File: cltyping.ml

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (798 lines) | stat: -rw-r--r-- 28,907 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
(**************************************************************************)
(*                                                                        *)
(*  The Why platform for program certification                            *)
(*  Copyright (C) 2002-2008                                               *)
(*    Romain BARDOU                                                       *)
(*    Jean-Franois COUCHOT                                               *)
(*    Mehdi DOGGUY                                                        *)
(*    Jean-Christophe FILLITRE                                           *)
(*    Thierry HUBERT                                                      *)
(*    Claude MARCH                                                       *)
(*    Yannick MOY                                                         *)
(*    Christine PAULIN                                                    *)
(*    Yann RGIS-GIANAS                                                   *)
(*    Nicolas ROUSSET                                                     *)
(*    Xavier URBAIN                                                       *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU General Public                   *)
(*  License version 2, as published by the Free Software Foundation.      *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(*  See the GNU General Public License version 2 for more details         *)
(*  (enclosed in the file GPL).                                           *)
(*                                                                        *)
(**************************************************************************)

(*i $Id: cltyping.ml,v 1.125 2008/02/05 12:10:47 marche Exp $ i*)

open Coptions
open Format
open Cast
open Clogic
open Creport
open Cerror
open Cenv
open Ctypes

let rec eval_const_term_noerror (e : tterm) = match e.term_node with
  | Clogic.Tconstant (RealConstant c | IntConstant c) -> 
      Cconst.int e.term_loc c
  | Clogic.Tvar v ->
      if e.term_type.Ctypes.ctype_const 
      then v.Info.enum_constant_value
      else invalid_arg "not a const variable"
  | Tunop (Uplus,t) -> eval_const_term_noerror t  
  | Tunop (Uminus,t) -> Int64.neg (eval_const_term_noerror t)
  | Tbinop (t1,Badd,t2) ->  
      Int64.add (eval_const_term_noerror t1)  (eval_const_term_noerror t2)
  | Tbinop (t1,Bsub,t2) ->  
      Int64.sub (eval_const_term_noerror t1)  (eval_const_term_noerror t2)
  | Tbinop (t1,Bmul,t2) ->  
      Int64.mul (eval_const_term_noerror t1)  (eval_const_term_noerror t2)
  | Tbinop (t1,Bdiv,t2) ->  
      Int64.div (eval_const_term_noerror t1)  (eval_const_term_noerror t2)
  | _ -> invalid_arg "not a constant expression"

let option_app f = function Some x -> Some (f x) | None -> None

let sign = function true -> Signed | false -> Unsigned

let retype_typedef = function
  | Tint _ when not machine_ints -> Tint (Signed, ExactInt)
  | tn -> tn

let rec type_logic_type ?(machine_ints=machine_ints) loc env = function
  | LTvoid -> c_void
  | LTchar _ | LTshort _ | LTint _ | LTlong _ | LTlonglong _ 
    when not machine_ints ->
      c_exact_int
  | LTchar s -> noattr (Tint (sign s, Char))
  | LTshort s -> noattr (Tint (sign s, Short))
  | LTint s -> noattr (Tint (sign s, Int))
  | LTlong s -> noattr (Tint (sign s, Long))
  | LTlonglong s -> noattr (Tint (sign s, LongLong))
  | LTinteger -> c_exact_int
  | LTfloat -> use_floats := true; c_float Ctypes.Float
  | LTdouble -> use_floats := true; c_float Ctypes.Double
  | LTlongdouble -> use_floats := true; c_float Ctypes.LongDouble
  | LTreal -> c_real
  | LTarray ty -> 
      c_array Not_valid (type_logic_type ~machine_ints loc env ty)
  | LTpointer ty -> 
      c_pointer Not_valid (type_logic_type ~machine_ints loc env ty)
  | LTvar id ->  
      noattr 
	(try 
	   retype_typedef (find_typedef id).ctype_node 
	 with Not_found -> 
	   if not (Cenv.mem_type id) then error loc "unbound type"; 
	   Tvar id )

(* Typing terms *)

let rec is_null t = match t.term_node with
  | Clogic.Tvar v -> v.Info.var_name = "null"
  | Tconstant (IntConstant s) -> (try int_of_string s = 0 with _ -> false)
  | Tcast (_,t) -> is_null t
  | _ -> false

