File: cinterp.ml

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (2714 lines) | stat: -rw-r--r-- 85,145 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
(**************************************************************************)
(*                                                                        *)
(*  The Why platform for program certification                            *)
(*  Copyright (C) 2002-2008                                               *)
(*    Romain BARDOU                                                       *)
(*    Jean-Franois COUCHOT                                               *)
(*    Mehdi DOGGUY                                                        *)
(*    Jean-Christophe FILLITRE                                           *)
(*    Thierry HUBERT                                                      *)
(*    Claude MARCH                                                       *)
(*    Yannick MOY                                                         *)
(*    Christine PAULIN                                                    *)
(*    Yann RGIS-GIANAS                                                   *)
(*    Nicolas ROUSSET                                                     *)
(*    Xavier URBAIN                                                       *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU General Public                   *)
(*  License version 2, as published by the Free Software Foundation.      *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(*  See the GNU General Public License version 2 for more details         *)
(*  (enclosed in the file GPL).                                           *)
(*                                                                        *)
(**************************************************************************)

(*i $Id: cinterp.ml,v 1.259 2008/05/28 13:31:05 marche Exp $ i*)

open Format
open Coptions
open Output
open Info
open Cast
open Clogic
open Creport
open Ctypes
open Cseparation
open Pp

(* locs table *)

type kind =
  | ArithOverflow
  | DownCast
  | IndexBounds
  | PointerDeref
  | UserCall
  | DivByZero
  | Pack
  | Unpack

let locs_table = Hashtbl.create 97
let name_counter = ref 0

let abs_fname f =
  if Filename.is_relative f then
    Filename.concat (Unix.getcwd ()) f 
  else f

let reg_loc ?id ?oldid ?kind ?name ?beh (b,e) =  
  let id,oldid = match id,oldid with
    | None,_ ->  
	incr name_counter;
	"CADUCEUS_" ^ string_of_int !name_counter, oldid
    | Some n, None -> n,Some n
    | Some n, Some o -> n, Some o
  in
  let (name,f,l,b,e) = 
      let f = abs_fname b.Lexing.pos_fname in
      let l = b.Lexing.pos_lnum in
      let fc = b.Lexing.pos_cnum - b.Lexing.pos_bol in
      let lc = e.Lexing.pos_cnum - b.Lexing.pos_bol in
      (name,f,l,fc,lc)
  in
  Coptions.lprintf "recording location for id '%s'@." id;
  Hashtbl.replace locs_table id (kind,name,beh,f,l,b,e);
  id
    
let print_kind fmt k =
  fprintf fmt "%s"
    (match k with
       | Pack -> "Pack"
       | Unpack -> "Unpack"
       | DivByZero -> "DivByZero"
       | UserCall -> "UserCall"
       | PointerDeref -> "PointerDeref"
       | IndexBounds -> "IndexBounds"
       | DownCast -> "DownCast"
       | ArithOverflow -> "ArithOverflow"
    )

let print_locs fmt =
  Hashtbl.iter 
    (fun id (kind,name,beh,f,l,b,e) ->
       fprintf fmt "[%s]@\n" id;
       Option_misc.iter
	 (fun k -> fprintf fmt "kind = %a@\n" print_kind k) kind;
       Option_misc.iter
	 (fun n -> fprintf fmt "name = \"%s\"@\n" n) name;
       Option_misc.iter
	 (fun b -> fprintf fmt "behavior = \"%s\"@\n" b) beh;
       fprintf fmt "file = \"%s\"@\n" f;
       fprintf fmt "line = %d@\n" l;
       fprintf fmt "begin = %d@\n" b;
       fprintf fmt "end = %d@\n@\n" e)
    locs_table

(* end locs table *)

let print_effects2 fmt l =
  fprintf fmt "@[%a@]"
    (print_list space (fun fmt (z,s,_) -> fprintf fmt " %s_%s " s z.name)) 
    (ZoneSet.elements l)

let print_effects fmt l =
  fprintf fmt "@[%a@]"
    (print_list space (fun fmt v -> pp_print_string fmt v.var_unique_name)) 
    (HeapVarSet.elements l)

let heap_var_name v =
  match v.var_why_type with
    | Info.Memory(_,z) ->
	v.var_unique_name ^ "_" ^ (found_repr z)
    | _ -> v.var_unique_name

let is_bin_op = function
  | "add_int"
  | "sub_int" -> true
  | _ -> false

let rec is_pure e =
  match e with
    | Var _ | Deref _ | Cte _ -> true
    | App(Var id,l) -> is_bin_op id && is_pure l
    | App(e1,e2) -> is_pure e1 && is_pure e2
    | _ -> false

let tempvar_count = ref 0
let reset_tmp_var () = tempvar_count := 0
let tmp_var () = incr tempvar_count; "caduceus_" ^ string_of_int !tempvar_count

let interp_int_rel = function
  | Lt -> "lt_int"
  | Le -> "le_int"
  | Gt -> "gt_int"
  | Ge -> "ge_int"
  | Eq -> "eq_int"
  | Neq -> "neq_int"

let interp_real_rel = function
  | Lt -> "lt_real"
  | Le -> "le_real"
  | Gt -> "gt_real"
  | Ge -> "ge_real"
  | Eq -> "eq_real"
  | Neq -> "neq_real"

let interp_pointer_rel = function
  | Lt -> "lt_pointer"
  | Le -> "le_pointer"
  | Gt -> "gt_pointer"
  | Ge -> "ge_pointer"
  | Eq -> "eq"
  | Neq -> "neq"

let real_of_int (t : nctype nterm) = 
  { nterm_type = c_real; 
    nterm_loc = Loc.dummy_position;
    nterm_node = NTunop (Ufloat_of_int, t);
  }

let interp_rel (t1 : nctype nterm) t2 r = 
  match t1.nterm_type.ctype_node, t2.nterm_type.ctype_node with
  | (Tenum _ | Tint _), (Tenum _ | Tint _) -> 
      t1, interp_int_rel r, t2
  | (Tfloat Real), (Tfloat Real) -> 
      t1, interp_real_rel r, t2
  | (Tenum _ | Tint _), (Tfloat Real) -> 
      real_of_int t1, interp_real_rel r, t2
  | (Tfloat Real), (Tenum _ | Tint _) -> 
      t1, interp_real_rel r, real_of_int t2
  | (Tarray _|Tpointer _), (Tarray _|Tpointer _) -> 
      t1, interp_pointer_rel r, t2
  | _ ->
      (match r with Eq -> t1,"eq",t2 | Neq -> t1,"neq",t2 | _ -> assert false)

let interp_term_bin_op ty1 ty2 op =
  match ty1.ctype_node, ty2.ctype_node, op with
  | (Tenum _ | Tint _), _, Badd -> "add_int"
  | (Tenum _ | Tint _), _, Bsub -> "sub_int"
  | (Tenum _ | Tint _), _, Bmul -> "mul_int"
  | (Tenum _ | Tint _), _, Bdiv -> "div_int"
  | (Tenum _ | Tint _), _, Bmod -> "mod_int"
  | Tfloat _, _, Badd -> "add_real"
  | Tfloat _, _, Bsub -> "sub_real"
  | Tfloat _, _, Bmul -> "mul_real"
  | Tfloat _, _, Bdiv -> "div_real"
  | _, _, Bpow_real -> "pow_real"
  | _, _, Bbw_and -> "bw_and"
  | _, _, Bbw_xor -> "bw_xor"
  | _, _, Bbw_or -> "bw_or"
  | _, _, Bshift_left -> "lsl"
  | _, _, Bshift_right -> "lsr"
  | (Tpointer _ | Tarray _), _, Badd -> "shift"
  | (Tpointer _ | Tarray _), (Tenum _ | Tint _), Bsub -> 
      assert false (* normalized at typing *)
  | (Tpointer _ | Tarray _), (Tpointer _ | Tarray _), Bsub -> "sub_pointer"
  | (Tpointer _ | Tarray _), _, Bsub -> assert false
  | Tfloat _, _, Bmod -> assert false
  | Tarray _, _, (Bmod|Bdiv|Bmul) -> assert false
  | Tpointer _, _, (Bmod|Bdiv|Bmul) -> assert false
  | Tfun (_, _), _, _-> assert false 
  | Tunion _ , _, _ -> assert false
  | Tstruct _ , _, _-> assert false
  | Tvar _ , _, _-> assert false 
  | Tvoid , _, _-> assert false

let string_of_rounding_mode = function
  | RM_nearest_even -> "nearest_even"
  | RM_to_zero -> "to_zero"
  | RM_up -> "up"
  | RM_down -> "down"
  | RM_nearest_away -> "nearest_away"
  | RM_dynamic -> assert false

let select_fk s d q = function
  | Float -> s | Double -> d | LongDouble -> q | Real -> assert false

let term_rounding_mode = LVar (string_of_rounding_mode dft_fp_rounding_mode)

let term_bin_op ty1 ty2 op t1 t2 =
  match ty1.ctype_node, op, t2 with
    | (Tpointer _ | Tarray _), Badd, LConst (Prim_int "0") ->
	t1
    | Tfloat (Float | Double | LongDouble as fk), _, _ when floats ->
	let s = match op with
	  | Badd -> select_fk "add_single" "add_double" "add_quad" fk
	  | Bsub -> select_fk "sub_single" "sub_double" "sub_quad" fk
	  | Bmul -> select_fk "mul_single" "mul_double" "mul_quad" fk
	  | Bdiv -> select_fk "div_single" "div_double" "div_quad" fk
	  | _ -> assert false
	in
	LApp (s, [term_rounding_mode; t1; t2])
    | _ -> 
	LApp (interp_term_bin_op ty1 ty2 op, [t1; t2])

let interp_term_un_op ty op t = match ty.ctype_node, op with
  | (Tenum _ | Tint _), Uminus -> LApp ("neg_int", [t])
  | Tfloat (Float | Double | LongDouble as fk), Uminus when floats -> 
      let s = select_fk "neg_single" "neg_double" "neg_quad" fk in
      LApp (s, [term_rounding_mode; t])
  | Tfloat _, Uminus -> LApp ("neg_real", [t])
  | _, Uabs_real -> LApp ("abs_real", [t])
  | _, Usqrt_real -> LApp ("sqrt_real", [t])
  | _ -> assert false

let interp_var label v =
  match label with 
    | None -> LVar v 
    | Some l -> LVarAtLabel(v,l)

let zoned_name (f : string) (ty : Info.why_type) =
  match ty with
    | Pointer z -> f ^ "_" ^ (found_repr ~quote_var:false z)
    | Addr _ 
    | Info.Int -> assert false
    | Info.Real -> assert false
    | Unit -> assert false
    | Why_Logic s ->  assert false
    | Memory(t,z) -> assert false
  
let term_float_conversion fk1 fk2 e = 
  if not floats then e else
  match fk1, fk2 with
    | Real, Float -> LApp ("r_to_s", [term_rounding_mode; e])
    | Real, Double -> LApp ("r_to_d", [term_rounding_mode; e])
    | Real, LongDouble -> LApp ("r_to_q", [term_rounding_mode; e])
    | Float, Real -> LApp ("s_to_r", [e])
    | Double, Real -> LApp ("d_to_r", [e])
    | LongDouble, Real -> LApp ("q_to_r", [e])
    | Float, Double -> 
	LApp ("double_of_single", [e])
    | Double, Float -> 
	LApp ("single_of_double", [term_rounding_mode; e ])
    | Float, LongDouble -> 
	LApp ("quad_of_single", [e])
    | LongDouble, Float -> 
	LApp ("single_of_quad", [term_rounding_mode; e ])
    | Double, LongDouble -> 
	LApp ("quad_of_double", [e])
    | LongDouble, Double -> 
	LApp ("double_of_quad", [term_rounding_mode; e ])
    | fk1, fk2 when fk1 = fk2 ->
	e
    | _ -> 
	assert false

let int_of (_,i as ik) e =
  if machine_ints && i <> ExactInt then
    let name = Cenv.int_type_for ik in LApp ("of_" ^ name, [e])
  else
    e

let int_of_enum tag e =
  if enum_check then
    let name = Cenv.enum_type_for tag in LApp ("of_" ^ name, [e])
  else
    e

let term_int_conversion ty1 ty2 e =
  match ty1, ty2 with
    (* int -> exact int *)
    | Tint si1, Tint (_, ExactInt) ->
	int_of si1 e
    (* enum -> exact int *)
    | Tenum t1, Tint (_, ExactInt) ->
	int_of_enum t1 e
    (* int,enum -> int,enum ?? *)
    | (Tint _ | Tenum _), (Tint _ | Tenum _) ->
	assert false
    | _ -> 
	assert false

