node then
	    match deref_get_variable_and_offset e2node with
	      | None -> Term (from_expr e1)
	      | Some (v,off_opt) ->
		  if expr_type_is_char e2node then
		    let t_off = match off_opt with
		      | None -> ITconstant (IntConstant "0")
		      | Some off -> from_expr (get_e off)
		    in
		    (* check that no variable apearing in [t_off] are assigned
		       in the operation *)
		    let t1 = from_expr e1 in
		    let v_off = Var.T.collect_term_vars t_off in
		    let v1 = Var.T.collect_term_vars t1 in
		    (* on terms, not original expressions *)
		    if List.exists (fun v -> List.mem v v1) v_off then
		      Term (from_expr e1)
		    else
		      Predicate
			(IPnot_null_char_pointed (ITvar (Var.Vvar v),t_off))
		  else Term (from_expr e1)
	  else Term (from_expr e1)
	else Term (from_expr e1)
    | NEassign_op (e1,_,_) ->
	Term (from_expr e1)
    | NEarrow (e1,zone,var) ->
	if test then
	  let enode = create_tmp_node (Nexpr e) in
	  match deref_get_variable_and_offset enode with
	    | None -> Term ITany
	    | Some (v,off_opt) ->
		if expr_type_is_char enode then
		  let t_off = match off_opt with
		    | None -> ITconstant (IntConstant "0")
		    | Some off -> from_expr (get_e off)
		  in
		  Predicate (IPnot_null_char_pointed (ITvar (Var.Vvar v),t_off))
		else Term ITany
	else Term ITany
    | NEcast (_,e1) -> from_expr_or_test ~test e1
    | NEvar (Fun_info _) | NEstring_literal _ 
    | NEmalloc _ | NEcall _ | NEcond _ ->
	Term ITany

  and from_expr e =
    match from_expr_or_test e with
      | Term t -> t
      | Predicate _ -> 
	  (* it could be the case e.g. 
	         a = (b < c);
	   *)
	  ITany

  and from_test e =
    match from_expr_or_test ~test:true e with
      | Predicate p -> p
      | Term t -> IPrel(t,Clogic.Neq,ITconstant (IntConstant "0"))

  let rec from_term t = match t.nterm_node with
    | NTconstant c -> ITconstant c
    | NTvar v -> ITvar (Var.Vvar v)
    | NTunop (op,t1) -> ITunop (op,from_term t1)
    | NTbinop (t1,op,t2) -> ITbinop (from_term t1,op,from_term t2)
    | NTarrlen t1 -> 
	begin match from_term t1 with
	  | ITvar (Var.Vvar v) -> ITvar (Var.Varrlen v)
	  | _ -> ITany
	end
    | NTstrlen (t1,_,_) ->
	begin match from_term t1 with
	  | ITvar (Var.Vvar v) -> ITvar (Var.Vstrlen v)
	  | _ -> ITany
	end
    | NTmin _ | NTmax _
    | NTapp _ | NTarrow _ | NTif _ | NTold _ | NTat _ | NTbase_addr _
    | NToffset _ | NTblock_length _ | NTcast _ | NTrange _ 
    | NTmaxint _ | NTminint _ -> ITany

  let rec from_pred p = match p.npred_node with
    | NPfalse -> IPfalse
    | NPtrue -> IPtrue
    | NPrel (t1,rel,t2) -> IPrel (from_term t1,rel,from_term t2)
    | NPand (p1,p2) -> IPand (from_pred p1,from_pred p2)
    | NPor (p1,p2) -> IPor (from_pred p1,from_pred p2)
    | NPimplies (p1,p2) -> IPimplies (from_pred p1,from_pred p2)
    | NPiff (p1,p2) -> IPiff (from_pred p1,from_pred p2)
    | NPnot p1 -> IPnot (from_pred p1)
    | NPfull_separated (t1,t2) -> IPfull_separated (from_term t1,from_term t2)
    | NPseparated _ | NPbound_separated _
    | NPapp _ | NPif _ | NPforall _ | NPexists _ | NPold _ | NPat _ | NPvalid _
    | NPvalid_index _ | NPvalid_range _ | NPfresh _ | NPnamed _  -> IPany

  (* give the correct interface *)
  let from_expr node = from_expr (get_e node)
  let from_test node = from_test (get_e node)
  let from_pred node = from_pred (get_p node)

  let rec to_term t loc =
    let tnode = match t with
      | ITconstant c -> 
	  NTconstant c
      | ITvar (Var.Vvar v) ->
	  NTvar v
      | ITvar (Var.Varrlen v) ->
	  let vt = to_term (ITvar (Var.Vvar v)) loc in
	  NTarrlen vt
      | ITvar (Var.Vstrlen v) ->
	  let vt = to_term (ITvar (Var.Vvar v)) loc in
	  (* [strlen(p)] depends on the value pointed to by [p].
	     Add fields to describe this dependency. *)
	  Cnorm.make_nstrlen_node_from_nterm vt
      | ITvar (Var.Vterm t) -> (to_term t loc).nterm_node
      | ITunop (op,t1) -> 
	  let nt1 = to_term t1 loc in
	  NTunop (op,nt1)
      | ITbinop (t1,op,t2) ->
	  let nt1 = to_term t1 loc in
	  let nt2 = to_term t2 loc in
	  NTbinop (nt1,op,nt2)
      | ITmin tl ->
	  let ntl = List.map (fun t -> to_term t loc) tl in
	  let rec norm = function
	    | [] -> assert false
	    | [a] -> a
	    | a :: r -> 
		let subnode = NTmin (a,norm r) in
		{ nterm_node = subnode; nterm_loc = loc; 
		  nterm_type = int_term_type }
	  in (norm ntl).nterm_node
      | ITmax tl ->
	  let ntl = List.map (fun t -> to_term t loc) tl in
	  let rec norm = function
	    | [] -> assert false
	    | [a] -> a
	    | a :: r -> 
		let subnode = NTmax (a,norm r) in
		{ nterm_node = subnode; nterm_loc = loc; 
		  nterm_type = int_term_type }
	  in (norm ntl).nterm_node
      | ITany -> 
	  (* no such undefined term should be produced as 
	     the result of the analysis *)
	  assert false
    in
    let ttype = match t with
      | ITvar (Var.Vvar v) ->
	  (* pointer variables should get a pointer type *)
	  v.var_type
      | ITconstant _ | ITvar _ | ITunop _ | ITbinop _
      | ITmin _ | ITmax _ | ITany ->
	  int_term_type
    in
    { nterm_node = tnode; nterm_loc = loc; nterm_type = ttype }

  let rec to_pred p loc = 
    let pnode = match p with
      | IPfalse -> NPfalse
      | IPtrue -> NPtrue
      | IPrel (t1,rel,t2) -> 
	  let nt1 = to_term t1 loc in
	  let nt2 = to_term t2 loc in
	  NPrel (nt1,rel,nt2)
      | IPand (p1,p2) -> 
	  let np1 = to_pred p1 loc in
	  let np2 = to_pred p2 loc in
	  NPand (np1,np2)
      | IPor (p1,p2) -> 
	  let np1 = to_pred p1 loc in
	  let np2 = to_pred p2 loc in
	  NPor (np1,np2)
      | IPimplies (p1,p2) -> 
	  let np1 = to_pred p1 loc in
	  let np2 = to_pred p2 loc in
	  NPimplies (np1,np2)
      | IPiff (p1,p2) -> 
	  let np1 = to_pred p1 loc in
	  let np2 = to_pred p2 loc in
	  NPiff (np1,np2)
      | IPnot p1 -> 
	  let np1 = to_pred p1 loc in
	  NPnot (np1)
      | IPfull_separated (t1,t2) ->
	  let nt1 = to_term t1 loc in
	  let nt2 = to_term t2 loc in
	  NPfull_separated (nt1,nt2)
      | IPany | IPnull_pointer _ | IPnot_null_pointer _ | IPnull_char_pointed _ 
      | IPnot_null_char_pointed _ ->
	  (* no such predicates should be produced as 
	     the result of the analysis *)
	  assert false
    in
    { npred_node = pnode; npred_loc = loc } 