(*
let compatible t1 t2 = 
  sub_type t1.term_type t2.term_type || 
  sub_type t2.term_type t1.term_type ||
  (pointer_or_array_type t1.term_type && is_null t2) ||
  (pointer_or_array_type t2.term_type && is_null t1)
*)
let compatible_term_type t ty = 
  sub_type t.term_type ty || 
  sub_type ty t.term_type ||
  (pointer_or_array_type ty && is_null t)

let expected_type loc t1 t2 =
  if not (eq_type t1 t2) then raise_located loc (ExpectedType (t1, t2))

let expected_term_type loc t1 t2 =
  if not (compatible_term_type t1 t2) 
  then raise_located loc (ExpectedType (t1.term_type, t2))

let expected_num loc t = match t.term_type.ctype_node with
  | Tenum _ | Tint _ | Tfloat _ -> ()
  | _ -> error loc "invalid operand (expected integer or float)"

let expected_num_pointer loc t = match t.term_type.ctype_node with
  | Tenum _ | Tint _ | Tfloat _
  | Tarray _ | Tpointer _ -> ()
  | _ -> 
      Format.eprintf "type = %a@." print_type t.term_type;
      error loc "invalid operand (expected integer, float or pointer)"

let expected_int loc t = match t.term_type.ctype_node with
  | Tenum _ | Tint _ -> ()
  | _ -> error loc "invalid operand (expected integer)"

let coerce ty e = match e.term_type.ctype_node, ty.ctype_node with
  | (Tint _ | Tenum _), Tfloat _ -> 
      { e with term_node = Tunop (Ufloat_of_int, e); term_type = ty }
  | Tfloat _, (Tint _ | Tenum _) ->
      { e with term_node = Tunop (Uint_of_float, e); term_type = ty }
  | Tfloat fk1, Tfloat fk2 when fk1 <> fk2 ->
      { e with term_node = Tunop (Ufloat_conversion, e); term_type = ty }
  | (Tint _ | Tenum _ as ty1), (Tint _ | Tenum _ as ty2) when ty1 <> ty2 ->
      { e with term_node = Tunop (Uint_conversion, e); term_type = ty }
  | ty1, ty2 when eq_type_node ty1 ty2 ->
      e
  | Tpointer (_,{ ctype_node = Tvoid }), Tpointer _ ->
      e
  | _ ->
      if verbose || debug then eprintf 
	"expected %a, found %a@." print_type ty print_type e.term_type;
      error e.term_loc "incompatible type"

(* convert [t1] and [t2] to the same arithmetic type *)
let arith_conversion t1 t2 =
  let ty1 = t1.term_type in
  let ty2 = t2.term_type in
  match ty1.ctype_node, ty2.ctype_node with
    | (Tint _ | Tenum _), (Tint _ | Tenum _) -> 
	coerce c_exact_int t1, coerce c_exact_int t2, c_exact_int
    | Tfloat _, (Tint _ | Tenum _) 
    | (Tint _ | Tenum _), Tfloat _ 
    | Tfloat _, Tfloat _ ->
	coerce c_real t1, coerce c_real t2, c_real
    | _ -> 
	assert false

(* Typing terms *)

open Info

let set_referenced t = match t.term_node with
  | Clogic.Tvar x -> set_is_referenced x
  | Tdot (_,f) | Tarrow(_,f) -> set_is_referenced f
  | _ -> ()


let rec type_term env t =
  let t', ty = type_term_node t.lexpr_loc env t.lexpr_node in
  { term_node = t'; term_loc = t.lexpr_loc; term_type = ty}