let rec interp_term label old_label t =
  let f = interp_term label old_label in
  match t.nterm_node with
    | NTconstant (IntConstant c) ->
	LConst(Prim_int (try Int64.to_string (Cconst.int t.nterm_loc c)
			 with _ -> c))
    | NTconstant (RealConstant c) ->
	LConst(Prim_real c)
    | NTvar id ->
	let n = id.var_unique_name in
	if id.var_is_assigned && not id.var_is_a_formal_param then
	  interp_var label n
	else LVar n
    | NTold t -> interp_term (Some old_label) old_label t
    | NTbinop (t1, op, t2) ->
	term_bin_op t1.nterm_type t2.nterm_type op (f t1) (f t2)
    | NTbase_addr t -> 
	LApp("base_addr",[f t])
    | NToffset t -> 
	LApp("offset",[f t])
    | NTblock_length t -> 
	(* [block_length] should not be used with the 
	   arithmetic memory model *)
	assert (not arith_memory_model);
	LApp("block_length",[interp_var label "alloc"; f t])
    | NTarrlen t -> 
	if no_alloc_table then
	  LApp("arrlen",[f t])
	else
	  LApp("arrlen",[interp_var label "alloc"; f t])
    | NTstrlen (t,zone,var) -> 
	(* [strlen(p)] depends on the value pointed to by [p].
	   Pass an additional parameter for the memory. *)
	let te = f t in
	let var = zoned_name var.var_unique_name (Cnorm.type_why_for_term t)
	in
	LApp("strlen",[interp_var label var;te])
    | NTmin (t1,t2) -> 
	LApp("min",[f t1; f t2])
    | NTmax (t1,t2) -> 
	LApp("max",[f t1; f t2])
    | NTminint { ctype_node = Tint (s,i) } ->
	LConst (Prim_int (Invariant.min_int (s, Cenv.int_size i)))
    | NTmaxint { ctype_node = Tint (s,i) } ->
	LConst (Prim_int (Invariant.max_int (s, Cenv.int_size i)))
    | NTminint _ | NTmaxint _ -> 
	assert false
    | NTat (t, l) -> 
	interp_term (Some l) old_label t
    | NTif (t1, t2, t3) -> 
	LApp ("ite", [interp_boolean_term label old_label t1; f t2; f t3])
    | NTarrow (t,z, field) -> 
	let te = f t in
	let var = zoned_name field.var_unique_name (Cnorm.type_why_for_term t)
	in
	LApp("acc",[interp_var label var;te])
    | NTunop (Utilde, t) -> 
	LApp ("bw_compl", [f t])
    | NTunop (Ustar, _) -> 
	assert false
    | NTunop (Uamp, t1) -> 
	interp_term_address label old_label t1
    | NTunop (Uminus | Uabs_real | Usqrt_real as op, t1) -> 
	interp_term_un_op t1.nterm_type op (f t1)
    | NTunop (Uplus, t1) ->
	(f t1)
    | NTunop (Unot, t1) -> 
	LApp ("ite", 
	      [interp_boolean_term label old_label t1; 
	       LConst (Prim_int "0"); LConst (Prim_int "1")])
    | NTunop (Ufloat_of_int, t1) ->
	let e = LApp ("real_of_int", [f t1]) in
	begin match t.nterm_type.ctype_node with
	  | Tfloat fk -> term_float_conversion Real fk e
	  | _ -> assert false
	end
    | NTunop (Uint_of_float, t1) ->
	let e = match t1.nterm_type.ctype_node with
	  | Tfloat fk -> term_float_conversion fk Real (f t1)
	  | _ -> assert false
	in
	LApp ("int_of_real", [e])
    | NTunop (Ufloat_conversion, t1) ->
	begin match t1.nterm_type.ctype_node, t.nterm_type.ctype_node with
	  | Tfloat fk1, Tfloat fk2 -> term_float_conversion fk1 fk2 (f t1)
	  | _ -> assert false
	end
    | NTunop (Uint_conversion, t1) ->
	begin match t1.nterm_type.ctype_node, t.nterm_type.ctype_node with
	  | (Tenum _ | Tint _ as ty1), (Tint (_, ExactInt) as ty2) -> 
	      term_int_conversion ty1 ty2 (f t1)
	  | ty1,ty2 -> 
	      error t1.nterm_loc "cannot convert type %a to %a" 
		Creport.print_type t1.nterm_type Creport.print_type t.nterm_type; 
	end
    | NTunop ((Uround_error | Utotal_error), t1) when not floats ->
	LConst (Prim_real "0.0")
    | NTunop (Uround_error, t1) ->
	begin match t1.nterm_type.ctype_node with
	  | Tfloat Float -> LApp ("single_round_error", [f t1])
	  | Tfloat Double -> LApp ("double_round_error", [f t1])
	  | Tfloat LongDouble -> LApp ("quad_round_error", [f t1])
	  | _ -> assert false
	end
    | NTunop (Utotal_error, t1) ->
	begin match t1.nterm_type.ctype_node with
	  | Tfloat Float -> LApp ("single_total_error", [f t1])
	  | Tfloat Double -> LApp ("double_total_error", [f t1])
	  | Tfloat LongDouble -> LApp ("quad_total_error", [f t1])
	  | _ -> assert false
	end
    | NTunop ((Uexact | Umodel), t1) when not floats ->
	f t1
    | NTunop (Uexact, t1) ->
	begin match t1.nterm_type.ctype_node with
	  | Tfloat Float -> LApp ("s_to_exact", [f t1])
	  | Tfloat Double -> LApp ("d_to_exact", [f t1])
	  | Tfloat LongDouble -> LApp ("q_to_exact", [f t1])
	  | _ -> assert false
	end
    | NTunop (Umodel, t1) ->
	begin match t1.nterm_type.ctype_node with
	  | Tfloat Float -> LApp ("s_to_model", [f t1])
	  | Tfloat Double -> LApp ("d_to_model", [f t1])
	  | Tfloat LongDouble -> LApp ("q_to_model", [f t1])
	  | _ -> assert false
	end
    | NTapp {napp_pred = v; napp_args = tl; napp_zones_assoc = assoc} ->
	let reads = ZoneSet.fold 
	  (fun (z,s,ty) acc ->
	     let z = repr z in
	     ((try Cnorm.assoc_zone z assoc with Not_found -> z),s,ty)::acc)
	  v.logic_heap_zone [] in
	let targs = List.map f tl in
	let targs = HeapVarSet.fold 
	  (fun x acc -> (interp_var label (heap_var_name x)) :: acc) 
	  v.logic_heap_args targs in
	let targs = List.fold_right 
	  (fun (z,s,_) l -> (interp_var label (zoned_name s (Pointer z)))::l)
	  reads targs 
	in
	LApp (v.logic_name,targs)
    | NTcast({ctype_node = Tpointer _}, 
	     {nterm_node = NTconstant (IntConstant "0")}) ->
	LVar "null"
    | NTcast (ty, t) -> 
	begin match ty.ctype_node, t.nterm_type.ctype_node with
	  | (Tenum _ | Tint _), (Tenum _ | Tint _) ->
	      f t
	  | Tfloat fk1, Tfloat fk2 -> 
	      term_float_conversion fk2 fk1 (f t)
	  | Tfloat fk, (Tenum _ | Tint _) ->
	      term_float_conversion Real fk (LApp ("real_of_int", [f t]))
	  | (Tenum _ | Tint _), Tfloat fk ->
	      LApp ("int_of_real", [term_float_conversion fk Real (f t)])
	  | ty1, ty2 when Cenv.eq_type_node ty1 ty2 -> 
	      f t
	  | _ -> 
	      unsupported t.nterm_loc "logic cast"
	end
    | NTrange _ ->
	error t.nterm_loc "range operator .. invalid here"

and interp_term_address  label old_label e = match e.nterm_node with
  | NTvar v -> 
      begin match e.nterm_type.ctype_node with
	| Tstruct _ | Tunion _ -> LVar v.var_unique_name
	| _ -> unsupported e.nterm_loc "& operator"
      end
  | NTunop (Ustar, e1) -> 
      interp_term  label old_label e1
  | NTarrow (e1,z, f) ->
      begin match e.nterm_type.ctype_node with
	| Tenum _ | Tint _ | Tfloat _ -> 
  	    interp_term  label old_label e1
	| Tstruct _ | Tunion _ | Tpointer _ | Tarray _ ->
	    let var = zoned_name f.var_unique_name (Cnorm.type_why_for_term e1)
	    in
	    LApp("acc",[interp_var label var; interp_term label old_label e1])
	| _ -> unsupported e.nterm_loc "& operator on a field"
      end
  | NTcast (_, e1) ->
      interp_term_address  label old_label e1
  | _ -> 
      assert false (* not a left value *)

and interp_boolean_term label old_label t = 
  (* t <> 0 *)
  let cmp,zero = match t.nterm_type.Ctypes.ctype_node with
    | Tenum _ | Tint _ -> 
	"neq_int_bool", LConst (Prim_int "0")
    | Tfloat fk -> 
	assert false (* TODO *)
    | Tarray _ | Tpointer _ -> 
	assert false (* TODO *)
    | _ -> 
	assert false
  in
  LApp (cmp, [interp_term label old_label t; zero])

let has_prefix p s = 
  let n = String.length p in String.length s >= n && String.sub s 0 n = p

let is_internal_pred s = String.length s >= 1 && String.sub s 0 1 = "%"

let rec interp_predicate label old_label p =
  let f = interp_predicate label old_label in
  let ft = interp_term label old_label in
  match p.npred_node with
    | NPtrue -> 
	LTrue
    | NPexists (l, p) -> 
	List.fold_right
	  (fun (t,x) p -> 
	     LExists(x.var_unique_name,
		     Info.output_why_type x.var_why_type,p)) l (f p)
    | NPforall (l, p) ->	
	List.fold_right
	  (fun (t,x) p -> 
	     LForall(x.var_unique_name,
		     Info.output_why_type x.var_why_type,p)) l (f p)
    | NPif (t, p1, p2) -> 
	let t = ft t in
	let zero = LConst (Prim_int "0") in
	LAnd (make_impl (LPred ("neq_int", [t; zero])) (f p1),
	      make_impl (LPred ("eq_int",  [t; zero])) (f p2))
    | NPnot p -> 
	LNot (f p)
    | NPimplies (p1, p2) -> 
	make_impl (f p1) (f p2)
    | NPiff (p1, p2) -> 
	make_equiv (f p1) (f p2)
    | NPor (p1, p2) -> 
	make_or (f p1) (f p2)
    | NPand (p1, p2) -> 
	make_and (f p1) (f p2)
    | NPrel (t1, op, t2) ->
	let t1,op,t2 = interp_rel t1 t2 op in
	LPred(op,[ft t1;ft t2])
    | NPapp {napp_pred = v; napp_args = tl} 
	when is_internal_pred v.logic_name ->
       let n = v.logic_name in
       let name,num =
	 if has_prefix "%valid_acc_range" n then "valid_acc_range", 1
	 else if has_prefix "%valid_acc" n then "valid_acc", 1
	 else if has_prefix "%separation1_range1" n then "separation1_range1",2
	 else if has_prefix "%separation1_range" n then "separation1_range", 1
	 else if has_prefix "%separation1" n then "separation1", 2
	 else if has_prefix "%separation2_range1" n then "separation2_range1",2
	 else if has_prefix "%separation2" n then "separation2", 2
	 else assert false
       in
       let tl = match tl, num with
	 | [x], 2 -> [x; x]
	 | _ -> tl
       in
       LPred(name, List.map ft tl)
    | NPapp {napp_pred = v; napp_args = tl; napp_zones_assoc = assoc} ->
	let reads = ZoneSet.fold 
	  (fun (z,s,ty) acc ->
	     let z = repr z in
	     ((try Cnorm.assoc_zone z assoc with Not_found -> z),s,ty)::acc)
	  v.logic_heap_zone [] in
	let targs = List.map ft tl in
	let targs = HeapVarSet.fold 
		 (fun x acc -> (interp_var label (heap_var_name x)) :: acc) 
		 v.logic_heap_args targs in
	let targs = List.fold_right 
	  (fun (z,s,_) l -> 
	     (interp_var label (zoned_name s (Pointer z)))::l)
	  reads targs in
	LPred (v.logic_name,targs)
    | NPfalse -> 
	LFalse
    | NPold p -> 
	interp_predicate (Some old_label) old_label p
    | NPat (p, l) -> 
	interp_predicate (Some l) old_label p
    | NPfresh (t) ->
	(* [fresh] should not be used when the alloc table is dropped *)
	assert (not no_alloc_table);
	LPred("fresh",[interp_var (Some old_label) "alloc"; ft t])
    | NPvalid (t) ->
	if no_alloc_table then
	  LPred("valid",[ft t])
	else
	  LPred("valid",[interp_var label "alloc"; ft t])
    | NPvalid_index (t,a) ->
	if no_alloc_table then
	  LPred("valid_index",[ft t;ft a])
	else
	  LPred("valid_index",[interp_var label "alloc"; ft t;ft a])
    | NPvalid_range (t,a,b) ->
	begin 
	  match a.nterm_node , b.nterm_node with
	    | NTconstant (IntConstant "0"), NTconstant (IntConstant "0") -> 
		if no_alloc_table then
		  LPred("valid",[ft t])
		else
		  LPred("valid",[interp_var label "alloc"; ft t])
	    | _ ->
		if no_alloc_table then
		  LPred("valid_range",[ft t;ft a;ft b])
		else
		  LPred("valid_range",
			[interp_var label "alloc"; ft t;ft a;ft b])
	end
    | NPnamed (n, p) ->
	LNamed (n, f p)
    | NPseparated (t1,t2) ->
	LPred("separated",[ft t1;ft t2])
    | NPfull_separated (t1,t2) ->
	LPred("full_separated",[ft t1;ft t2])
    | NPbound_separated (t1,t2,t3,t4) ->
	LPred("bound_separated",[ft t1;ft t2;ft t3;ft t4])