  (* create an assume statement from a predicate [p] and a statement [node] 
     (that may not be an assume statement) *)
  let change_in_assume_stat node p =
    let s = get_s node in
    let np = to_pred p s.nst_loc in
    let new_s = NSassume np in
    let new_s = { s with nst_node = new_s } in
    create_tmp_node (Nstat new_s)

  (* add a predicate [p] to the assume predicate [node] *)
  let grow_predicate node assume_node_opt p =
    let old_p = get_p node in
    let np = to_pred p old_p.npred_loc in
    let assume_p = Option.app get_p assume_node_opt in
    let np = Option.fold (fun p1 p2 -> NPredicate.subtract p2 p1) assume_p np in
    let new_p = NPredicate.make_conjunct [old_p;np] in
    create_tmp_node (Npred new_p)

  let internal_access ?string_write ?string_read ?pointer_access
      is_packed_var restr_vars node =
    if debug_more then Coptions.lprintf
      "[internal_access] %a@." Node.pretty node;
    match get_node_kind node with
    | NKexpr | NKtest | NKlvalue ->
	if expr_is_deref node then
	  match deref_get_variable_and_offset node with
	  | None -> 
	      (* dereference form not recognized *)
	      None
	  | Some (v,off) ->
	      if is_packed_var (Var.Vvar v) then
		(* get equivalent term for offset *)
		let t_off = match off with
		| None -> ITconstant (IntConstant "0")
		| Some e -> from_expr e
		in
		(* build the safe access predicate *)
		if expr_type_is_char node 
		  && (List.mem (Var.Vstrlen v) restr_vars) then
		  match get_node_kind node with
		    | NKlvalue ->  
			if debug_more then Coptions.lprintf
			  "[internal_access] string write access@.";
			(* write access to a string *)
			begin match string_write with
			  | Some string_write -> Some (string_write v t_off)
			  | None -> None
			end
		    | NKexpr | NKtest ->
			if debug_more then Coptions.lprintf
			  "[internal_access] string read access@.";
			(* read access to a string *)
			begin match string_read with
			  | Some string_read -> Some (string_read v t_off)
			  | None -> None
			end
		    | _ -> assert false
		else
		  (* not a string access *)
		  begin match pointer_access with
		    | Some pointer_access -> Some (pointer_access v t_off)
		    | None -> None
		  end
	      else
		(* variable is not packed *)
		None
	else
	  (* expression is not a dereference *)
	  None
    | NKassume | NKassert | NKnone | NKdecl | NKstat
    | NKpred | NKterm | NKannot | NKspec -> 
	None

  (* create a predicate that expresses a safe access, if [node] targetted by
     the analysis. [is_packed_var] tells whether a given variable is to be
     considered or not. *)
  let memory_access_safe_predicate =
    internal_access ~string_write:Var.safe_access_predicate 
      ~string_read:(Var.safe_access_predicate ~read_string:true)
      ~pointer_access:Var.safe_access_predicate

  let call_precondition node =
    match get_node_kind node with
    | NKexpr | NKtest | NKlvalue ->
	if expr_is_call node then
	  match call_get_function node with
	  | None -> None
	  | Some func ->
	      (* get function precondition *)
	      begin match function_get_precondition func with
	      | None -> None
	      | Some p ->
		  let pred = from_pred p in
		  let vars = function_get_params func in
		  let params = List.map (fun v -> ITvar (Var.Vvar v)) vars in
		  let arrparams = 
		    List.map (fun v -> ITvar (Var.Varrlen v)) vars in
		  let strparams = 
		    List.map (fun v -> ITvar (Var.Vstrlen v)) vars in
		  let params = params @ arrparams @ strparams in
		  let args = call_get_args node in
		  let args = List.map from_expr args in
		  let arrargs = List.map Var.arrlen_term args in
		  let strargs = List.map Var.strlen_term args in
		  let args = args @ arrargs @ strargs in
		  let trans = List.map2 (fun param arg -> (param,arg))
		      params args in
		  let pred = Var.P.translate trans pred in
		  Some pred
	      end
	else None
    | NKassume | NKassert | NKnone | NKdecl | NKstat
    | NKpred | NKterm | NKannot | NKspec -> 
	None

  let string_access_predicate node =
    match get_node_kind node with
      | NKtest -> 
	  let p = Var.P.explicit_pred (from_test node) in
	  begin match p with
	    | IPnull_char_pointed (ITvar (Var.Vvar v), _) 
	    | IPnot_null_char_pointed (ITvar (Var.Vvar v), _) ->
		Some (Var.string_predicate v)
	    | _ -> None
	  end
      | _ -> None

  let is_safe_access node =
    let e = get_e node in
    match e.nexpr_node with
      | NEarrow (e1,zone,field) ->
	  let typ = e1.nexpr_type in
	  begin match typ.Ctypes.ctype_node with
	    | Ctypes.Tpointer (Ctypes.Valid _,_)
	    | Ctypes.Tarray (Ctypes.Valid _,_,_) -> true
	    | _ -> false
	  end
      | _ ->
	  (* should be called only on dereference *)
	  assert false

  (* change type of dereference expression to make it a safe access *)
  let make_safe_access node =
    let e = get_e node in
    match e.nexpr_node with
      | NEarrow (e1,zone,field) ->
	  let typ = e1.nexpr_type in
	  let new_typ = match typ.Ctypes.ctype_node with
	  | Ctypes.Tpointer (valid,t) -> 
	      Ctypes.Tpointer (Ctypes.Valid (Int64.zero,Int64.one) ,t)
	  | Ctypes.Tarray (valid,t,s) -> 
	      Ctypes.Tarray (Ctypes.Valid (Int64.zero,Int64.one) ,t,s)
	  | _ ->
	      (* should be called only on pointer or array access *)
	      assert false
	  in
	  let new_typ = { typ with Ctypes.ctype_node = new_typ } in
	  let new_e1 = { e1 with nexpr_type = new_typ } in
	  let new_e = { e with nexpr_node = NEarrow (new_e1,zone,field) } in
	  create_tmp_node (Nexpr new_e)
      | _ ->
	  (* should be called only on dereference *)
	  assert false
end

type sep_transform_tt = SepTrans

module Make_ConnectCFGtoSep 
  (RWL : READ_WRITE_LATTICE with module V = VarAsPVARIABLE)
  : CONNECTION with type node_t = IntLangFromNormalized.Node.t 
	       and type 'a node_hash_t = 'a IntLangFromNormalized.NodeHash.t 
	       and type absval_t = RWL.t
	       and type transform_t = sep_transform_tt =
struct
 
  open IntLangFromNormalized

  type node_t = Node.t
  type 'a node_hash_t = 'a NodeHash.t
  type absval_t = RWL.t
  type 'a analysis_t = 'a pair_t node_hash_t
  type absint_analysis_t = absval_t analysis_t
  type transform_t = sep_transform_tt

  let widening_threshold = None
  let widening_strategy = WidenFast
 
  let transfer ?(backward=false) ?(with_assert=false) ?(one_pass=false) 
      ?previous_value node cur_val =

    if debug_more then Coptions.lprintf 
      "[transfer] %a@." Node.pretty node;