and type_term_node loc env = function
  | PLconstant (IntConstant _ as c) -> 
      Tconstant c, c_exact_int
  | PLconstant (RealConstant _ as c) ->
      use_floats := true;
      Tconstant c, c_real
  | PLvar x ->
      let info = 
	try Env.find x.var_name env with Not_found -> 
	  try (Var_info (find_ghost x.var_name)) with Not_found -> 
	    try find_sym x.var_name with Not_found -> 
              error loc "unbound logic variable %s " x.var_name
      in 
      begin match info with
	| Var_info v -> Clogic.Tvar v, v.var_type
	| Fun_info f -> 
            error loc "variable %s is a function" f.fun_name
      end
  | PLapp (f, [t]) when f.logic_name = "sqrt" ->
      let t = type_real_term env t in
      Tunop (Usqrt_real, t), c_real
  | PLapp (f, tl) ->
      (try 
	 let pl, ty, info = find_logic f.logic_name in
	 let tl = type_terms loc env pl tl in
	 Tapp (info, tl), ty
       with Not_found -> 
	 error loc "unbound function %s" f.logic_name)
  | PLunop (Utilde, t) -> 
      let t = type_int_term env t in
      Tunop (Utilde, t), t.term_type
  | PLunop (Uminus, t) -> 
      let t = type_num_term env t in
      begin match t.term_type.ctype_node with
	| Tenum _ | Tint _ -> Tunop (Uminus, coerce c_exact_int t), c_exact_int
	| Tfloat _ -> Tunop (Uminus, coerce c_real t), c_real
	| _ -> assert false
      end  
  | PLunop (Uplus, t) -> 
      let t = type_num_term env t in
      begin match t.term_type.ctype_node with
	| Tenum _ | Tint _ -> Tunop (Uplus, coerce c_exact_int t), c_exact_int
	| Tfloat _ -> Tunop (Uplus, coerce c_real t), c_real
	| _ -> assert false
      end
  | PLunop (Uabs_real | Usqrt_real as op, t) -> 
      let t = type_real_term env t in
      Tunop (op, t), c_real
  | PLunop (Ustar, t) -> 
      let t = type_term env t in
      begin match t.term_type.ctype_node with
	| Tpointer (_,ty) | Tarray (_,ty,_) -> 
	    Tunop (Ustar, t), ty
	| _ -> error loc "invalid type argument of `unary *'"
      end
  | PLunop (Uamp, t) -> 
      let t = type_term env t in
      set_referenced t;
      Tunop (Uamp, t), noattr (Tpointer(Valid(Int64.zero,Int64.one), t.term_type))   
  | PLnot t -> 
      let t = type_term env t in
      Tunop (Unot, t), t.term_type   
  | PLunop (Uround_error | Utotal_error | Uexact | Umodel as op, t) ->
      let t = type_float_term env t in
      Tunop (op, t), c_real
  | PLunop ((Ufloat_of_int | Uint_of_float | 
	     Ufloat_conversion | Uint_conversion | Unot), _) ->
      assert false
  | PLbinop (t1, Badd, t2) ->
      let t1 = type_term env t1 in
      let ty1 = t1.term_type in
      let t2 = type_term env t2 in
      let ty2 = t2.term_type in
      begin match ty1.ctype_node, ty2.ctype_node with
	| (Tenum _ | Tint _ | Tfloat _), (Tenum _ | Tint _ | Tfloat _) ->
	    let t1,t2,ty = arith_conversion t1 t2 in
	    Tbinop (t1, Badd, t2), ty
	| (Tpointer _ | Tarray _), (Tint _ | Tenum _) -> 
	    Tbinop (t1, Badd, coerce c_exact_int t2), ty1
	| (Tenum _ | Tint _), (Tpointer _ | Tarray _) ->
	    Tbinop (coerce c_exact_int t2, Badd, t1), ty2
	| _ -> 
	    error loc "invalid operands to binary +"
      end
  | PLbinop (t1, Bsub, t2) ->
      let t1 = type_term env t1 in
      let ty1 = t1.term_type in
      let t2 = type_term env t2 in
      let ty2 = t2.term_type in
      begin match ty1.ctype_node, ty2.ctype_node with
	| (Tenum _ | Tint _ | Tfloat _), (Tenum _ | Tint _ | Tfloat _) ->
	    let t1,t2,ty = arith_conversion t1 t2 in
	    Tbinop (t1, Bsub, t2),ty
	| (Tpointer _ | Tarray _), (Tint _ | Tenum _) -> 
	    let mt2 = { term_node = Tunop (Uminus, t2); 
			term_loc = t2.term_loc;
			term_type = ty2} in
	    Tbinop (t1, Badd, mt2), ty1
	| (Tpointer _ | Tarray _), (Tpointer _ | Tarray _) ->
	    Tbinop (t1, Bsub, t2), c_exact_int (* TODO check types *)
	| _ -> error loc "invalid operands to binary -"
      end
  | PLbinop (t1, (Bmul | Bdiv as op), t2) ->
      let t1 = type_num_term env t1 in
      let t2 = type_num_term env t2 in
      let t1,t2,ty = arith_conversion t1 t2 in
      Tbinop (t1, op, t2), ty
  | PLbinop (t1, (Bmod | Bbw_and | Bbw_or | Bbw_xor | 
		  Bshift_right | Bshift_left as op), t2) ->
      let t1 = type_int_term env t1 in
      let t2 = type_int_term env t2 in
      Tbinop (t1, op, t2), c_exact_int
  | PLbinop (t1, Bpow_real, t2) ->
      let t1 = type_real_term env t1 in
      let t2 = type_real_term env t2 in