(*
let interp_predicate label old_label p = 
  let w = interp_predicate label old_label p in
  if p.npred_loc = Loc.dummy_position then
    w
  else
    LNamed ("\"" ^ String.escaped (Loc.string p.npred_loc) ^ "\"", w)
*)

let named_predicate loc = function
  | LNamed _ as a -> a
  | a -> let n = reg_loc loc in LNamed (n,a)

let interp_predicate label oldlabel a =
  let a' = interp_predicate label oldlabel a in
  named_predicate a.npred_loc a'

let interp_predicate_opt label old_label pred =
  match pred with
    | None -> LTrue
    | Some p -> interp_predicate label old_label p

let rounding_mode () = match !fp_rounding_mode with
  | RM_dynamic -> Deref "rounding_mode"
  | m -> Var (string_of_rounding_mode m)

let interp_float_of_int ft e =
  let e = make_app "real_of_int" [e] in
  if floats then match ft.Ctypes.ctype_node with
    | Tfloat Float -> make_app "r_to_s" [rounding_mode (); e]
    | Tfloat Double -> make_app "r_to_d" [rounding_mode (); e]
    | Tfloat LongDouble -> make_app "r_to_q" [rounding_mode (); e]
    | Tfloat Real -> e
    | _ -> assert false
  else
    e

let interp_int_of_float ft e =
  let e = 
    if floats then match ft.Ctypes.ctype_node with
      | Tfloat Float -> make_app "s_to_r" [e]
      | Tfloat Double -> make_app "d_to_r" [e]
      | Tfloat LongDouble -> make_app "q_to_r" [e]
      | Tfloat Real -> e
      | _ -> assert false
    else
      e
  in
  make_app "int_of_real" [e]

(* float conversion ty1 -> ty2 *)
let interp_float_conversion ty1 ty2 e = 
  if not floats then e else
  match ty1.Ctypes.ctype_node, ty2.Ctypes.ctype_node with
    | Tfloat Real, Tfloat Float -> make_app "r_to_s" [rounding_mode (); e]
    | Tfloat Real, Tfloat Double -> make_app "r_to_d" [rounding_mode (); e]
    | Tfloat Real, Tfloat LongDouble -> make_app "r_to_q" [rounding_mode (); e]
    | Tfloat Float, Tfloat Real -> make_app "s_to_r" [e]
    | Tfloat Double, Tfloat Real -> make_app "d_to_r" [e]
    | Tfloat LongDouble, Tfloat Real -> make_app "q_to_r" [e]
    | Tfloat Float, Tfloat Double -> 
	make_app "double_of_single" [e]
    | Tfloat Double, Tfloat Float -> 
	make_app "single_of_double" [rounding_mode (); e ]
    | Tfloat Float, Tfloat LongDouble -> 
	make_app "quad_of_single" [e]
    | Tfloat LongDouble, Tfloat Float -> 
	make_app "single_of_quad" [rounding_mode (); e ]
    | Tfloat Double, Tfloat LongDouble -> 
	make_app "quad_of_double" [e]
    | Tfloat LongDouble, Tfloat Double -> 
	make_app "double_of_quad" [rounding_mode (); e ]
    | Tfloat fk1, Tfloat fk2 when fk1 = fk2 ->
	e
    | _ -> 
	assert false

let int_size = Cenv.int_size

let le_cinteger i1 i2 = int_size i1 <= int_size i2

let lt_cinteger i1 i2 = int_size i1 < int_size i2

let min_cinteger = Invariant.min_cinteger
let max_cinteger = Invariant.max_cinteger

let le_max_int i e = LPred ("le_int", [e; LConst (Prim_int (max_cinteger i))])

let is_non_negative e = LPred ("le_int", [LConst (Prim_int "0"); e])

let not_zero e = LPred ("neq_int", [e; LConst (Prim_int "0")])

let within_bounds i e = 
  LAnd (LPred ("le_int", [LConst (Prim_int (min_cinteger i)); e]), 
       le_max_int i e)

let is_enum e t = 
  let _,info = Cenv.find_pred ("is_enum_" ^ e) in LPred (info.logic_name, [t])

let of_int (_,i as ik) e =
  if machine_ints && i <> ExactInt then
    let name = Cenv.int_type_for ik in App (Var (name ^ "_of_int"), e)
  else
    e

let int_of (_,i as ik) e =
  if machine_ints && i <> ExactInt then
    let name = Cenv.int_type_for ik in App (Var ("of_" ^ name), e)
  else
    e

let enum_of_int tag e =
  if enum_check then
    let name = Cenv.enum_type_for tag in App (Var (name ^ "_of_int"), e)
  else
    e

let int_of_enum tag e =
  if enum_check then
    let name = Cenv.enum_type_for tag in App (Var ("of_" ^ name), e)
  else
    e

let guard_1 g e =
  let v = tmp_var () in Let (v, e, Output.Assert (g (LVar v), Var v))

(* int conversion ty1 -> ty2 *)
let interp_int_conversion ty1 ty2 e = 
  match ty1.Ctypes.ctype_node, ty2.Ctypes.ctype_node with
    (* enum -> enum *)
    | Tenum t1, Tenum t2 ->
	enum_of_int t2 (int_of_enum t1 e) 
    (* enum -> int *)
    | Tint si1, Tenum t2 ->
	enum_of_int t2 (int_of si1 e)
    (* int -> enum *)
    | Tenum t1, Tint si2 ->
	of_int si2 (int_of_enum t1 e)
    (* int -> int, no check *)
    | Tint si1, Tint si2 ->
	of_int si2 (int_of si1 e)
    | _ -> 
	e
(***** TODO: some checks can be safely avoided
    (* exact int -> int *)
    | Tint (_, ExactInt), Tint si2 ->
	of_int si2 e
    (* int -> exact int *)
    | Tint si1, Tint (_, ExactInt) ->
	int_of si1 e
    (* int -> int *)
    | Tint (Unsigned, i1 as si1), Tint (Unsigned, i2 as si2) 
    | Tint (Signed, i1 as si1), Tint (Signed, i2 as si2) 
      when le_cinteger i1 i2 -> 
	of_int si2 (int_of si1 e) (* TODO safe *)
    | Tint (Unsigned, i1 as si1), Tint (Signed, i2 as si2) 
      when lt_cinteger i1 i2 -> 
	of_int si2 (int_of si1 e) (* TODO safe *)
    | Tint (Unsigned, i1 as si1), Tint si2 ->
	of_int si2 (int_of si1 e) (* TODO half safe: e <= le_max_int si2 *)
    | Tint (Signed, i1 as si1), Tint (Unsigned, i2 as si2) 
      when le_cinteger i1 i2 ->
	of_int si2 (int_of si1 e) (* TODO half safe: 0 <= e *)
    | Tint (Signed, _ as si1), Tint si2 ->
	of_int si2 (int_of si1 e)
*******)

let float_binop ~cmp fk opr ops opd opq =
  if floats then
    let op = match fk with 
      | Float -> ops
      | Double -> opd
      | LongDouble -> opq
      | Real -> opr
    in
    if cmp || fk = Real then
      Var op
    else
      App (Var (if fp_overflow_check then op ^ "_" else op), 
	   rounding_mode ())
  else
    Var opr

let float_unop fk = function
  | Cast.Uminus -> 
      if floats && fk <> Real then 
	let op = match fk with
	  | Float -> "neg_single"
	  | Double -> "neg_double"
	  | LongDouble -> "neg_quad"
	  | Real -> assert false
	in
	App (Var op, rounding_mode ())
      else 
	Var "neg_real"
  | _ -> assert false

(* arithmetic operations with overflow guards *)

let simple_logic_type s =
  { logic_type_args = [] ; logic_type_name = s}

(* buils the declarations for integer types with checks *)
let make_int_types_decls () =
  let int = Base_type (simple_logic_type "int") in
  let make_one acc ((signed, size) as i) =
    let name = Cenv.int_type_for_size signed size in
    let min = Invariant.min_int i in
    let max = Invariant.max_int i in
    let of_name = "of_" ^ name in
    let mod_name = "mod_" ^ name in
    let lt = simple_logic_type name in
    let in_bounds t = 
      LAnd (LPred ("le_int", [LConst (Prim_int min); t]),
 	    LPred ("le_int", [t; LConst (Prim_int max)]))
    in
    (Type (name, [])) 
    ::
    (Logic (false, of_name, ["x", lt], simple_logic_type "int")) 
    ::
    (Axiom (name ^ "_domain", 
	     LForall ("x", lt, in_bounds (LApp (of_name, [LVar "x"]))))) 
    ::
    (if int_model = IMmodulo then
       let width = LConst (Prim_int (Invariant.string_two_power_n size)) in
       let fmod t = LApp (mod_name, [t]) in
       [Logic (false, mod_name, 
	       ["x", simple_logic_type "int"], simple_logic_type "int");
	Axiom (mod_name ^ "_id",
	       LForall ("x", simple_logic_type "int",
		       LImpl (in_bounds (LVar "x"), 
		             LPred ("eq", [LApp (mod_name, [LVar "x"]);
					   LVar "x"]))));
	Axiom (mod_name ^ "_lt",
	       LForall ("x", simple_logic_type "int",
		       LImpl (LPred ("lt_int", [LVar "x"; 
						LConst (Prim_int min)]), 
		             LPred ("eq", [fmod (LVar "x");
					   fmod (LApp ("add_int", 
						      [LVar "x"; width]))]))));
	Axiom (mod_name ^ "_gt",
	       LForall ("x", simple_logic_type "int",
		       LImpl (LPred ("gt_int", [LVar "x"; 
						LConst (Prim_int max)]), 
		             LPred ("eq", [fmod (LVar "x");
					   fmod (LApp ("sub_int", 
						      [LVar "x"; width]))]))));
	
	]
     else
       [])
    @
    (let pre = if int_model = IMbounded then in_bounds (LVar "x") else LTrue in
    let post = 
      LPred ("eq", [LApp (of_name, [LVar "result"]); 
		    if int_model = IMbounded then LVar "x" 
		    else LApp (mod_name, [LVar "x"])]) 
    in
    Param (false, name ^ "_of_int",
	  Prod_type ("x", int, 
		    Annot_type (pre, Base_type lt, [], [], post, []))))
    ::
    (Param (false, "any_" ^ name,
            Prod_type ("x", unit_type,
	               Annot_type (LTrue, Base_type lt, [], [], LTrue, []))))
    ::
    (Exception ("Return_" ^ name, Some lt))
    ::
    acc
  in
  List.fold_left make_one [] (Cenv.all_int_sizes ())

(* buils the declarations for enum types with checks *)
let make_enum_types_decls () =
  let int = Base_type (simple_logic_type "int") in
  let declare_enum_type s (tyn, vl) acc =
    let name = Cenv.enum_type_for s in
    let of_name = "of_" ^ name in
    let is_enum = "is_" ^ name in
    let lt = simple_logic_type name in
    (Type (name, [])) 
    ::
    (Logic (false, of_name, ["x", lt], simple_logic_type "int")) 
    ::
    (Predicate (false, is_enum, ["x", simple_logic_type "int"], 
	        List.fold_left 
		  (fun p (_,v) -> 
		    let v = Int64.to_string v in
		    let p1 = LPred ("eq", [LVar "x"; LConst (Prim_int v)]) in
		    make_or p p1)
		  LFalse vl))
    ::
    (Axiom (name ^ "_domain", 
	    LForall ("x", lt, LPred (is_enum, [LApp (of_name, [LVar "x"])])))) 
    ::
    (Param (false, name ^ "_of_int",
	    Prod_type ("x", int, 
		       let pre = LPred (is_enum, [LVar "x"]) in
		       let post = 
			 LPred ("eq", [LApp (of_name, [LVar "result"]); 
				       LVar "x"]) 
		       in
		       Annot_type (pre, Base_type lt, [], [], post, []))))
    ::
    (Param (false, "any_" ^ name,
            Prod_type ("x", unit_type,
		       Annot_type (LTrue, Base_type lt, [], [], LTrue, []))))
    ::
    (Exception ("Return_" ^ name, Some lt))
    ::
    (List.fold_left
      (fun acc (info,v) -> 
	 let x = info.var_unique_name in
	 let v = Int64.to_string v in
	 let a = LPred ("eq_int", [LApp (of_name, [LVar x]); 
				   LConst (Prim_int v)]) in
	 (Logic (false, x, [], lt)) ::
         (Axiom ("enum_" ^ s ^ "_" ^ x, a)) :: acc)
      acc vl)
  (******
    let ty = noattr tyn in
    let n = "is_enum_" ^ s in
    let n' = "any_enum_" ^ s in
    let is_enum_s = Info.default_logic_info n in   
    let any_enum_n' = Info.default_fun_info n' in    
    let result = {nterm_node = NTvar(Info.default_var_info "result");
		  nterm_loc = Loc.dummy_position ;
		  nterm_type = ty}
    in
    let spec_n' = { requires = None;
		    assigns = None;
		    ensures = Some (npapp (is_enum_s, [result]));
		    decreases = None} 
    in    
    Cenv.add_c_fun n' (spec_n',ty,any_enum_n',None,Loc.dummy_position);
    Cenv.add_pred n ([ty], is_enum_s);
    let x = Info.default_var_info (get_fresh_name "x") in
    set_formal_param x;
    set_var_type (Var_info x) ty true;
    is_enum_s.logic_args <- [x];
    let var_x = nterm (NTvar x) ty in
    let p = 
      List.fold_left 
	(fun p (v,_) -> 
	   let p1 = nprel (var_x, Eq, nterm (NTvar v) ty) in
	   npor (p, p1)) 
	npfalse vl
    in
    let d = tdecl (Nlogic (is_enum_s, NPredicate_def ([x,ty], p))) in
    d :: acc
  *****)
  in
  let declare_enum_val n (_, vl) acc =
    List.fold_left
      (fun acc (info,v) -> 
	let x = info.var_unique_name in
	let v = Int64.to_string v in
	let a = LPred ("eq_int", [LVar x; LConst (Prim_int v)]) in
	(Logic (false, x, [], simple_logic_type "int")) ::
	(Axiom ("enum_" ^ n ^ "_" ^ x, a)) :: acc)
      acc vl
  in
  Cenv.fold_all_enum 
    (if enum_check then declare_enum_type else declare_enum_val) []