    (* this transfer function is only meant to be used in one-pass backward
       propagation, to discover necessary separation conditions *)
    assert (backward && one_pass);

    match get_node_kind node with
      | NKlvalue -> 
	  (* voluntarily excluded from treatment below to treat differently
	     read and write accesses *)
	  cur_val

      | NKstat ->
	  if backward && stat_is_decl node then 
	    (* ignore information on variable before its declaration *)
	    let var = decl_stat_get_var node in
	    let new_val = 
	      RWL.remove_variable (Var.Vvar var) cur_val in
	    if debug_more then Coptions.lprintf
	      "[transfer] removing info on %a@." Var.pretty (Var.Vvar var);
	    new_val
	  else cur_val

      | NKexpr | NKtest ->
	  if expr_is_int_assign node then
	    let lhs_node = assign_get_lhs_operand node in
	    if expr_is_deref lhs_node then
	      match deref_get_local_var lhs_node with
		| None -> cur_val
		| Some lhs_var -> 
		    (* writing under pointer [lhs_var] *)
		    RWL.eval_write (Var.Vvar lhs_var) cur_val
	    else cur_val
	  else if expr_is_deref node then
	    match deref_get_local_var node with
	      | None -> cur_val
	      | Some rhs_var ->
		  (* reading under pointer [rhs_var] *)
		  RWL.eval_read (Var.Vvar rhs_var) cur_val
	  else if expr_is_call node then
	    match call_get_function node with
	      | None -> cur_val
	      | Some func ->
		  (* get function precondition *)
		  begin match function_get_precondition func with
		    | None -> cur_val
		    | Some p ->
			let pred = from_pred p in
			let params = function_get_params func in
			let params = 
			  List.map (fun v -> ITvar (Var.Vvar v)) params in
			let args = call_get_args node in
			let args = List.map from_expr args in
			let trans = List.map2 (fun param arg -> (param,arg))
			  params args in
			let pred = Var.P.translate trans pred in
			RWL.eval_precondition pred cur_val
		  end
	  else cur_val
	    
      | NKassert ->
	  if is_invariant_node node then
	    let read_under_pointers = get_loop_read_under_pointers node in
	    let write_under_pointers = get_loop_write_under_pointers node in
	    let read_under_pointers = 
	      List.map (fun v -> Var.Vvar v) read_under_pointers in
	    let write_under_pointers = 
	      List.map (fun v -> Var.Vvar v) write_under_pointers in
	    let new_val =
	      List.fold_right RWL.eval_read read_under_pointers cur_val
	    in
	    List.fold_right RWL.eval_write write_under_pointers new_val
	  else cur_val

      | NKassume | NKdecl
      | NKspec | NKannot | NKterm | NKpred
      | NKnone -> cur_val

  (* exception used to share the default treatment in [sub_transform] *)
  exception Rec_transform
	  
  let rec sub_transform analysis trans_params node =
    let sub_nodes = code_children node @ (logic_children node) in
    let new_sub_nodes = 
      List.map (sub_transform analysis trans_params) sub_nodes in
    let new_node = change_sub_components node new_sub_nodes in

    try 
      (* transformation is possible only if analysis provides 
	 some information. Otherwise raise Not_found. *)
      let post_val = match NodeHash.find_post analysis node with
	| None -> raise Rec_transform
	| Some v -> v
      in
      (* match [node] here, not [new_node], as the additional information of
	 [NKtest, NKassume, NKassert] will be lost on [new_node].
	 No special problem here since the modified node is still of the same
	 kind as the original one, except the special ones mentioned above. *)
      match get_node_kind node with
	| NKassume ->
	    if is_function_precondition_node node then
	      begin 
		let p_assume = RWL.to_pred post_val in
		match p_assume with
	        | None ->
		    (* no useful information here *)
		    raise Rec_transform
		| Some pred ->
		    grow_predicate new_node None pred
	      end
	    else raise Rec_transform
	      
	| NKexpr | NKtest | NKlvalue
	| NKnone | NKdecl | NKstat | NKassert
	| NKpred | NKterm | NKannot | NKspec -> 
	    raise Rec_transform

    with Rec_transform -> new_node

  let transform analysis trans_params decls =
    List.map (sub_transform analysis trans_params) decls
	    
end

type int_transform_tt =
   {
     safe_access_nodes : IntLangFromNormalized.NodeSet.t;
   }

(* string and integer analysis *)
module Make_ConnectCFGtoInt 
    (CL : PACKED_CONTEXTUAL_LATTICE with module V = VarAsPVARIABLE)
    (SL : SEPARATION_LATTICE with module V = VarAsPVARIABLE)
    : CONNECTION 
      with type node_t = IntLangFromNormalized.Node.t 
      and type 'a node_hash_t = 'a IntLangFromNormalized.NodeHash.t 
      and type absval_t = CL.t * SL.t
      and type transform_t = int_transform_tt =
struct

  open IntLangFromNormalized

  type node_t = Node.t
  type 'a node_hash_t = 'a NodeHash.t
  type absval_t = CL.t * SL.t
  type 'a analysis_t = 'a pair_t node_hash_t
  type absint_analysis_t = absval_t analysis_t
  type transform_t = int_transform_tt

  (* default value of 5 taken from Min's example analysis *)
  let widening_threshold = Some 1 (* for debug, use 1 *)
  let widening_strategy = WidenFast

  (* Various constructs change the abstract information:
     - assignments change the information for the variable assigned
     - tests constrain the information for various variables involved 
     in the test
     - logic information (assertions, loop annotations, etc) constrain
     the information for possibly many variables

     Furthermore, even assignments must sometimes be treated globally, 
     if the lattice considered is a relational lattice. Consider the following
     assignment:
         a = b + 1;
     Computing the domain of [b+1] is sufficient for an interval integer 
     analysis, but not for an analysis based on octogons. Here the interesting
     fact is the bound on [a-b].
     Therefore we translate assignments and tests in terms understood by
     the integer analysis, and we leave it to the analysis to compute 
     the transfer function for such terms.
   *)

  let term_reps = Hashtbl.create 0
  let pred_reps = Hashtbl.create 0

  let get_term_rep node =
    try
      Hashtbl.find term_reps node
    with Not_found ->
      let t_rep = from_expr node in
      Hashtbl.replace term_reps node t_rep;
      t_rep

  let get_pred_rep node =
    try
      Hashtbl.find pred_reps node
    with Not_found ->
      let p_rep = match get_node_kind node with
        | NKtest -> from_test node
	| NKassume | NKassert -> from_pred node
	| NKnone | NKstat | NKdecl | NKexpr | NKlvalue
	| NKspec | NKannot | NKterm | NKpred -> 
	    (* [get_pred_rep] should only be called on test/assume/assert *)
	    assert false
      in
      Hashtbl.replace pred_reps node p_rep;
      p_rep

  let keep_invariant_value node previous_value cur_val =
    let cur_ctxt_val,cur_sep_val = cur_val in

    (* ignore variables written in loop, only on conditionals *)
    let write_vars = get_loop_write_vars node in
    let write_vars = List.map (fun v -> Var.Vvar v) write_vars in
    let fwd_ctxt_val = 
      List.fold_right CL.remove_variable_conditionals write_vars cur_ctxt_val
    in

    let fwd_sep_val = cur_sep_val in
    if debug_more then Coptions.lprintf 
      "[transfer] (assume) invariant current value %a@."
      CL.pretty fwd_ctxt_val;
    match previous_value with
      | None -> fwd_ctxt_val,fwd_sep_val
      | Some (prev_ctxt_val,prev_sep_val) ->
	  if debug_more then Coptions.lprintf 
	    "[transfer] (assume) invariant previous value %a@."
	    CL.pretty prev_ctxt_val;
	  if debug_more then Coptions.lprintf 
	    "[transfer] (assume) invariant current value %a@."
	    CL.pretty fwd_ctxt_val;
	  (* [meet] justified here because used between
	     - [prev_ctxt_val] previous value of assumed invariant,
	     - [fwd_val], result of current propagation, from which
	     variables that are assigned in the loop are removed
	  *)
	  let res1 = CL.normalize (CL.meet prev_ctxt_val fwd_ctxt_val) in
	  let res2 = SL.normalize (SL.meet prev_sep_val fwd_sep_val) in
	  if debug_more then Coptions.lprintf 
	    "[transfer] (assume) invariant result value %a@."
	    CL.pretty res1;
	  res1,res2

  let transfer ?(backward=false) ?(with_assert=false) ?(one_pass=false) 
      ?previous_value node cur_val =

    if debug_more then Coptions.lprintf 
	"[transfer] %a@." Node.pretty node;
    begin match previous_value with
      | None -> ()
      | Some (prev_ctxt_val,prev_sep_val) -> 
	  if debug_more then Coptions.lprintf 
	    "[transfer] with previous value %a %a@." CL.pretty prev_ctxt_val
	    SL.pretty prev_sep_val
    end;

    let cur_ctxt_val,cur_sep_val = cur_val in
    let forward = not backward in
    match get_node_kind node with
      | NKnone -> cur_val

      | NKstat ->
	  if backward && stat_is_decl node then 
	    (* ignore information on variable before its declaration *)
	    let var = decl_stat_get_var node in
	    let new_ctxt_val = 
	      CL.remove_variable (Var.Vvar var) cur_ctxt_val in
	    let new_ctxt_val = 
	      CL.remove_variable (Var.Varrlen var) new_ctxt_val in
	    let new_ctxt_val = 
	      CL.remove_variable (Var.Vstrlen var) new_ctxt_val in
	    if debug_more then Coptions.lprintf
	      "[transfer] removing info on %a@." Var.pretty (Var.Vvar var);
	    new_ctxt_val,cur_sep_val
	  else cur_val

      | NKdecl ->
	  if backward then
	    cur_val
	  else
	    begin
	      (* originally reset the tables for representatives *)
	      Hashtbl.clear term_reps;
	      Hashtbl.clear pred_reps;
	      CL.init (),SL.init ()
	    end

      | NKexpr | NKtest | NKlvalue | NKassume ->
	  (* test is both expression and assume, which leads to treating 
	     those cases simultaneously *)
	  let expr_val = match get_node_kind node with
	  | NKexpr | NKtest | NKlvalue ->

	      if expr_is_int_assign node then
		match assign_get_local_lhs_var node with
		| None -> 
		    let lhs_node = assign_get_lhs_operand node in
		    (* in the forward case, remove those [strlen] variables
		       that are invalidated by an assignment under 
		       some pointer *)
		    if forward && expr_is_deref lhs_node then
		      let new_ctxt_val =
			match deref_get_local_var lhs_node with
			| None ->
			    (* no way to keep talking about [strlen] 
			       variables *)
			    CL.filter_variables 
			      ~remove:Var.is_strlen cur_ctxt_val
			| Some lhs_var ->
			    (* remove information on [strlen(p)] if [p] not 
			       separated from the pointer being assigned.
			       This includes [strlen(lhs_var)]. *)
			    let not_separated = function
			      | Var.Vstrlen v ->
				  not (SL.fully_separated (Var.Vvar lhs_var) 
					 (Var.Vvar v) cur_sep_val)
			      | Var.Vvar _ | Var.Varrlen _ 
			      | Var.Vterm _ -> false
			    in
			    CL.filter_variables 
			      ~remove:not_separated cur_ctxt_val
		      in new_ctxt_val,cur_sep_val
		    else cur_val
		| Some lhs_var ->
		    (* compute new value for [lhs_var] *)
		    let rhs_node = assign_get_rhs_operand node in
		    let rhs_rep = get_term_rep rhs_node in
		    let rhs_rep = patch_term_for_incr_decr node rhs_rep in
		    let forget_val = CL.remove_variable
			(Var.Varrlen lhs_var) cur_ctxt_val in
		    let forget_val = CL.remove_variable
			(Var.Vstrlen lhs_var) forget_val in
		    let new_ctxt_val =
		      CL.eval_assign ~backward 
			(Var.Vvar lhs_var) rhs_rep forget_val
		    in new_ctxt_val,cur_sep_val

	      else if expr_is_ptr_assign node then
		match assign_get_local_lhs_var node with
		| None -> cur_val
		| Some lhs_var ->
		    (* TODO: treat allocations *)
		    let new_sep_val = 
		      SL.remove_variable (Var.Vvar lhs_var) cur_sep_val in
		    cur_ctxt_val,new_sep_val
	      else cur_val
	  | _ -> cur_val
	  in

	  let expr_ctxt_val,expr_sep_val = expr_val in
	  let expr_ctxt_val =
	    if with_assert then
	      (* consider memory accesses as asserts *)
	      match memory_access_safe_predicate CL.is_packed_variable 
		(CL.restrained_variables expr_ctxt_val) node 
	      with
		| None -> expr_ctxt_val
		| Some p_safe ->
		    if debug_more then Coptions.lprintf
		      "[transfer] adding assertion %a@." 
		      Var.P.pretty p_safe;
		    (* access is guaranteed to be safe for the following *)
		    let res = 
		      CL.eval_test ~backward p_safe expr_ctxt_val in
		    if debug_more then Coptions.lprintf 
		      "[transfer] resulting value with assertion %a@."
		      CL.pretty res;
		    res
	    else expr_ctxt_val
	  in
	  
	  let expr_ctxt_val,expr_sep_val =
	    if forward && one_pass 
	      && (is_assume_invariant_node node 
		  || is_function_precondition_node node) then
		(* keep last value computed (either forward or backward) *)
		if is_assume_invariant_node node then
		  begin
		    if debug then Coptions.lprintf
		      "[transfer] Assume invariant presented with@.%a@."
		      CL.pretty expr_ctxt_val;
		    let res1,res2 = keep_invariant_value node previous_value 
		      (expr_ctxt_val,expr_sep_val) in
		    if debug then Coptions.lprintf
		      "[transfer] Assume invariant result@.%a@."
		      CL.pretty res1;
		    res1,res2
		  end
		else if is_function_precondition_node node then
		  match previous_value with
		    | None -> expr_ctxt_val,expr_sep_val
		    | Some prev_val -> prev_val
		else assert false
	    else
	      expr_ctxt_val,expr_sep_val
	  in
	  begin match get_node_kind node with
	  | NKtest | NKassume ->
	      (* same transfer for forward and backward propagation *)
	      let node_rep = get_pred_rep node in
	      if debug then Coptions.lprintf 
		"[transfer] Before test %a value is@.[transfer] %a@."
		Var.P.pretty node_rep CL.pretty expr_ctxt_val;
	      let new_ctxt_val = 
		CL.eval_test ~backward node_rep expr_ctxt_val in
	      if debug then Coptions.lprintf 
		"[transfer] After test %a value is@.[transfer] %a@."
		Var.P.pretty node_rep CL.pretty new_ctxt_val;
	      let new_sep_val = 
		SL.eval_test ~backward node_rep expr_sep_val in
	      new_ctxt_val,new_sep_val
	  | _ -> expr_ctxt_val,expr_sep_val
	  end