let int_op = function
  | Badd_int _ -> "add_int"
  | Bsub_int _ -> "sub_int"
  | Bmul_int _ -> "mul_int"
  | Bdiv_int _ -> "div_int_"
  | Bmod_int _ -> "mod_int_"
  | _ -> assert false

open Cast

let interp_bin_op = function
  | Badd_int _ | Bsub_int _ | Bmul_int _ | Bdiv_int _ | Bmod_int _ as op ->
      Var (int_op op)
  | Blt_int -> Var "lt_int_"
  | Bgt_int -> Var "gt_int_"
  | Ble_int -> Var "le_int_"
  | Bge_int -> Var "ge_int_"
  | Beq_int -> Var "eq_int_"
  | Bneq_int -> Var "neq_int_" 
  | Badd_float fk -> 
      float_binop ~cmp:false fk "add_real" "add_single" "add_double" "add_quad"
  | Bsub_float fk -> 
      float_binop ~cmp:false fk "sub_real" "sub_single" "sub_double" "sub_quad"
  | Bmul_float fk -> 
      float_binop ~cmp:false fk "mul_real" "mul_single" "mul_double" "mul_quad"
  | Bdiv_float fk -> 
      float_binop 
	~cmp:false fk "div_real_" "div_single" "div_double" "div_quad"
  | Blt_float fk -> 
      float_binop ~cmp:true fk "lt_real_" "lt_single" "lt_double" "lt_quad"
  | Bgt_float fk -> 
      float_binop ~cmp:true fk "gt_real_" "gt_single" "gt_double" "gt_quad"
  | Ble_float fk -> 
      float_binop ~cmp:true fk "le_real_" "le_single" "le_double" "le_quad"
  | Bge_float fk -> 
      float_binop ~cmp:true fk "ge_real_" "ge_single" "ge_double" "ge_quad"
  | Beq_float fk -> 
      float_binop ~cmp:true fk "eq_real_" "eq_single" "eq_double" "eq_quad"
  | Bneq_float fk ->
      float_binop ~cmp:true fk "neq_real_" "neq_single" "neq_double" "neq_quad"
  | Blt_pointer -> Var "lt_pointer_"
  | Bgt_pointer -> Var "gt_pointer_"
  | Ble_pointer -> Var "le_pointer_"
  | Bge_pointer -> Var "ge_pointer_"
  | Beq_pointer -> Var "eq_pointer"
  | Bneq_pointer -> Var "neq_pointer" 
  | Badd_pointer_int -> Var "shift_"
  | Bsub_pointer -> Var "sub_pointer_"
  | Bbw_and -> Var "bw_and"
  | Bbw_xor -> Var "bw_xor"
  | Bbw_or -> Var "bw_or"
  | Bshift_left -> Var "lsl"
  | Bshift_right -> Var "lsr"
  (* should not happen *)
  | Badd | Bsub | Bmul | Bdiv | Bmod 
  | Blt | Bgt | Ble | Bge | Beq | Bneq | Band | Bor ->
      assert false

let int_one = Cte(Prim_int "1")
let int_minus_one = Cte(Prim_int "(-1)")

let any_float fk = 
  if floats then match fk with
    | Float -> "any_single"
    | Double -> "any_double"
    | LongDouble -> "any_quad"
    | Real -> "any_real"
  else 
    "any_real"

let float_of_real r fk = 
  if floats then match fk with
    | Float -> App (App (Var "r_to_s", rounding_mode ()), r)
    | Double  -> App (App (Var "r_to_d", rounding_mode ()), r)
    | LongDouble  -> App (App (Var "r_to_q", rounding_mode ()), r)
    | Real -> r
  else
    r

let real_zero = Cte(Prim_real "0.0")
let float_zero = float_of_real real_zero

let real_one = Cte(Prim_real "1.0")
let float_one = float_of_real real_one

let interp_incr_op ty op = match ty.Ctypes.ctype_node, op with
  | (Tenum _ | Tint _), (Upostfix_inc | Uprefix_inc) -> Var "add_int", int_one
  | (Tenum _ | Tint _), (Upostfix_dec | Uprefix_dec) -> Var "sub_int", int_one
  | Tfloat fk, (Upostfix_inc | Uprefix_inc) -> 
      interp_bin_op (Badd_float fk), float_one fk
  | Tfloat fk, (Upostfix_dec | Uprefix_dec) -> 
      interp_bin_op (Bsub_float fk), float_one fk
  | (Tpointer _ | Tarray _), 
    (Upostfix_inc | Uprefix_inc) -> Var "shift_", int_one
  | (Tpointer _ | Tarray _), 
    (Upostfix_dec | Uprefix_dec) -> Var "shift_", int_minus_one
  | _ -> assert false

type interp_lvalue =
  | LocalRef of Info.var_info
  | HeapRef of valid * string * Output.expr

let build_complex_app e args =
  let rec build n e args =
    match args with
      | [] -> e
      | [p] -> App(e,p)
      | ((Var _) | (Cte _) as p)::l ->
	  build n (App(e,p)) l
      | p::l ->
	  let v = tmp_var () in
	  Let(v,p, build (succ n) (App(e,Var(v))) l)
  in
  match args with
    | [] -> App(e,Void)
    | _ -> build 1 e args

let build_minimal_app e args =
  match args with
    | [] -> App(e,Void)
    | _ ->
	if List.for_all is_pure args then
	  List.fold_left (fun acc x -> App(acc,x)) e args
	else
	  build_complex_app e args

let bin_op op t1 t2 = match op, t1, t2 with
  | Badd_pointer_int, _, Cte (Prim_int "0") ->
      t1
  | Beq_int, Cte (Prim_int n1), Cte (Prim_int n2) ->
      Cte (Prim_bool (n1 = n2))
  | _ ->
      build_minimal_app (interp_bin_op op) [t1; t2]

let guarded_app f kind loc x y =
  Output.Label (reg_loc ~kind loc, f x y)

let guarded_make_app = guarded_app Output.make_app

let guarded_build_complex_app = 
  guarded_make_app (*guarded_app build_complex_app*)

let rec interp_expr e =
  let w = interp_expr_loc e in
  if e.nexpr_loc = Loc.dummy_position then w else Loc (fst e.nexpr_loc, w)

and interp_expr_loc e =
  let loc = e.nexpr_loc in
  match e.nexpr_node with
    | NEconstant (IntConstant c) -> 
	let t = Cte (Prim_int (Int64.to_string (Cconst.int e.nexpr_loc c))) in
	if machine_ints then begin 
	  match e.nexpr_type.Ctypes.ctype_node with
	  | Tint si -> of_int si t
	  | Tenum _ -> assert false (*TODO*)
	  | _ -> assert false
	end else 
	  t
    | NEconstant (RealConstant c) ->
	Cte (Prim_real c)
    | NEvar( Var_info v) -> 
	let n = heap_var_name v in
	if v.var_is_assigned then Deref n else Var n
    | NEvar (Fun_info v) -> assert false
    (* a ``boolean'' expression is [if e then 1 else 0] *)
    | NEbinary (_,(Blt_int | Bgt_int | Ble_int | Bge_int | Beq_int | Bneq_int 
		  |Blt_float _ | Bgt_float _ | Ble_float _ | Bge_float _
		  |Beq_float _ | Bneq_float _
		  |Blt_pointer | Bgt_pointer | Ble_pointer | Bge_pointer 
		  |Beq_pointer | Bneq_pointer 
		  |Blt | Bgt | Ble | Bge | Beq | Bneq | Band | Bor),_) 
    | NEunary (Unot, _) ->
	let w = match interp_boolean_expr e with (* partial evaluation *)
	  | Cte (Prim_bool true) -> Cte (Prim_int "1")
	  | Cte (Prim_bool false) -> Cte (Prim_int "0")
	  | e -> If (e, Cte (Prim_int "1"), Cte (Prim_int "0"))
	in
	interp_int_conversion c_exact_int e.nexpr_type w
    | NEbinary (e1, (Badd_int _ | Bsub_int _ | Bmul_int _ |
                     Bdiv_int _ | Bmod_int _ |
		     Bbw_and | Bbw_xor | Bbw_or | 
		     Bshift_left | Bshift_right as op), e2) ->
	let w = bin_op op (interp_int_expr e1) (interp_int_expr e2) in
	interp_int_conversion c_exact_int e.nexpr_type w
    | NEbinary (e1, (Badd_pointer_int as op), e2) ->
	bin_op op (interp_expr e1) (interp_int_expr e2)
    | NEbinary (e1,op,e2) ->
	bin_op op (interp_expr e1) (interp_expr e2)
    | NEassign (e,e2) ->
	begin
	  match interp_lvalue e with
	    | LocalRef v ->
		let n = v.var_unique_name in
		append (Assign(n,interp_expr e2)) (Deref n)
	    | HeapRef (Valid(a,b),var,e1) ->
		let tmp1 = tmp_var () in
		let tmp2 = tmp_var () in
		if (a <= Int64.zero && b > Int64.zero) then 
		  Let(tmp1, e1,
		      Let(tmp2, interp_expr e2,
			  append (build_complex_app (Var "safe_upd_")
				    [Var var; Var tmp1; Var tmp2])
			    (Var tmp2)))
		else
		  Let(tmp1, e1,
		      Let(tmp2, interp_expr e2,
			  append (guarded_build_complex_app 
				     PointerDeref loc "upd_"
				     [Var var; Var tmp1; Var tmp2])
			    (Var tmp2)))
	    | HeapRef (Not_valid,var,e1) ->	
		let tmp1 = tmp_var () in
		let tmp2 = tmp_var () in
		Let(tmp1, e1,
		    Let(tmp2, interp_expr e2,
			append (guarded_build_complex_app 
				   PointerDeref loc "upd_"
				   [Var var; Var tmp1; Var tmp2])
			  (Var tmp2)))
	end 
    | NEincr(op,e) -> 
	interp_incr_expr op e
    | NEassign_op(e,op,e2) ->
	begin match interp_lvalue e with
	  | LocalRef(v) ->
	      let n = v.var_unique_name in
	      append
	        (Assign(n, bin_op op (Deref n) (interp_expr e2)))
	        (Deref n)
	  | HeapRef(Valid (a,b),var,e1) -> 
	      let tmp1 = tmp_var () in
	      let tmp2 = tmp_var () in
	      if (a<= Int64.zero && b> Int64.zero)	  
	      then
		Let(tmp1, e1,
		    Let(tmp2, 
			bin_op op
			  (make_app "safe_acc_" [Var var; Var tmp1]) 
			  (interp_expr e2),
			append
			  (build_complex_app (Var "safe_upd_") 
				 [Var var; Var tmp1; Var tmp2])
			  (Var tmp2))) 
	      else
		Let(tmp1, e1,
			Let(tmp2, 
			    bin_op op
			      (make_app "acc_" [Var var; Var tmp1]) 
			      (interp_expr e2),
			    append
			      (build_complex_app (Var "safe_upd_") 
				 [Var var; Var tmp1; Var tmp2])
			      (Var tmp2))) 
		| HeapRef(Not_valid,var,e1) ->
		    let tmp1 = tmp_var () in
		    let tmp2 = tmp_var () in
		    Let(tmp1, e1,
			Let(tmp2, 
			    bin_op op
			      (make_app "acc_" [Var var; Var tmp1]) 
			      (interp_expr e2),
			    append
			      (build_complex_app (Var "safe_upd_") 
				 [Var var; Var tmp1; Var tmp2])
			      (Var tmp2))) 
	end 
    | NEseq(e1,e2) ->
	append (interp_statement_expr e1) (interp_expr e2)
    | NEnop -> 
	Void
    | NEcond(e1,e2,e3) ->
	If (interp_boolean_expr e1, interp_expr e2, interp_expr e3)
    | NEstring_literal s -> 
	unsupported e.nexpr_loc "string literal"
    | NEarrow (e,z,s) ->
	let te = interp_expr e in
	let var = zoned_name s.var_unique_name (Cnorm.type_why e) in
	let valid = 
	  match e.nexpr_type.Ctypes.ctype_node with
	    | Tpointer (valid,_)  
	    | Tarray (valid,_,_) -> valid
	    | Tstruct _ -> Valid (Int64.zero,Int64.one) 
	    | _ -> assert false
	in
	begin 
	  match valid with 
	    | Valid (a,b) ->
		if (a<= Int64.zero && b>Int64.one)
		then Output.make_app "safe_acc_" [Var(var);te] 
		else guarded_make_app PointerDeref loc "acc_" [Var(var);te]
	    | Not_valid -> 
		guarded_make_app PointerDeref loc "acc_" [Var(var);te] 
	end
    | NEunary (Ustar, e) -> assert false
    | NEunary (Uplus, e) ->
	interp_expr e
    | NEunary (Uminus, e) -> 
	begin match e.nexpr_type.Ctypes.ctype_node with
	  | Tenum _ | Tint _ -> 
	      let w = make_app "neg_int" [interp_int_expr e] in
	      interp_int_conversion c_exact_int e.nexpr_type w
	  | Tfloat fk -> 
	      build_minimal_app (float_unop fk Uminus) [interp_expr e]
	  | _ -> 
	      assert false
	end
    | NEunary (Uint_of_float, e1) ->
	interp_int_of_float e1.nexpr_type (interp_expr e1)
    | NEunary (Ufloat_of_int, e1) ->
	interp_float_of_int e.nexpr_type (interp_expr e1)
    | NEunary (Ufloat_conversion, e1) ->
	interp_float_conversion e1.nexpr_type e.nexpr_type (interp_expr e1)
     | NEunary (Uint_conversion, e1) ->
	interp_int_conversion e1.nexpr_type e.nexpr_type (interp_expr e1)
    | NEunary (Utilde, e) ->
	make_app "bw_compl" [interp_expr e]
    | NEunary (Uamp, e) ->
	interp_address e
    | NEcall{ncall_fun = e; ncall_args = args ; ncall_zones_assoc = assoc } -> 
	interp_call e args assoc
    | NEcast({Ctypes.ctype_node = Tpointer _}, 
	     {nexpr_node = NEconstant (IntConstant "0")}) ->
	Var "null"
    | NEcast (t,e1) -> 
	begin match t.Ctypes.ctype_node, e1.nexpr_type.Ctypes.ctype_node with
	  | (Tenum _ | Tint _), (Tenum _ | Tint _) ->
	      interp_int_conversion e1.nexpr_type t (interp_expr e1)
	  | Tfloat _, Tfloat _ -> 
	      interp_float_conversion e1.nexpr_type t (interp_expr e1)
	  | Tfloat _, (Tenum _ | Tint _) ->
	      let e = make_app "real_of_int" [interp_expr e1] in
	      interp_float_conversion c_real t e
	  | (Tenum _ | Tint _), Tfloat _ ->
	      interp_int_of_float e1.nexpr_type (interp_expr e1)
	  | ty1, ty2 when Cenv.eq_type_node ty1 ty2 -> 
	      interp_expr e1
	  | _ -> 
	      unsupported e.nexpr_loc "cast"
	end
    | NEmalloc (_, e) ->
	make_app "malloc_parameter" [interp_expr e]