      | NKassert ->
	  if is_invariant_node node then
	    if backward then
	      (* eliminate variables written in the loop *)
	      let write_vars = get_loop_write_vars node in
	      let write_vars = List.map (fun v -> Var.Vvar v) write_vars in
	      if debug_more then Coptions.lprintf 
		"[transfer] invariant with written vars %a@."
		(print_list comma Var.pretty) write_vars;
	      let new_ctxt_val = CL.eliminate write_vars cur_ctxt_val in
	      new_ctxt_val,cur_sep_val

	    else if forward && one_pass then
	      let new_ctxt_val,new_sep_val =
		keep_invariant_value node previous_value cur_val
	      in
	      (* only the proper separation conditions
		 should allow proper use of [strlen] variables *)
	      let write_under_pointers = 
		get_loop_write_under_pointers node in
	      let write_under_pointers = 
		List.map (fun v -> Var.Vvar v) write_under_pointers in
	      let restr_vars = 
		CL.restrained_variables new_ctxt_val in
	      let strlen_vars = List.filter Var.is_strlen restr_vars in
	      if debug_more then Coptions.lprintf 
		"[transfer] fwd invariant with write under pointers %a@."
		(print_list comma Var.pretty) write_under_pointers;
	      if debug_more then Coptions.lprintf 
		"[transfer] fwd invariant with restrained variables %a@."
		(print_list comma Var.pretty) restr_vars;
	      if debug_more then Coptions.lprintf 
		"[transfer] fwd invariant with strlen variables %a@."
		(print_list comma Var.pretty) strlen_vars;
	      let not_written_under var =
		List.fold_left (fun acc_b v -> acc_b 
				  && SL.fully_separated var v new_sep_val
			       ) true write_under_pointers
	      in
	      let new_ctxt_val =
		List.fold_left 
		  (fun ctxt_val strlen_var ->
		     let v = Var.get_variable strlen_var in
		     if not_written_under (Var.Vvar v) then
		       ctxt_val
		     else
		       CL.remove_variable strlen_var ctxt_val
		  ) new_ctxt_val strlen_vars
	      in
	      new_ctxt_val,new_sep_val

	    else (* forward && not one_pass *)
	      cur_val

	  else
	    begin
	      if debug_more then Coptions.lprintf 
		  "[transfer] assert normal treatment@.";
	      (* same transfer for forward and backward propagation *)
	      if with_assert then 
		let node_rep = get_pred_rep node in
		let new_ctxt_val = 
		  CL.eval_test ~backward node_rep cur_ctxt_val in
		new_ctxt_val,cur_sep_val
	      else cur_val
	    end

      | NKspec | NKannot | NKterm | NKpred -> cur_val

  (* exception used to share the default treatment in [sub_transform] *)
  exception Rec_transform

  let rec sub_transform analysis trans_params node =
    let sub_nodes = code_children node @ (logic_children node) in
    let new_sub_nodes = 
      List.map (sub_transform analysis trans_params) sub_nodes in
    let new_node = change_sub_components node new_sub_nodes in

    try 
      (* transformation is possible only if analysis provides 
	 some information. Otherwise raise Not_found. *)
      let post_val = match NodeHash.find_post analysis node with
	| None -> raise Rec_transform
	| Some v -> v
      in
      let post_ctxt_val,post_sep_val = post_val 
      in
      if debug_more then Coptions.lprintf 
	  "[sub_transform] %a %a@." 
	  CL.pretty post_ctxt_val SL.pretty post_sep_val;
	    
      (* match [node] here, not [new_node], as the additional information of
	 [NKtest, NKassume, NKassert] will be lost on [new_node].
	 No special problem here since the modified node is still of the same
	 kind as the original one, except the special ones mentioned above. *)
      match get_node_kind node with
        | NKstat ->
	    if debug_more then Coptions.lprintf 
		"[sub_transform] old node %a@." Node.pretty node;
	    if debug_more then Coptions.lprintf 
		"[sub_transform] new node %a@." Node.pretty new_node;
	    
	    if stat_is_jump new_node then
	      (* next statement will not be executable. Do not add it. *)
	      raise Rec_transform
	    else
	      (* get the result of the analysis as a predicate and append
		 an assume statement of this predicate after the current 
		 statement *)
	      let p_assume = Option.transform (fun p1 p2 -> IPand (p1,p2))
		(CL.to_pred post_ctxt_val) (SL.to_pred post_sep_val) 
	      in
	      begin match p_assume with
	        | None ->
		    if debug_more then Coptions.lprintf 
			"[sub_transform] no predicate found with %a %a@."
			CL.pretty post_ctxt_val SL.pretty post_sep_val;
		    
		    (* no useful information here *)
		    raise Rec_transform
		| Some pred ->
		    if debug_more then Coptions.lprintf 
			"[sub_transform] predicate found with %a %a@."
			CL.pretty post_ctxt_val SL.pretty post_sep_val;
		    
		    let assume_s = change_in_assume_stat new_node pred in
		    make_seq_stat new_node assume_s
	      end
		
	| NKassume ->
	    if is_function_precondition_node node then
	      begin 
		if debug_more then Coptions.lprintf 
		    "[sub_transform] precondition contextual value %a %a@."
		    CL.pretty post_ctxt_val SL.pretty post_sep_val;
		let p_assume = Option.transform (fun p1 p2 -> IPand (p1,p2))
		  (CL.to_pred post_ctxt_val) (SL.to_pred post_sep_val) 
		in
		match p_assume with
	        | None ->
		    (* no useful information here *)
		    raise Rec_transform
		| Some pred ->
		    grow_predicate new_node None pred
	      end
	    else
	      let p_assume = Option.transform (fun p1 p2 -> IPand (p1,p2))
		(CL.to_pred post_ctxt_val) (SL.to_pred post_sep_val) 
	      in
	      begin match p_assume with
	        | None ->
		    (* no useful information here *)
		    raise Rec_transform
		| Some pred ->
		    grow_predicate new_node None pred
	      end
	      
	| NKassert ->
	    if is_invariant_node node then
	      begin
		if debug_more then Coptions.lprintf 
		    "[sub_transform] precondition contextual value %a %a@."
		    CL.pretty post_ctxt_val SL.pretty post_sep_val;
		let p_assert = Option.transform (fun p1 p2 -> IPand (p1,p2))
		  (CL.to_pred post_ctxt_val) (SL.to_pred post_sep_val) 
		in
		match p_assert with
	        | None ->
		    (* no useful information here *)
		    raise Rec_transform
		| Some pred ->
		    (* do not add as invariant some already known 
		       assumed invariant *)
		    grow_predicate new_node (logic_invariant node) pred
	      end
	    else
	      raise Rec_transform
	    
	| NKexpr | NKtest | NKlvalue ->
	    if Coptions.absint_as_proof && 
	      NodeSet.mem node trans_params.safe_access_nodes then
	      (* change type of dereference expression to make it a 
		 safe access *)
	      begin
		if debug_more then Coptions.lprintf 
		    "[sub_transform] safe access %a@." 
		    Node.pretty new_node;
		make_safe_access new_node
	      end
	    else
	      (* not a dereference, or safe access cannot be guaranteed *)
	      raise Rec_transform

	| NKnone | NKdecl
	| NKpred | NKterm | NKannot | NKspec -> 
	    raise Rec_transform

    with Rec_transform -> new_node

  let transform analysis trans_params decls =
    List.map (sub_transform analysis trans_params) decls
end

module IdentTypeBridge (Ctxt : PACKED_CLUSTER_LATTICE) 
    (Cstr : PACKED_CONSTRAINED_LATTICE with type t = Ctxt.t) 
    : CONTEXTUAL_BRIDGE with module Contxt = Ctxt and module Constr = Cstr
    and type ipredicate = Cstr.V.P.t =
struct
  module Contxt = Ctxt
  module Constr = Cstr

  type ipredicate = Constr.V.P.t

  let get_unconstrained = Constr.get_unconstrained
  let get_constrained = Constr.get_constrained
  let make_unconstrained = Constr.make_unconstrained
  let subtract = Constr.subtract
  let meet = Constr.meet
  let join = Constr.join
  let eval_constraint = Constr.eval_constraint
end