and interp_int_expr e =
  let w = interp_expr e in
  interp_int_conversion e.nexpr_type c_exact_int w

and interp_boolean_expr e =
  let w = interp_boolean_expr_loc e in
  if e.nexpr_loc = Loc.dummy_position then w else Loc (fst e.nexpr_loc, w)

and interp_boolean_expr_loc e = match e.nexpr_node with
    | NEbinary(e1, (Blt_int | Bgt_int | Ble_int | Bge_int | 
	            Beq_int | Bneq_int as op), e2) ->
	bin_op op (interp_int_expr e1) (interp_int_expr e2)
    | NEbinary(e1, (Blt_float _ | Bgt_float _ | Ble_float _ | Bge_float _ 
		   |Beq_float _ | Bneq_float _
		   |Blt_pointer | Bgt_pointer | Ble_pointer | Bge_pointer 
		   |Beq_pointer | Bneq_pointer 
		   |Blt | Bgt | Ble | Bge | Beq | Bneq as op), e2) ->
	bin_op op (interp_expr e1) (interp_expr e2)
    | NEbinary (e1, Band, e2) ->
	And(interp_boolean_expr e1, interp_boolean_expr e2)
    | NEbinary (e1, Bor, e2) ->
	Or(interp_boolean_expr e1, interp_boolean_expr e2)
    | NEunary (Unot, e) ->
	Not(interp_boolean_expr e)
    (* otherwise e <> 0 *)
    | _ -> 
	let e,cmp,zero = match e.nexpr_type.Ctypes.ctype_node with
	  | Tenum _ | Tint _ -> 
	      interp_int_expr e, "neq_int_", Cte (Prim_int "0")
	  | Tfloat fk -> 
	      interp_expr e, "neq_real_", Cte (Prim_real "0.0")
	  | Tarray _ | Tpointer _ -> 
	      interp_expr e, "neq_pointer", Var "null"
	  | _ -> 
	      assert false
	in
	build_complex_app (Var cmp) [e; zero]

and interp_incr_expr op e =
  let top,one = interp_incr_op e.nexpr_type op in
  let to_int = interp_int_conversion e.nexpr_type c_exact_int in
  let of_int = interp_int_conversion c_exact_int e.nexpr_type in
  match interp_lvalue e with
    | LocalRef v ->
	begin
	  match op with
	    | Upostfix_dec | Upostfix_inc ->
		Let("caduceus",
		    to_int (Deref v.var_unique_name),
		    append 
		      (Assign (v.var_unique_name,
			       of_int (make_app_e top [Var "caduceus";one])))
		      (Var "caduceus"))
	    | Uprefix_dec | Uprefix_inc ->
		let n = v.var_unique_name in
		append 
		  (Assign(n, of_int (App(App(top, to_int (Deref n)), one))))
		  (Deref n)
	end
    | HeapRef(valid,var,e') ->
	begin
	  let acc = match valid with 
	    | Valid(a,b) ->
		if (a <= Int64.zero && b > Int64.one)
		then make_app "safe_acc_" [Var var;Var "caduceus1"]
		else make_app "acc_" [Var var;Var "caduceus1"] 
	    | Not_valid -> make_app "acc_" [Var var;Var "caduceus1"] 
	  in
	  match op with
	    | Upostfix_dec | Upostfix_inc ->
		Let("caduceus1",e',
		    Let("caduceus2",
		        acc,
			append
			  (make_app "safe_upd_" 
			     [Var var; Var "caduceus1";
			      of_int (make_app_e top 
					 [one; to_int (Var "caduceus2")])])
			  (Var "caduceus2")))
	    | Uprefix_dec | Uprefix_inc ->
		Let("caduceus1",e',
		    Let("caduceus2",
			of_int (make_app_e top [to_int acc; one]),
			append
			  (make_app "safe_upd_" 
			     [Var var; Var "caduceus1"; Var "caduceus2"])
			  (Var "caduceus2")))
	end		      

and interp_lvalue e =
  match e.nexpr_node with
    | NEvar (Var_info v) -> LocalRef v
    | NEvar (Fun_info v) -> assert false
    | NEunary(Ustar,e1) -> assert false
    | NEarrow (e1,_,f) ->
	let valid =
	  match e1.nexpr_type.Ctypes.ctype_node with
	    | Tpointer(v,_) | Tarray(v,_,_) -> v
	    | Tstruct _ -> Valid(Int64.zero,Int64.one)
	    | _ -> assert false
	in 
	HeapRef(valid,
		zoned_name f.var_unique_name (Cnorm.type_why e1), 
		interp_expr e1)
    | _ -> 
	assert false (* wrong typing of lvalue ??? *)

and interp_address e = match e.nexpr_node with
  | NEvar (Var_info v) -> 
      assert (v.var_is_referenced); 
       begin match e.nexpr_type.Ctypes.ctype_node with
       | Tstruct _ | Tunion _ -> Deref v.var_unique_name
       | _ -> Var v.var_unique_name
       end
  | NEvar (Fun_info v) -> unsupported e.nexpr_loc "& operator on functions"
  | NEunary (Ustar, _) -> assert false
  | NEarrow (e1,_, f) ->
      begin match e.nexpr_type.Ctypes.ctype_node with
	| Tenum _ | Tint _ | Tfloat _ -> 
  	    interp_expr e1
	| Tstruct _ | Tunion _ | Tpointer _ | Tarray _ ->
	    let var = zoned_name f.var_unique_name (Cnorm.type_why e1) in
	    let valid = 
	      match e1.nexpr_type.Ctypes.ctype_node with
		| Tpointer (valid,_)  
		| Tarray (valid,_,_) -> valid
		| Tstruct _ -> Valid(Int64.zero,Int64.one)  
		| _ -> assert false
	    in
	    begin 
	      match valid with 
		| Valid (a,b)-> if (a<= Int64.zero && Int64.zero < b) 
		  then build_complex_app (Var "safe_acc_")
		    [Var var; interp_expr e1]
		  else build_complex_app (Var "acc_")
		    [Var var; interp_expr e1]
		| Not_valid -> build_complex_app (Var "acc_")
		    [Var var; interp_expr e1]
	    end
	| _ -> unsupported e.nexpr_loc "& operator on a field"
      end
  | _ -> 
      assert false (* not a left value *)

and interp_statement_expr e =
(*  let loc = e.nexpr_loc in*)
  match e.nexpr_node with
    | NEseq(e1,e2) ->
	append (interp_statement_expr e1) (interp_statement_expr e2)
    | NEnop -> 
	Void
    | NEassign(l,e) ->
	begin
	  match interp_lvalue l with
	    | LocalRef(v) ->
		Assign(v.var_unique_name,interp_expr e)
	    | HeapRef(valid,var,e1) ->
		  match valid with 
		    | Valid (a,b) when a<= Int64.zero && Int64.zero <b ->
			build_complex_app
			  (Var "safe_upd_") [Var var;e1; interp_expr e]
		    | Valid _ | Not_valid -> 
			guarded_build_complex_app PointerDeref l.nexpr_loc
			  "upd_" 
			  [Var var;e1; interp_expr e]
	end 
    | NEincr(op,e) ->
	let top,one = interp_incr_op e.nexpr_type op in
	let to_int = interp_int_conversion e.nexpr_type c_exact_int in
	let of_int = interp_int_conversion c_exact_int e.nexpr_type in
	begin
	  match interp_lvalue e with
	    | LocalRef v ->
		Assign(v.var_unique_name,
		       of_int (make_app_e top 
				  [to_int (Deref v.var_unique_name); one]))
	    | HeapRef(valid,var,e1) -> 
		let acc = match valid with 
		  | Valid(a,b) -> 
		      if (a <= Int64.zero && Int64.zero < b) 
		      then make_app "safe_acc_" [Var var; Var "caduceus1"]
		      else  make_app "acc_"[Var var; Var "caduceus1"]
		  | Not_valid ->  make_app "acc_"[Var var; Var "caduceus1"]
		in
		Let("caduceus1",e1,
		    Let("caduceus2",
		        to_int acc,
			make_app "safe_upd_"
			  [Var var; Var "caduceus1"; 
			   of_int (make_app_e top [Var "caduceus2"; one])]))
	end
    | NEcall {ncall_fun = e1;ncall_args =  args;ncall_zones_assoc = assoc} -> 
	let app = interp_call e1 args assoc in
	if e.nexpr_type.Ctypes.ctype_node = Tvoid then
	  app
	else
	  Let (tmp_var (), app, Void)
    | NEassign_op (l, op, e) -> 
	begin
	  match interp_lvalue l with
	    | LocalRef(v) ->
		let n = v.var_unique_name in
		Assign(n, bin_op op (Deref n) (interp_expr e))
	    | HeapRef(valid,var,e1) -> 
		let acc = match valid with 
		  | Valid(a,b) -> if (a<= Int64.zero && Int64.zero <b) 
		    then make_app "safe_acc_" [Var var;Var "caduceus1"]
		    else make_app "acc_"[Var var;Var "caduceus1"]
		  | Not_valid -> make_app "acc_"[Var var;Var "caduceus1"]
		in
		Let("caduceus1",e1,
		    Let("caduceus2",acc ,
			make_app "safe_upd_"
			  [Var var; Var "caduceus1"; 
			   bin_op op (Var "caduceus2") (interp_expr e)]))
	end 
    | NEcast (_, _)
    | NEcond (_, _, _)
    | NEbinary (_, _, _)
    | NEunary (_, _)
    | NEarrow _
    | NEvar _
    | NEstring_literal _
    | NEconstant _ 
    | NEmalloc _ -> 
	unsupported e.nexpr_loc "statement expression"

and interp_call e1 args assoc = 
  match e1.nexpr_node with
    | NEvar (Fun_info v) ->
	let reads = ZoneSet.fold 
	  (fun (z,s,ty) acc ->
	     let z = repr z in
	     (z,(try Cnorm.assoc_zone z assoc with Not_found -> z),s,ty)::acc)
	  v.function_reads [] 
	in
	let targs = List.map interp_expr args in
	let targs = List.fold_right 
	  (fun (z0,z1,s,_) l -> 
	     let z = repr z1 in
	     if z0.zone_is_var then
	       Var(zoned_name s (Pointer z))::l
	     else l)
	  reads targs 
	in
	build_complex_app (Var (v.fun_unique_name ^ "_parameter")) 
	  targs
    | _ -> 
	unsupported e1.nexpr_loc "call of a non-variable function"

and valid_acc_offset e =
  match e.nexpr_node with 
    | NEnop -> assert false
    | NEconstant _ -> assert false
    | NEstring_literal _ -> assert false
    | NEvar _ -> assert false
    | NEarrow (e,_,_)  -> valid_acc_offset e
    | NEseq _ -> assert false
    | NEassign _ -> assert false
    | NEassign_op _ -> assert false
    | NEunary _ -> assert false
    | NEincr _ -> assert false
    | NEbinary (_,Badd_pointer_int,i) -> interp_expr i    
    | NEbinary (_,_,_) -> assert false
    | NEcall _ -> assert false
    | NEcond _ -> assert false
    | NEcast _ -> assert false
    | NEmalloc _ -> assert false
 
 

module StringMap = Map.Make(String)

type mem_or_ref = Reference of bool | Memory of Output.term list

type term_loc_interp = Pset of Output.term | Term of Output.term

let collect_locations label old_label acc loc =
  (* term_loc t interprets t either as Term t' with t' a Why term of type 
     pointer, or as Pset s with s a Why term of type pset *)
  let rec term_or_pset t = match t.nterm_node with
    | NTarrow (e,z, f) ->
	let ty = Cnorm.type_why_for_term e in
	assert (same_why_type ty (Pointer z));
	let m = 
	  interp_var label
	    (zoned_name f.var_unique_name ty) in
	begin match term_or_pset e with
	  | Term te -> Term (LApp ("acc", [m; te]))
	  | Pset s -> Pset (LApp ("pset_star", [s; m]))
	end
    | NTrange (e, None, None, z, f) ->
	let ty = Cnorm.type_why_for_term e in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	Pset (LApp ("pset_acc_all", [pset e; interp_var label var]))
    | NTrange (e, None, Some a,z,f) ->
	let ty = Cnorm.type_why_for_term e in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	Pset (LApp ("pset_acc_range_left", 
		    [pset e; interp_var label var;
		     interp_term label old_label a]))
    | NTrange (e, Some a, None,z,f) ->
	let ty = Cnorm.type_why_for_term e in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	Pset (LApp ("pset_acc_range_right", 
		    [pset e; interp_var label var;
		     interp_term label old_label a]))
    | NTrange (e, Some a, Some b,z,f) ->
	let ty = Cnorm.type_why_for_term e in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	Pset (LApp ("pset_acc_range", 
		    [pset e; interp_var label var;
		     interp_term label old_label a;
		     interp_term label old_label b]))
    | _ ->
	Term (interp_term label old_label t)

  (* term_loc t interprets t as a Why term of type pset *)
  and pset t = match term_or_pset t with
    | Pset l -> l
    | Term t -> LApp ("pset_singleton", [t])
  in
  let var,iloc = match loc.nterm_node with
    | NTarrow(e,z,f) ->
	let ty = Cnorm.type_why_for_term e in
	assert (same_why_type ty (Pointer z));
	zoned_name f.var_unique_name ty, Some (pset e)
    | NTvar v ->
	v.var_unique_name, None
    | NTrange (t, None, None,z,f) -> 
	let ty = Cnorm.type_why_for_term t in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	let loc = LApp ("pset_all", [pset t]) in
	var, Some loc
    | NTrange (t, None, Some a,z,f) -> 
	let ty = Cnorm.type_why_for_term t in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	let loc = LApp ("pset_range_left", 
			[pset t; interp_term label old_label a]) in
	var, Some loc
    | NTrange (t, Some a, None,z,f) -> 
	let ty = Cnorm.type_why_for_term t in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	let loc = LApp ("pset_range_right", 
			[pset t; interp_term label old_label a]) in
	var, Some loc
    | NTrange(t1, Some t2, Some t3,z,f) -> 
	let ty = Cnorm.type_why_for_term t1 in
	assert (same_why_type ty (Pointer z));
	let var = zoned_name f.var_unique_name ty in
	let loc = 
	  LApp("pset_range",
	       [pset t1;
		interp_term label old_label t2;
		interp_term label old_label t3;])
	in
	var, Some loc
    | _ ->
	assert false
  in
  try
    let p = StringMap.find var acc in
    (match p, iloc with
       | Reference _, None -> StringMap.add var (Reference true) acc
       | Memory l, Some iloc -> StringMap.add var (Memory (iloc::l)) acc
       | Reference _,Some n -> eprintf "iloc = %a\n" fprintf_term n;assert false
       | Memory _,_ -> assert false)
  with Not_found -> 
    (match iloc with
       | None -> StringMap.add var (Reference true) acc
       | Some l -> StringMap.add var (Memory [l]) acc)

let rec make_union_loc = function
  | [] -> LVar "pset_empty"
  | [l] -> l
  | l::r -> LApp("pset_union",[l;make_union_loc r])

let interp_assigns label old_label assigns = function
  | Some (loc, locl) ->
      let m = HeapVarSet.fold
	(fun v m -> 
	  if Ceffect.is_alloc v then m 
	  else StringMap.add (heap_var_name v) (Reference false) m)
	assigns.Ceffect.assigns_var StringMap.empty 
      in
      let m = ZoneSet.fold
	(fun (z,s,ty) m -> 
	  StringMap.add (zoned_name s (Pointer z)) (Memory []) m)
	assigns.Ceffect.assigns m 
      in
      let l = 
	List.fold_left (collect_locations label old_label) m locl
      in
      let p = 
	StringMap.fold
	  (fun v p acc -> match p with
	    | Memory p ->
		if no_alloc_table then
		  make_and acc
		    (LPred("not_assigns",
			  [interp_var (Some old_label) v;
			   LVar v; make_union_loc p]))
		else
		  make_and acc
		    (LPred("not_assigns",
			  [interp_var None "alloc"; 
			   interp_var (Some old_label) v;
			   LVar v; make_union_loc p]))
	    | Reference false ->
		make_and acc (LPred("eq", [LVar v; interp_var (Some old_label) v]))
	    | Reference true ->
		acc)
	  l LTrue
      in
      named_predicate loc p
  | None ->
      LTrue

(* we memoize the translation of weak invariants *)
let weak_invariant = 
  let h = Hashtbl.create 97 in
  fun id p -> 
    try 
      Hashtbl.find h id
    with Not_found -> 
      let p = interp_predicate None "" p in
      Hashtbl.add h id p;
      p

let weak_invariants_for hvs =
  Hashtbl.fold
    (fun id (p,e) acc -> 
       if Ceffect.intersect_only_alloc e hvs then acc
       else make_and (weak_invariant id p) acc) 
    Ceffect.weak_invariants LTrue

(* we memoize the translation of strong invariants *)

let strong_invariant = 
  let h = Hashtbl.create 97 in
  fun id p  -> 
    try 
      Hashtbl.find h id
    with Not_found -> 
      let p = interp_predicate None "" p in
      Hashtbl.add h id p;
      p

let interp_strong_invariants () =
  Hashtbl.fold
    (fun id (p,e,args) acc -> 
       let args = 
	 HeapVarSet.fold 
	   (fun x acc -> 
	      (heap_var_name x, 
	       Info.output_why_type x.var_why_type) :: acc) 
	   e.Ceffect.reads_var args
       in
       let args = 
	 ZoneSet.fold
	   (fun (z,s,ty) acc ->
	      (*if z.zone_is_var then*)
		(zoned_name s (Pointer z), 
		 (Info.output_why_type (Info.Memory(ty,z))))::acc
	      (*else acc*))
	   e.Ceffect.reads args in
       if args = [] then acc else
       (Predicate(false,id,args,interp_predicate None "" p))::acc)
    Ceffect.strong_invariants_2 []
    

let strong_invariant_name id reads_var reads =
  let args = 
    HeapVarSet.fold (fun x acc -> (LVar (heap_var_name x)) :: acc) reads_var []
  in
  let args = 
    ZoneSet.fold 
      (fun (z,s,ty) l -> let z = repr z in
       (LVar (zoned_name s (Pointer z)))::l)
      reads args in
  LPred(id,args)
    
let extract_var_from_effect var lf =
  List.fold_left (fun acc (zf,nf,tyf) -> 
		    if (var.var_unique_name = nf) 
		    then (zf,nf,tyf)::acc else acc)[] lf 

let add ef ep =
  let lp = (HeapVarSet.elements ep) in
  let lf = (ZoneSet.elements ef) in
  let l = List.fold_right 
    (fun var acc -> (extract_var_from_effect var lf)::acc ) lp [] in
  match l with 
    | [] -> []
    | [l] -> List.fold_left (fun acc (z,n,_) -> [(z,n)]::acc) [] l
    | [l1;l2] -> 
	List.fold_left 
	  (fun acc (zx,nx,tyx) -> 
	     List.fold_left 
	       (fun acc (zy,ny,tyy) -> 
		  if same_why_type tyx tyy && same_zone zx zy 
		  then ([(zx,nx);(zy,ny)]::acc) else acc) acc l2) [] l1 
    | _ -> assert false

let subst a p =
  let q  =
    match p.npred_node with
      | NPapp {napp_pred = f; napp_args = tl; napp_zones_assoc = assoc} -> 
	  NPapp {napp_pred = f;
		 napp_args =
	      (List.map (fun (z,n) -> 
			   { nterm_node = 
			       (NTvar (default_var_info (zoned_name n (Pointer z))));
			     nterm_loc = Loc.dummy_position;
			     nterm_type = c_void}) a)@tl;
		 napp_zones_assoc = assoc}
      | _ -> assert false 
  in
  { p with npred_node = q} 

let strong_invariants_for hvs =
  let pred =
    Hashtbl.fold
      (fun id (p,e1,e2) acc ->
	 let l = add hvs.Ceffect.reads e2.Ceffect.reads_var in
	 let rec add_pred id p l acc = 
	   match l with 
	     | [] -> acc
	     | a::l -> 
		 let p' = subst a p in 
		 let p'' = interp_predicate None "" p' in
		 make_and p'' (add_pred id p l acc)
	 in
	 add_pred id p l acc)
      Ceffect.invariants_for_struct 
      LTrue
  in
  Hashtbl.fold
    (fun id (p,e1,e2) acc ->
       if ZoneSet.subset e2.Ceffect.reads hvs.Ceffect.reads 
	 && HeapVarSet.subset e2.Ceffect.reads_var hvs.Ceffect.reads_var then
	 (make_and 
	   (if (Ceffect.mem_strong_invariant_2 id) || (Cenv.mem_pred id)
	    then
	      strong_invariant_name id e1.Ceffect.reads_var e1.Ceffect.reads
	    else
	      strong_invariant id p)  acc)
       else acc) 
    Ceffect.strong_invariants  
    pred

let alloc_extends () = 
  (* [alloc_extends] should not be used when the alloc table is dropped *)
  assert (not no_alloc_table);
  LPred ("alloc_extends", [LVar "alloc@"; LVar "alloc"])

let alloc_extends_at label = 
  (* [alloc_extends] should not be used when the alloc table is dropped *)
  assert (not no_alloc_table);
  LPred ("alloc_extends", [LVarAtLabel ("alloc", label); LVar "alloc"])

let interp_spec add_inv effect s =
  let tpre_without = 
    make_and
      (interp_predicate_opt None "" s.requires)
      (if add_inv then weak_invariants_for effect else LTrue) in
  let tpre_with = 
    make_and
      tpre_without
      (strong_invariants_for effect)
  and tpost = 
   make_and
     (interp_predicate_opt None "" s.ensures)
     (make_and 
	(interp_assigns None "" effect s.assigns)
	(make_and
	   (if add_inv then weak_invariants_for effect else LTrue)
	   (if Ceffect.assigns_alloc effect then alloc_extends () else LTrue)))
  in 
  (tpre_with,tpre_without,tpost)