(* modules for interval analysis *)

module IntervLattice = Make_IntervalLattice(Var)(Int)

module PointWiseIntervLattice = Make_PointWiseFromAtomic(IntervLattice)

(* modules for separation analysis *)

module SepLattice = Make_SeparationLattice(Var)(Int) 

module ReadWriteLattice = Make_ReadWriteLattice(Var)(Int)(SepLattice)

(* module for octogon analysis *)

module UnpackOctLattice = Make_OctogonLattice(Var)(Int)

module OctLattice = 
  Make_PackedFromCluster(Var)(UnpackOctLattice)

module ConstrOctLattice = 
  Make_PackedFromConstrained(Var)
    (Make_ConstrainedOctogonLattice(Var)(Int)(UnpackOctLattice))

(* module for predicate abstraction *)

module PredLattice = Make_PredicateLattice(Var)(Int)

(* modules for the analysis *)

module OctPredLattice = 
  Make_ClusterPairLattice(Var)(Int)(PredLattice)(OctLattice)

module ConstrOctPredLattice = 
  Make_ConstrainedPairLattice(Var)(Int)(PredLattice)(ConstrOctLattice)

module ContextLattice = 
  Make_ContextualLattice
    (Var)(Int)(OctPredLattice)(ConstrOctPredLattice)
    (IdentTypeBridge(OctPredLattice)(ConstrOctPredLattice))

module ConnectCFGtoSep = Make_ConnectCFGtoSep(ReadWriteLattice)

module LocalSeparationAnalysis =
  Make_DataFlowAnalysis(Var)(IntLangFromNormalized)
    (ReadWriteLattice)(ConnectCFGtoSep)

module ConnectCFGtoOct = Make_ConnectCFGtoInt(ContextLattice)(SepLattice)

module ContextSepLattice = Make_PairLattice(ContextLattice)(SepLattice)

module LocalMemoryAnalysis :
sig
  open IntLangFromNormalized

  include DATA_FLOW_ANALYSIS 
    with type node_t = Node.t
    and type 'a node_hash_t = 'a NodeHash.t
    and type 'a analysis_t = 'a ConnectCFGtoOct.analysis_t
    and type absint_analysis_t = ConnectCFGtoOct.absint_analysis_t

  val string_bnf_params : compute_bnf_t
  val compute_bnf_params : compute_bnf_t
 
    (* takes the result of the abstract interpretation.
       returns a formatted analysis easily exploited by 
       [ConnectCFGtoOct.transform]. *)
  val format : 
    absint_analysis_t -> node_t list -> absint_analysis_t * NodeSet.t
end = 
struct

  include Make_DataFlowAnalysis(Var)(IntLangFromNormalized)
      (ContextSepLattice)(ConnectCFGtoOct)

  open IntLangFromNormalized

  (* select memory accesses that need to be considered in the analysis.
     The memory accesses selected are those for which we want to express
     a safety property. This excludes:
     - memory accesses already analyzed as safe by the forward analysis
     - memory accesses not of the form that can be analyzed
     - memory accesses safe by construction (e.g. array initialization)
   *)
  let memory_access_select node pre_val =
    if debug_more then Coptions.lprintf
	"[memory_access_select] %a with value %a@." Node.pretty node
	ContextSepLattice.pretty pre_val;
    let pre_ctxt_val,_ = pre_val in
    match memory_access_safe_predicate ContextLattice.is_packed_variable 
	(ContextLattice.restrained_variables pre_ctxt_val) node 
    with
    | None ->
	begin match call_precondition node with
	| None -> false
	| Some p_precond ->
	    (* is the precondition already guaranteed to be safe ? *)
	    not (ContextLattice.guarantee_test p_precond pre_ctxt_val)
	end
    | Some p_safe ->
	(* is the access already guaranteed to be safe ? *)
	not (is_safe_access node
	   || ContextLattice.guarantee_test p_safe pre_ctxt_val)
	    
  let string_test_select node pre_val =
    if debug_more then Coptions.lprintf
      "[string_test_select] %a with value %a@." Node.pretty node
      ContextSepLattice.pretty pre_val;
    let pre_ctxt_val,_ = pre_val in
    match string_access_predicate node with
      | None -> false
      | Some p_string ->
	  (* is the pointer already guaranteed to be a string ? *)
	  not (ContextLattice.guarantee_test p_string pre_ctxt_val)

  let build_safe_memory_access node pre_val =
    if debug then Coptions.lprintf
	"[build_safe_memory_access] %a with value %a@." Node.pretty node
	ContextSepLattice.pretty pre_val;
    let pre_ctxt_val,pre_sep_val = pre_val in
    match memory_access_safe_predicate ContextLattice.is_packed_variable 
	(ContextLattice.restrained_variables pre_ctxt_val) node
    with
    | None ->
	begin match call_precondition node with
	| None -> assert false (* [node] should have been selected first *)
	| Some p_precond ->	
	    if debug then Coptions.lprintf
		"[build_safe_memory_access] Trying to prove precondition %a@." 
		Var.P.pretty p_precond;
	    (* [arrlen] variables should not be used in left parts of conditionals,
	       since their value cannot be tested by the programmer *)
	    let pre_ctxt_val = 
	      ContextLattice.filter_variables ~remove:Var.is_arrlen pre_ctxt_val in
	    let ctxt_val = ContextLattice.get_context pre_ctxt_val in
	    let cstr_val = ContextLattice.Bridge.eval_constraint p_precond ctxt_val in
	    let init_val = ContextLattice.eliminate_conditionals pre_ctxt_val in
	    let init_val = 
	      ContextLattice.add_new_conditional init_val ~do_join:false cstr_val 
	    in
	    if debug_more then Coptions.lprintf
		"[build_safe_memory_access] initial value for precondition %a@."
		ContextLattice.pretty init_val;
	    init_val,pre_sep_val
	end
    | Some p_safe ->
	if debug then Coptions.lprintf
	    "[build_safe_memory_access] Trying to prove %a@." 
	    Var.P.pretty p_safe;
	(* [arrlen] variables should not be used in left parts of conditionals,
	   since their value cannot be tested by the programmer *)
	let pre_ctxt_val = 
	  ContextLattice.filter_variables ~remove:Var.is_arrlen pre_ctxt_val in
	let ctxt_val = ContextLattice.get_context pre_ctxt_val in
	let cstr_val = ContextLattice.Bridge.eval_constraint p_safe ctxt_val in
	let init_val = ContextLattice.eliminate_conditionals pre_ctxt_val in
	let init_val = 
	  ContextLattice.add_new_conditional init_val ~do_join:false cstr_val 
	in
	if debug_more then Coptions.lprintf
	    "[build_safe_memory_access] initial value %a@."
	    ContextLattice.pretty init_val;
	init_val,pre_sep_val