(***
let alloc_on_stack loc v t =
  let form = 
    Cnorm.make_and 
      (List.fold_left (fun x v2 -> Cnorm.make_and x 
			   (Cseparation.separation loc v v2)) 
	 Cnorm.nptrue !Ceffect.global_var)
      (Cseparation.valid_for_type ~fresh:true loc v.var_name t)
  in
  BlackBox(Annot_type(LTrue,base_type "pointer",["alloc"],["alloc"],
		      make_and 
			(interp_predicate None "" form)
			(LPred ("alloc_stack", 
				[LVar "result"; LVar "alloc@"; LVar "alloc"])),
		      None))
***)

let interp_decl d acc = 
  match d.node with 
    | Ntypedef _
    | Ntypedecl { Ctypes.ctype_node = Tstruct _ | Tunion _ } -> 
	acc
    | Ntypedecl { Ctypes.ctype_node = Tenum _ } -> 
	unsupported d.loc "local enum type"
    | Ntype _
    | Ndecl _
    | Ntypedecl _
    | Naxiom _
    | Ninvariant _
    | Ninvariant_strong _
    | Nlogic _ ->
	assert false


let interp_invariant label effects annot =
  let inv = match annot.invariant with
    | None -> LTrue
    | Some inv -> interp_predicate None "init" inv
  in
  (* WHY does not distinguish invariants from assumed invariants presently *)
  let assinv = match annot.assume_invariant with
    | None -> LTrue
    | Some inv -> interp_predicate None "init" inv
  in
  let inv = match inv,assinv with
    | LTrue,p | p,LTrue -> p
    | p1,p2 -> LAnd (p1,p2)
  in
  let inv = 
    make_and 
      (interp_assigns None label effects annot.loop_assigns) 
      (make_and 
	 inv 
	 (if Ceffect.assigns_alloc effects 
	  then alloc_extends_at label else LTrue))
  in
  let var = match annot.variant with
    | None -> None
    | Some (var,r) -> Some (interp_term None "init" var, r)
  in
  (inv, var)

let new_label = let r = ref 0 in fun () -> incr r; "label_" ^ string_of_int !r

let try_with_void ex e = Try (e, ex, None, Void)  

let break b e = if b then try_with_void "Break" e else e

let continue b e = if b then try_with_void "Continue" e else e    

let return_exn ty = match ty.Ctypes.ctype_node with
  | Tint si when machine_ints -> "Return_" ^ (Cenv.int_type_for si)
  | Tenum e when enum_check -> "Return_" ^ (Cenv.enum_type_for e)
  | Tenum _ | Tint _ -> "Return_int"
  | Tfloat _ when not floats -> "Return_real"
  | Tfloat Float -> "Return_single"
  | Tfloat Double -> "Return_double"
  | Tfloat LongDouble -> "Return_quad"
  | _ -> "Return_pointer"

(* [abrupt_return] contains the exception used for last abrupt return if any *)
let abrupt_return = ref None

let catch_return e = match !abrupt_return with
  | None -> 
      e
  | Some "Return" ->
      Try (e, "Return", None, Void)
  | Some "Return_pointer" ->
      Let_ref("caduceus_return", Var "null",
	      Try (e, "Return_pointer", None, Deref "caduceus_return"))
  | Some r ->
      let tmp = tmp_var () in
      Try (append e Absurd, r, Some tmp, Var tmp)

let unreachable_block = function
  | [] -> ()
  | s::_ -> warning s.nst_loc "unreachable statement"

(* Interpretation of switch *)

open Cconst

let make_switch_condition tmp l = 
  if IntMap.is_empty l 
  then assert false
  else
    let a = 
      IntMap.fold 
	(fun x n test -> 
	   make_or_expr 
	     (App(App (Var "eq_int_",Var tmp), interp_int_expr n)) test) 
	l
	(Cte (Prim_bool false))
    in
    (a,l)
    
let make_switch_condition_default tmp l used_cases= 
  let fl = IntMap.fold
    (fun x e m -> if IntMap.mem x l
     then m
     else IntMap.add x e m) used_cases IntMap.empty in
  let cond =
    IntMap.fold 
      (fun x e test -> 
	 make_and_expr 
	   (App(App (Var "neq_int_",Var tmp), interp_int_expr e)) test)
      fl
      (Cte (Prim_bool true))
  in
  cond,fl

let in_struct v1 v = 
  let zone = Cnorm.find_zone v1 in
  let () = Cnorm.type_why_new_zone zone v in
  { nexpr_node = NEarrow (v1,zone,  v); 
    nexpr_loc = v1.nexpr_loc;
    nexpr_type = v.var_type }

let noattr loc ty e =
  { nexpr_node = e;
    nexpr_type = ty;
    nexpr_loc  = loc
  }


let labels_table = Hashtbl.create 17

let append_block e (f,l) = (append e f,l)

(* [ab] indicates if returns are abrupt *)

let rec interp_statement ab may_break stat = 
  let e = interp_statement_loc ab may_break stat in
  if stat.nst_loc = Loc.dummy_position then e else Loc (fst stat.nst_loc, e)

and interp_statement_loc ab may_break stat = match stat.nst_node with
  | NSnop -> 
      Void
  | NSexpr e ->
      interp_statement_expr e
  | NSreturn eopt ->
      if ab then match eopt with
	| None -> 
	    abrupt_return := Some "Return";
	    Raise ("Return", None)
	| Some e -> 
	    let r = return_exn e.nexpr_type in 
	    abrupt_return := Some r;
	    if r = "Return_pointer" then
	      Block [Assign ("caduceus_return", interp_expr e); 
		     Raise ("Return_pointer", None)]
	    else
	      Raise (r, Some (interp_expr e))
      else begin match eopt with
	| None -> Void
	| Some e -> interp_expr e
      end
  | NSif(e,s1,s2) -> 
      If(interp_boolean_expr e,
	 (interp_statement ab may_break s1), 
	 (interp_statement ab may_break s2))
  | NSfor(annot,e1,e2,e3,body) ->
      let label = new_label () in
      let ef = 
	Ceffect.ef_union 
	  (Ceffect.ef_union (Ceffect.expr e1)
	     (Ceffect.expr e2))
	  (Ceffect.ef_union (Ceffect.expr e3) 
	     (Ceffect.statement body))
      in
      let (inv,dec) = interp_invariant label ef annot in
      Output.Label 
	(label,
	 append
	   (interp_statement_expr e1)
	   (break body.nst_break 
	      (make_while (interp_boolean_expr e2) inv dec 
		 (append 
		    (continue body.nst_continue
		       (interp_statement true (ref false) body))
		    (interp_statement_expr e3)))))
  | NSwhile(annot,e,s) -> 
      let label = new_label () in
      let ef = 
	Ceffect.ef_union (Ceffect.expr e) (Ceffect.statement s) 
      in
      let (inv,dec) = interp_invariant label ef annot in
      Output.Label 
	(label,
	 break s.nst_break
	    (make_while (interp_boolean_expr e) inv dec 
	       (continue s.nst_continue 
		  (interp_statement true (ref false) s))))
  | NSdowhile(annot,s,e) -> 
      let label = new_label () in
      let ef = 	Ceffect.ef_union (Ceffect.expr e) (Ceffect.statement s) 
      in
      let (inv,dec) = interp_invariant label ef annot in
      Output.Label 
	(label,
	 break true
	   (make_while (Cte (Prim_bool true)) inv dec
	      (append 
		 (continue s.nst_continue
		    (interp_statement true (ref false) s))
		 (If (Not (interp_boolean_expr e), 
		      Raise ("Break", None), Void)))))
  | NSblock(b) -> 
      interp_block ab may_break b
  | NSbreak -> 
      may_break := true;
      Raise ("Break", None)
  | NScontinue -> 
      Raise ("Continue", None)
  | NSlabel(lab,s) -> 
      if lab.times_used = 0 then
	begin
	  warning stat.nst_loc "unused label %s" lab.label_info_name;	 
	  interp_statement ab may_break s
	end
      else
	begin
	  Hashtbl.add labels_table lab.label_info_name ();
	  Output.Label (lab.label_info_name, interp_statement ab may_break s)
	end
  | NSgoto(GotoForwardOuter,lab) ->
      Raise ("Goto_" ^ lab.label_info_name, None)
  | NSgoto(GotoForwardInner,lab) ->
      unsupported stat.nst_loc "forward inner goto"
  | NSgoto(GotoBackward,lab) ->
      (* When planning to support backward gotos, add a widening node inside 
	 the induced loop in the operational graph created for various 
	 dataflow analyses in [Cabsint]. *)
      unsupported stat.nst_loc "backward goto"
  | NSswitch(e,used_cases,l) ->
      let tmp = tmp_var() in
      let switch_may_break = ref false in
      let res = 
	Output.Let(tmp, interp_int_expr e,
		   interp_switch tmp (*ab*) true switch_may_break l 
		     IntMap.empty used_cases false)
      in
      if !switch_may_break then
	Try(res,"Break", None,Void)
      else
	res
  | NSassert(pred) -> 
      Output.Assert(interp_predicate None "init" pred, Void)
  | NSassume pred -> 
      (* Abusing assumptions endangers your proof ... *)
      let post,_ = interp_predicate None "init" pred, Void in
      BlackBox (Annot_type (LTrue, unit_type, [], [], post, []))
  | NSlogic_label(l) -> 
      assert false
(*
Output.Label (l, Void)
*)
  | NSspec (spec,s) ->
      let eff = Ceffect.statement s in
      let pre,_,post = interp_spec false eff spec in
      Triple(true,pre,interp_statement ab may_break s,post,[])
  | NSdecl(ctype,v,init,rem) -> 
      lprintf 
	"translating local declaration of %s@." v.var_unique_name;
      let tinit,(decl,_) = match init with 
	| None | Some (Ilist [])->
	    begin match ctype.Ctypes.ctype_node with
	      | Tenum s when enum_check ->    
		  App (Var ("any_" ^ Cenv.enum_type_for s), Var "void") 
	      | Tint (_,i as si) when i <> ExactInt && machine_ints ->
		  App (Var ("any_" ^ Cenv.int_type_for si), Var "void")
	      | Tenum _ | Tint _ ->
		  App (Var "any_int", Var "void")
	      | Tfloat fk -> 
		  App (Var (any_float fk), Var "void")
	      | Tarray (_,_, None) | Tpointer _ -> 
		  App (Var "any_pointer", Var "void")
	      | Tarray (_,_, Some n) ->
		  App (Var "alloca_parameter", 
		       Cte (Prim_int (Int64.to_string n)))
	      | Tstruct _ | Tunion _ ->
		  App (Var "alloca_parameter", Cte (Prim_int "1"))
	      | Tvoid | Tvar _ | Tfun _ -> 
		  assert false
	    end,([],[])
	| Some (Iexpr e)  ->   
	    interp_expr e, ([],[])
	| Some (Ilist _) ->
	    assert false
      in
      let decl = List.fold_left (fun acc x ->
				   acc@[interp_statement ab may_break x]) 
		   [] decl in
      if v.var_is_static then (* if static then still globally declared *)
	Block (decl@[interp_statement ab may_break rem])
      else
	if v.var_is_assigned then
	  Let_ref(v.var_unique_name,tinit,
		 Block (decl@[interp_statement ab may_break rem]))
	else
	  Let(v.var_unique_name,tinit,
	     Block (decl@[interp_statement ab may_break rem]))


and interp_block ab may_break statements =
  let rec block = function
    | [] -> 
	Void,[]
    | { nst_loc = loc ; nst_node = NSlabel(lab,st) } :: bl ->
	if lab.times_used = 0 then 
	  begin
	    warning loc "unused label %s" lab.label_info_name;
	    block (st::bl)
	  end
	else
	  let (be,bl) = block (st::bl) in
	  Hashtbl.add labels_table lab.label_info_name ();
	  Raise("Goto_"^lab.label_info_name,None),(lab,be)::bl
    | {nst_loc = loc ; nst_node = NSlogic_label(l) } :: bl -> 
	  let (be,bl) = block bl in
	  Output.Label(l, be), bl
    | [s] ->
	interp_statement ab may_break s,[]
    | { nst_node = NSnop } :: bl ->
	block bl
    | { nst_node = NSif (e, s1, s2) } as s :: bl ->
	begin match s1.nst_term, s2.nst_term with
	  | true, true ->
	      append_block (interp_statement true may_break s) (block bl)
	  | false, false ->
	      unreachable_block bl;
	      interp_statement ab may_break s,[]
	  | true, false ->
	      let (be,bl) = block (s1::bl) in
	      If (interp_boolean_expr e, 
		  be, interp_statement ab may_break s2), bl
	  | false, true ->
	      let (be,bl) = block (s2::bl) in
	      If (interp_boolean_expr e,
		  interp_statement ab may_break s1, be), bl
	end
    | s :: bl ->
	if not s.nst_term then unreachable_block bl;
	append_block (interp_statement true may_break s) (block bl)
  in
  let be,bl = block statements in
  List.fold_left 
    (fun acc (lab,e) ->
       Try(acc,"Goto_"^lab.label_info_name,None,e)) be bl


and interp_switch tmp ab may_break l c used_cases post_default =
  match l with
    | (lc, i):: l ->
	if IntMap.is_empty lc
	then
	  let (a,lc) = make_switch_condition_default tmp c used_cases in
	  (* [bl] is actually unreachable *)
	  let (linstr,final) = interp_case ab may_break i in
	  if final 
	  then
	    Output.If(a,
		      Block linstr
			,
			interp_switch tmp ab may_break l lc used_cases false)
	  else
	    Block ((Output.If(a,
			      Block linstr
				,
				Void))::[interp_switch tmp ab may_break l lc 
					   used_cases true])	
	else  
	  let (a,lc) = 
	    if post_default
	    then
	      make_switch_condition_default tmp lc c
	    else
	      make_switch_condition tmp 
		(IntMap.fold 
		   ( fun x e m ->
		       IntMap.add x e m)
		   c
		   lc) 
	  in
	  let (linstr,final) = interp_case ab may_break i in
	  if final
	  then
	    Output.If(a,
		      Block linstr,
		      interp_switch tmp ab may_break l 
			IntMap.empty used_cases false)
	  else
	    Block ([Output.If(a,
			      Block linstr,
			      Void);interp_switch tmp ab may_break 
		      l lc  used_cases post_default])
    | [] -> Void

and interp_case ab may_break i =
  match i with
    | [] -> [],false
    | a::i -> 
	if a.nst_term
	then
	  let (instr,isfinal) = interp_case ab may_break i in
	  ((interp_statement ab may_break a)::instr),isfinal
	else
	  begin
	    unreachable_block i;
	    (if a.nst_node=NSbreak 
	     then [] 
	     else [interp_statement ab may_break a]),true
	  end
	  
	  

let interp_predicate_args id args =
  let args =
    List.fold_right
      (fun (id,t) args -> 
	 (id.var_unique_name,Info.output_why_type id.var_why_type)::args)
      args []
  in
  let args = 
    HeapVarSet.fold
      (fun arg t -> (heap_var_name arg,Info.output_why_type arg.var_why_type) 
	 :: t)
      id.logic_heap_args args in
  ZoneSet.fold 
    (fun (z,s,ty) l -> 
	 (zoned_name s (Pointer z), 
	  (Info.output_why_type (Info.Memory(ty,z))))::l)
    id.logic_heap_zone args

let type_to_base_type l = 
  List.map (fun (x,y) -> (x,Info.output_why_type y)) l

let cinterp_logic_symbol id ls =
  match ls with
    | NPredicate_reads(args,locs) -> 
	let args = interp_predicate_args id args in
(*
	let _ty = 
	  List.fold_right 
	    (fun (x,t) ty -> 
	       Prod_type (x, Base_type t, ty)) 
	    args 
	    (Base_type ([],"prop"))
	in
*)
	Logic(false, id.logic_name, args, simple_logic_type "prop")
    | NPredicate_def(args,p) -> 
	let a = interp_predicate None "" p in
	let args = interp_predicate_args id args in
	Predicate(false,id.logic_name, args,a)
    | NFunction(args,ret,_) ->
	let ret_type =
	  Info.output_why_type (Cenv.type_type_why ret false) 
(*
	  match ret.Ctypes.ctype_node with
	    | Tvar s -> s
	    | Tint _ -> "int"
	    | Tfloat fk -> Cnorm.why_type_for_float_kind fk
	    | Tpointer _ | Tstruct _ -> 
		begin
		  match id.logic_why_type with
		    | Pointer z -> 
			let zone = Info.output_zone_name z in
			sprintf "%s pointer" zone.logic_type_name 
		    | _ -> assert false
		end
	    | _ -> assert false
*)
	in
	let args =
	  List.fold_right
	    (fun (id,ty) t -> 
	       (id.var_unique_name,
		Info.output_why_type id.var_why_type)::t)
	    args []
	in
	let args =
	  HeapVarSet.fold
	    (fun arg t -> 
	       let ty = arg.var_why_type in 
	       ("",Info.output_why_type ty)::t)
	    id.logic_heap_args args
	in
        let args = 
          ZoneSet.fold 
            (fun (z,_,ty) t ->
               ("",Info.output_why_type (Info.Memory(ty,z)))::t)
            id.logic_heap_zone args in
	Logic(false,id.logic_name,args,(*simple_logic_type*) ret_type)
    | NFunction_def(args,ret,e) ->
	let e = interp_term None "" e in
	let ret_type = 
	  Info.output_why_type (Cenv.type_type_why ret false) 
(*
	  match ret.Ctypes.ctype_node with
	    | Tvar s -> s
	    | Tint _ -> "int"
	    | Tfloat fk -> Cnorm.why_type_for_float_kind fk
	    | Tpointer _ | Tstruct _ -> 
		begin
		  match id.logic_why_type with
		    | Pointer z -> 
			let zone = Info.output_zone_name z in
			sprintf "%s pointer" zone.logic_type_name 
		    | _ -> assert false
		end
	    | _ -> assert false
*)	in
	let args = interp_predicate_args id args in
	Output.Function(false,id.logic_name,args,(* simple_logic_type *) ret_type,e)
	  
let interp_axiom p =
  let a = interp_predicate None "" p
  and e = Ceffect.predicate p in
  let a  =  
    HeapVarSet.fold
      (fun arg t -> LForall
	 (heap_var_name arg,Info.output_why_type arg.var_why_type,t))
      e.Ceffect.reads_var a in
  ZoneSet.fold 
    (fun (z,s,ty) t -> 
       let z = repr z in
       LForall (s^"_"^z.name,Info.output_why_type (Info.Memory(ty,z)),t))
    e.Ceffect.reads a 

let interp_effects e =
  HeapVarSet.fold (fun var acc -> var::acc) e []

let interp_fun_params reads params =
  let l = List.map 
    (fun id ->
       (id.var_unique_name,Base_type(Info.output_why_type id.var_why_type)))
    params  in
  let l = ZoneSet.fold
    (fun (z,s,ty) l ->
       let z = repr z in
       if z.zone_is_var then
	 (zoned_name s (Pointer z), 
	  Ref_type 
	    (Base_type 
	       (Info.output_why_type (Info.Memory(ty,z)))))::l
       else l )
    reads l in
  if l=[]
  then 
      ["tt",unit_type]
  else 
    l
let heap_var_unique_names v =
  HeapVarSet.fold (fun v l -> heap_var_name v::l) v []

let heap_var_unique v =
  ZoneSet.fold (fun (z,s,_) l -> zoned_name s (Pointer z)::l) v []
  
let interp_function_spec id sp ty pl =
  (* add to precondition the validity or nullity of pointer arguments*)
  let sp = 
    if false then (* Coptions.abstract_interp || Coptions.gen_invariant then *)
      List.fold_right 
	(fun p s -> 
	   if Ctypes.is_pointer p.var_type then
	     let pterm = {
	       nterm_node = NTvar p; 
	       nterm_loc = Loc.dummy_position;
	       nterm_type = p.var_type; }
	     in
	     let valid = {
	       npred_node = NPvalid pterm;
	       npred_loc = Loc.dummy_position; }
	     in
	     let zeroterm = { 
	       nterm_node = NTconstant (IntConstant "0"); 
	       nterm_loc = Loc.dummy_position;
	       nterm_type = Ctypes.c_int; }
	     in
	     let castzero = { 
	       nterm_node = NTcast (p.var_type,zeroterm); 
	       nterm_loc = Loc.dummy_position;
	       nterm_type = p.var_type; }
	     in
	     let null = {
	       npred_node = NPrel (pterm, Eq, castzero);
	       npred_loc = Loc.dummy_position; }
	     in
	     let valid_or_null = {
	       npred_node = NPor (valid, null);
	       npred_loc = Loc.dummy_position; }
	     in
	     match s.requires with
	       | None -> { s with requires = Some valid_or_null }
	       | Some r ->
		   { s with requires = Some {
		       npred_node = NPand (valid_or_null, r);
		       npred_loc = Loc.dummy_position; } }
	   else s) pl sp
    else sp
  in
  let pre_with,pre_without,post = 
    interp_spec 
      (id != Cinit.invariants_initially_established_info)
      { Ceffect.reads = id.function_reads; 
	Ceffect.assigns = id.function_writes;
	Ceffect.reads_var = id.function_reads_var; 
	Ceffect.assigns_var = id.function_writes_var;
	(* TODO: consider pointer arguments written by function *)
	Ceffect.reads_under_pointer = HeapVarSet.empty;
	Ceffect.assigns_under_pointer = HeapVarSet.empty; } 
      sp 
  in
  let tpl = interp_fun_params id.function_reads pl in   
  let r = heap_var_unique_names id.function_reads_var in
  let w = heap_var_unique_names id.function_writes_var in
  let r = (heap_var_unique id.function_reads)@r in
  let w = (heap_var_unique id.function_writes)@w in
  let annot_type = 
    Annot_type
      (pre_without, Base_type (Info.output_why_type id.type_why_fun), r, w, 
       post, [])
  in
  let ty = 
    List.fold_right 
      (fun (x,ct) ty -> Prod_type (x, ct, ty))
      tpl 
      annot_type
  in
  tpl,pre_with,post, Param (false, id.fun_unique_name ^ "_parameter", ty)

(**** CODE TRANSFERRED TO make_enum_types_decls 
let interp_type loc ctype = match ctype.Ctypes.ctype_node with
  | Tenum e ->
      begin match Cenv.tag_type_definition e with
	| Cenv.TTEnum (Tenum n, el) -> 
	    List.flatten
	      (List.map 
		 (fun (info,v) -> 
		    let x = info.var_unique_name in
		    let v = Int64.to_string v in
		    let a = LPred ("eq_int", [LVar x; LConst (Prim_int v)]) in
		    [Logic (false, x, [], simple_logic_type "int");
		     Axiom ("enum_" ^ n ^ "_" ^ x, a)])
		 el)
	| _ -> assert false
      end
  | _ -> 
      []
****)

let interp_located_tdecl why_spec decl =
  match decl.node with
  | Nlogic(id,ltype) -> 
      lprintf "translating logic declaration of %s@." id.logic_name;
      cinterp_logic_symbol id ltype::why_spec
  | Naxiom(id,p) -> 
      lprintf "translating axiom declaration %s@." id;      
      let a = interp_axiom p in
      Axiom(id,a)::why_spec
  | Ninvariant(id,p) -> 
      lprintf "translating invariant declaration %s@." id;      
      why_spec
  | Ninvariant_strong (id,p) ->
      lprintf "translating invariant declaration %s@." id;      
      why_spec
  | Ntypedecl ({ Ctypes.ctype_node = Tenum _ })
  | Ntypedef _ -> 
      why_spec (* let dl = interp_type decl.loc ctype in dl @ why_spec *)
  | Ntypedecl { Ctypes.ctype_node = Tstruct _ | Tunion _ } -> 
      why_spec
  | Ntypedecl _ ->
      assert false
  | Ntype _ ->
      why_spec
  | Ndecl(ctype,v,init) -> 
      (* global initialisations already handled in cinit.ml *)
      why_spec


let interp_c_fun fun_name (spec, ctype, id, block, loc) (why_code,why_spec) =
  if (id = Cinit.invariants_initially_established_info &&  
      not !Cinit.user_invariants)
  then
    (why_code, why_spec)
  else
    (reset_tmp_var ();
     let tparams,pre,post,tspec = 
       interp_function_spec id spec ctype id.args in
     match block with 
       | None -> (why_code, tspec :: why_spec)
       | Some block ->
	   let f = id.fun_unique_name in
	   if Coptions.verify id.fun_name then begin try
	     lprintf "translating function %s@." f;
	     abrupt_return := None;
	     let may_break = ref false in
	     let list_of_refs =
	       List.fold_right
		 (fun id bl ->
		    if id.var_is_assigned
		    then 
		      let n = id.var_unique_name in
		      set_unique_name (Var_info id) ("mutable_" ^ n); 
		      unset_formal_param id;
		      (id.var_unique_name,n) :: bl
		    else bl) 
		 id.args [] 
	     in
	     let tblock = catch_return 
	       (interp_statement true may_break block) in
	     assert (not !may_break);
	     let tblock = make_label "init" tblock in
	     let tblock =
	       List.fold_right
		 (fun (mut_id,id) bl ->
		    Let_ref(mut_id,Var(id),bl)) list_of_refs tblock in
	     printf "generating Why code for function %s@." f;
	     ((f, Def(f ^ "_impl", 
		      Fun(tparams,pre,tblock,post,[])))::why_code,
	      tspec :: why_spec)
	   with Error (_, Cerror.Unsupported s) ->
	     lprintf "unsupported feature (%s); skipping function %s@." s f;
	     eprintf "unsupported feature (%s); skipping function %s@." s f;
	     (why_code,
	      tspec :: why_spec)
	   end else begin
	     lprintf "assuming function %s@." f;
	     (why_code, tspec :: why_spec)
	   end
    )    

let interp l =
  let s = interp_strong_invariants () in
  List.fold_left interp_located_tdecl s l

let interp_functions why =
  let (code,spec) = 
    Hashtbl.fold interp_c_fun Cenv.c_functions ([],why)
  in
  let code = 
    Hashtbl.fold
      (fun lab () acc ->
	 (lab,Exception("Goto_"^lab,None))::acc) labels_table code
  in
  (code,spec)

  


(*
Local Variables: 
compile-command: "make -j -C .. bin/caduceus.byte"
End: 
*)