  let build_string_context node pre_val =
    if debug_more then Coptions.lprintf
      "[build_string_context] %a with value %a@." Node.pretty node
      ContextSepLattice.pretty pre_val;
    match string_access_predicate node with
      | Some p_string ->
	  let pre_ctxt_val,pre_sep_val = pre_val in
	  if debug then Coptions.lprintf
	    "[build_string_context] Trying to prove %a@."
	    Var.P.pretty p_string;
	  (* [arrlen] variables should not be used in left parts of 
	     conditionals, since their value cannot be tested by 
	     the programmer *)
	  let pre_ctxt_val = 
	    ContextLattice.filter_variables ~remove:Var.is_arrlen pre_ctxt_val
	  in
	  let ctxt_val = ContextLattice.get_context pre_ctxt_val in
	  let cstr_val = ContextLattice.Bridge.eval_constraint p_string ctxt_val
	  in
	  let init_val = ContextLattice.eliminate_conditionals pre_ctxt_val in
	  let init_val = 
	    ContextLattice.add_new_conditional init_val ~do_join:true cstr_val 
	  in
	  if debug_more then Coptions.lprintf
	    "[build_string_context] initial value %a@."
	    ContextLattice.pretty init_val;
	  init_val,pre_sep_val
      | None -> assert false

  let merge_node_select node =
    if debug_more then Coptions.lprintf
      "[merge_node_select] %a@." Node.pretty node;
    let res = is_invariant_node node || is_function_precondition_node node in
    if debug_more then Coptions.lprintf
      "[merge_node_select] selected ? %b@." res;
    res
      
  let keep_node_select node =
    merge_node_select node || is_assume_invariant_node node
    || is_loop_backward_source_node node 

  (* [cur_val] is the current contextual abstract value, obtained by repeated
     forward/backward propagation.
     [new_val] is the conditional information obtained through a unique 
     backward propagation. It should contain only one conditional at most.
   *)
  let store_context_info cur_val new_val =
    if debug_more then Coptions.lprintf
      "[store_context_info] from %a to %a@."
      ContextSepLattice.pretty cur_val ContextSepLattice.pretty new_val;
    let cur_ctxt_val,cur_sep_val = cur_val in
    let new_ctxt_val,_ = new_val in
    let new_ctxt_val = 
      if ContextLattice.has_conditionals new_ctxt_val then
	(* set as main context the context obtained by forward propagation *)
	let new_ctxt_val = ContextLattice.set_context new_ctxt_val 
	  (ContextLattice.get_context cur_ctxt_val) in
	(* subtract the main context from the conditional information *)
	let new_cid,new_do_join,new_cond = 
	  ContextLattice.format_singleton new_ctxt_val in
	(* add this minimal conditional information to the current context *)
	ContextLattice.add_conditional 
	  cur_ctxt_val new_do_join (new_cid,new_cond)
      else cur_ctxt_val
    in
    (* add invariants on strings and pointers *)
    (* let new_ctxt_val = normalize_info new_ctxt_val in *)
    (* renormalize resulting contextual value *)
    let new_ctxt_val = ContextLattice.normalize new_ctxt_val in
    if debug_more then Coptions.lprintf
      "[store_context_info] result %a@."
      ContextLattice.pretty new_ctxt_val;
    new_ctxt_val,cur_sep_val

  let join_context (ctxt1,sep1) (ctxt2,sep2) =
    ContextLattice.join_context ctxt1 ctxt2, SepLattice.join sep1 sep2

  let string_bnf_params =
    {
      compute         = compute_with_assert keep_node_select;
      join_context    = join_context;
      backward_select = string_test_select;
      backward_modify = build_string_context;
      merge_select    = merge_node_select;
      keep_select     = keep_node_select;
      merge_analyses  = store_context_info;
    }

  let compute_bnf_params =
    {
      compute         = compute_back_and_forth string_bnf_params;
      join_context    = join_context;
      backward_select = memory_access_select;
      backward_modify = build_safe_memory_access;
      merge_select    = merge_node_select;
      keep_select     = keep_node_select;
      merge_analyses  = store_context_info;
    }

  exception Rec_format

  type format_t =
     {
      analysis : absint_analysis_t;
      safe_access_nodes : NodeSet.t ref
     }

  let rec sub_format format_params node =
    let sub_nodes = code_children node @ (logic_children node) in
    List.iter (sub_format format_params) sub_nodes;
    try 
      (* transformation is possible only if analysis provides 
	 some information. Otherwise raise Not_found. *)
      let pre_val = match NodeHash.find_pre format_params.analysis node with
	| None -> raise Rec_format
	| Some v -> v
      in
      let pre_ctxt_val,pre_sep_val = pre_val in
      if debug_more then Coptions.lprintf 
	"[sub_format] %a %a@." 
	Node.pretty node ContextLattice.pretty pre_ctxt_val;
      match memory_access_safe_predicate ContextLattice.is_packed_variable 
	(ContextLattice.restrained_variables pre_ctxt_val) node
      with
      | None -> ()
      | Some p_safe ->
	  (* is the access guaranteed to be safe ? *)
	  if ContextLattice.guarantee_test p_safe pre_ctxt_val then
	    (* change type of dereference expression to make it a 
	       safe access *)
	    begin
	      if debug_more then Coptions.lprintf 
		  "[sub_format] safe access %a@." Node.pretty node;
	      format_params.safe_access_nodes := 
		NodeSet.add node (!(format_params.safe_access_nodes))
	    end
	  else
	    (* safe access cannot be guaranteed. Verification condition will
	       be generated for some prover to prove it. *)
	    ()
    with Rec_format -> ()

  (* remove abstract information on statements that do not change it.
     The analysis returned is only valid for post-analysis. *)
  let format analysis decls =

    (* modify [analysis] to take into account constraints, and return
       safe access nodes *)
    let format_params = 
      {
       analysis = analysis;
       safe_access_nodes = ref NodeSet.empty;
      }
    in
    List.iter (sub_format format_params) decls;

    let inv_analysis = NodeHash.create (NodeHash.length analysis) in
    NodeHash.iter_both (fun node pre_val post_val ->
      if NodeSet.mem node !(format_params.safe_access_nodes) then
	(* keep analysis value for nodes to transform. This is what
	   [transform] expects. *)
	let pre_val = match pre_val with 
	  | Some v -> v | None -> assert false in
	let post_val = match post_val with
	  | Some v -> v | None -> assert false in
	NodeHash.replace_both inv_analysis node pre_val post_val
      else if is_function_precondition_node node
	|| is_assume_invariant_node node
	|| is_invariant_node node
      then 
	let pre_ctxt_val,pre_sep_val = match pre_val with 
	  | Some v -> v | None -> assert false in
	let post_ctxt_val,post_sep_val = match post_val with
	  | Some v -> v | None -> assert false in
	(* finalize contextual value *)
	let pre_ctxt_val = 
	  ContextLattice.finalize pre_ctxt_val in
	let post_ctxt_val = 
	  ContextLattice.finalize post_ctxt_val in
	(* subtract assume invariant from invariant *)
	let pre_ctxt_val,pre_sep_val =
	  if is_invariant_node node then
	    match logic_invariant node with
	      | None -> pre_ctxt_val,pre_sep_val
	      | Some assinv ->
		  begin match NodeHash.find_pre analysis assinv with
		    | Some (assinv_val,assinv_sep) ->
		      	ContextLattice.subtract pre_ctxt_val assinv_val,
			SepLattice.subtract pre_sep_val assinv_sep
		    | None -> pre_ctxt_val,pre_sep_val
		  end
	  else pre_ctxt_val,pre_sep_val
	in
	let post_ctxt_val,post_sep_val =
	  if is_invariant_node node then
	    match logic_invariant node with
	      | None -> post_ctxt_val,post_sep_val
	      | Some assinv ->
		  begin match NodeHash.find_post analysis assinv with
		    | Some (assinv_val,assinv_sep) ->
		      	ContextLattice.subtract post_ctxt_val assinv_val,
			SepLattice.subtract post_sep_val assinv_sep
		    | None -> post_ctxt_val,post_sep_val
		  end
	  else post_ctxt_val,post_sep_val
	in
	(* rebuild complete abstract value *)
	let pre_val = pre_ctxt_val,pre_sep_val in
	let post_val = post_ctxt_val,post_sep_val in
	begin
	  if debug_more then Coptions.lprintf 
	    "[format] %a %a@." 
	    Node.pretty node ContextSepLattice.pretty pre_val;
	  NodeHash.replace_both inv_analysis node pre_val post_val
	end
      ) analysis;
    inv_analysis,!(format_params.safe_access_nodes)

end


(*****************************************************************************
 *                                                                           *
 * 		External interface for integer value analysis		     *
 *                                                                           *
 *****************************************************************************)

let local_int_analysis fundecl =

  if debug then Coptions.lprintf 
    "[local_int_analysis] treating function %s@." fundecl.f.fun_name; 

  (* build control-flow graph *)
  let _ = IntLangFromNormalized.from_file [fundecl] in

  (* collect the local variables used/declared *)
  let used_vars,decl_vars = IntLangFromNormalized.collect_vars () in
  (* pack all local integer variables together *)
  let il_pack_vars = 
    ILVarSet.elements (ILVarSet.fold ILVarSet.add used_vars decl_vars) in
  (* very rough packing that slows down the analysis. Should be improved on. *)
  let int_vars =
    List.filter IntLangFromNormalized.var_is_integer il_pack_vars in
  let ptr_vars = 
    List.filter IntLangFromNormalized.var_is_pointer il_pack_vars in
  let arrlen_vars = List.map (fun v -> Var.Varrlen v) ptr_vars in
  let strlen_vars = List.map (fun v -> Var.Vstrlen v) ptr_vars in
  let normal_vars = List.map (fun v -> Var.Vvar v) int_vars in
  let pack_vars = arrlen_vars @ strlen_vars @ normal_vars in

  let compute_new_decls pack_vars =
    (* only one pack for now *)
    ContextLattice.pack_variables [pack_vars];

    (* rebuild control-flow graph, needed because problem with 
       imperative Graph and exception *)
    let decls = IntLangFromNormalized.from_file [fundecl] in

    if Coptions.abstract_interp then

      (* build control-flow graph *)
      let end_decls = List.map snd decls in
      let decls = List.map fst decls in
      (* perform local separation analysis *)
      let analysis = LocalSeparationAnalysis.compute_back end_decls in
      let decls = ConnectCFGtoSep.transform analysis SepTrans decls in
      (* return the new program *)
      let decls = IntLangFromNormalized.to_file decls in

(* TO PERFORM STRING ANALYSIS IN ISOLATION
      (* re-build control-flow graph *)
      let decls = IntLangFromNormalized.from_file decls in
      let decls = List.map fst decls in
      (* perform local string analysis *)
      let comp_params = 
	LocalMemoryAnalysis.string_bnf_params in
      let raw_analysis = 
	LocalMemoryAnalysis.compute_back_and_forth comp_params decls in
      (* detect the statements where introducing an assume is useful *)
      let analysis,_ = 
	LocalMemoryAnalysis.format raw_analysis decls in
      (* transform the program using the analysis *)
      let trans_params = 
	{ safe_access_nodes = IntLangFromNormalized.NodeSet.empty } in
      let decls = ConnectCFGtoOct.transform analysis trans_params decls in
      (* return the new program *)
      let decls = IntLangFromNormalized.to_file decls in
*)
      (* re-build control-flow graph *)
      let decls = IntLangFromNormalized.from_file decls in
      let decls = List.map fst decls in
      (* perform local memory analysis *)
      let comp_params = 
	LocalMemoryAnalysis.compute_bnf_params in
      let raw_analysis = 
	LocalMemoryAnalysis.compute_back_and_forth comp_params decls in
      (* detect the statements where introducing an assume is useful *)
      let analysis,safe_access_nodes = 
	LocalMemoryAnalysis.format raw_analysis decls in
      (* transform the program using the analysis *)
      let trans_params = 
	{ safe_access_nodes = safe_access_nodes } in
      ConnectCFGtoOct.transform analysis trans_params decls

    else if Coptions.gen_invariant then

      let decls = List.map fst decls in
      (* perform local memory analysis *)
      let raw_analysis = LocalMemoryAnalysis.compute decls in
      (* detect the statements where introducing an assume is useful *)
      let analysis,_ = 
	LocalMemoryAnalysis.format raw_analysis decls in
      (* transform the program using the analysis *)
      let trans_params = 
	{ safe_access_nodes = IntLangFromNormalized.NodeSet.empty } in
      ConnectCFGtoOct.transform analysis trans_params decls      

    else assert false
  in
  
  (* add variables to pack until no more needed *)
  let rec compute_while_new_vars pack_vars =
    try 
      let decls = compute_new_decls pack_vars in
      (* return the new program *)
      IntLangFromNormalized.to_file decls

    with Var.Introduce_variable v ->
      begin
	if debug then Coptions.lprintf
	  "[compute_while_new_vars] adding variable %a@." Var.pretty v;
	compute_while_new_vars (v :: pack_vars)
      end
  in
  compute_while_new_vars pack_vars

let local_int_analysis_attach funcs =

  (* necessary prefix to translate the hash-table of functions in 
     the normalized code into a list of function representatives,
     as defined by type [func_t] in [Cabsint] *)
  let file = 
    List.fold_left 
      (fun acc func ->
	 try
	   let name = func.fun_name in
	   let (spec,typ,f,s,loc) = Hashtbl.find Cenv.c_functions name in
	   { name = name; spec = spec; typ = typ; f = f; s = s; loc = loc } 
	   :: acc
	 with Not_found -> acc
      ) [] funcs
  in

  if debug_more then Coptions.lprintf 
    "[local_int_analysis_attach] %i functions to treat@." (List.length file); 

  (* update each function information as soon as treated, so that called
     function information is up-to-date when caller treated *)
  List.iter 
    (fun fundecl -> 
       (* do not analyze functions that already have a precondition *)
       match fundecl.spec.requires with
	 | Some _ -> ()
	 | None ->
	     let newfundecl = local_int_analysis fundecl in
	     (* necessary suffix to translate the list of function
		representatives to the hash-table format *)
	     List.iter (fun { name = name; spec = spec; typ = typ; 
			      f = f; s = s; loc = loc } ->
			  Cenv.add_c_fun name (spec,typ,f,s,loc)) newfundecl
    ) file;
  
  if debug_more then Coptions.lprintf 
    "[local_int_analysis_attach] %i functions treated@." (List.length file);

(* Local Variables: *)
(* compile-command: "make -C .." *)
(* End: *)