      Tbinop (t1, Bpow_real, t2), c_real
  | PLdot (t, x) ->
      let t = type_term env t in
      let x = type_of_field loc x t.term_type in
      let t_dot_x = match t.term_node with
(*	| Tunop (Ustar, e) -> 
	    Tarrow (e, x)
	| Tarrget (e1, e2) -> 
	    let a = 
	      { term_node = Tbinop (e1, Badd, e2); 
		term_loc = t.term_loc;
		term_type = e1.term_type}
	    in
	    Tarrow (a, x)*)
	| _ -> 
	    Tdot (t, x)
      in
      t_dot_x, x.var_type
  | PLarrow (t, x) ->
      let t = type_term env t in
      begin match t.term_type.ctype_node with
	| Tpointer(_, ty) -> 
	    let x = type_of_field loc x ty in
	    Tarrow (t, x), x.var_type
	| _ -> 
	    error loc "invalid type argument of `->'"
      end
  | PLarrget (t1, t2) ->
      let t1 = type_term env t1 in
      (match t1.term_type.ctype_node with
	 | Tarray (_,ty,_) | Tpointer(_, ty) ->
	     let t2 = type_int_term env t2 in
	     Tarrget (t1, t2), ty
	 | _ ->
	     error loc "subscripted value must be either array or pointer")
  | PLrange (t1, t2, t3) ->
      let t1 = type_term env t1 in
      (match t1.term_type.ctype_node with
	 | Tarray (_,ty,_) | Tpointer (_,ty) ->
	     let t2 = type_int_term_option env t2 in
	     let t3 = type_int_term_option env t3 in
	     Trange (t1, t2, t3), ty
	 | _ ->
	     error loc "subscripted value must be either array or pointer")
  | PLif (t1, t2, t3) ->
      let tt1 = type_term env t1 in
      expected_num_pointer t1.lexpr_loc tt1;
      let t2 = type_term env t2 in
      let t3 = type_term env t3 in
      expected_term_type loc t3 t2.term_type;
      expected_term_type loc t2 t3.term_type;
      Tif (tt1, t2, t3), t2.term_type
  | PLold t ->
      let t = type_term env t in
      Told t, t.term_type
  | PLat (t, l) ->
      (* TODO check label l *)
      let t = type_term env t in
      Tat (t, l), t.term_type
  | PLbase_addr t ->
      let t = type_term env t in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Tbase_addr t, c_addr
	 | _ -> error loc "base_addr argument must be either array or pointer")
  | PLoffset t ->
      let t = type_term env t in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Toffset t, c_exact_int
	 | _ -> error loc "offset argument must be either array or pointer")
  | PLblock_length t ->
      let t = type_term env t in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Tblock_length t, c_exact_int
	 | _ -> error loc "block_length argument must be either array or pointer")
  | PLarrlen t ->
      let t = type_term env t in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Tarrlen t, c_exact_int
	 | _ -> error loc "arrlen argument must be either array or pointer")
  | PLstrlen t ->
      let t = type_term env t in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Tstrlen t, c_exact_int
	 | _ -> error loc "strlen argument must be either array or pointer")
  | PLmin (t1,t2) ->
      let t1 = type_int_term env t1 in
      let t2 = type_int_term env t2 in
      Tmin (t1,t2), c_exact_int
  | PLmax (t1,t2) ->
      let t1 = type_int_term env t1 in
      let t2 = type_int_term env t2 in
      Tmax (t1,t2), c_exact_int
  | PLminint ty ->
      let ty = type_logic_type ~machine_ints:true loc env ty in
      begin match ty.ctype_node with
	| Tint (_, (Char | Short | Ctypes.Int | Long | LongLong)) -> 
	    Tminint ty, c_exact_int
	| _ -> 
	    error loc "argument must be a C integer type"
      end
  | PLmaxint ty ->
      let ty = type_logic_type ~machine_ints:true loc env ty in
      begin match ty.ctype_node with
	| Tint (_, (Char | Short | Ctypes.Int | Long | LongLong)) -> 
	    Tmaxint ty, c_exact_int
	| _ -> 
	    error loc "argument must be a C integer type"
      end
  | PLresult ->
      (try 
	 let t = Env.find "result" env in 
	 begin match t with
	   | Var_info v -> Clogic.Tvar v, v.var_type
	   | Fun_info f -> 
               error loc ("result is a function")
	 end
       with Not_found -> error loc "\\result meaningless")
  | PLnull ->
      let info = default_var_info "null" in 
      Cenv.set_var_type (Var_info info) (c_void_star Not_valid) false;
      Clogic.Tvar info, (c_void_star Not_valid)
  | PLcast (ty, t) ->
      let t = type_term env t in
      let tt = t.term_type in
      begin match ty, tt.ctype_node with
	| LTvoid, Tvoid -> 
	    t.term_node, tt
	| (LTchar _ | LTshort _ | LTint _ | LTlong _ | LTlonglong _ | LTinteger
	  | LTfloat | LTdouble | LTlongdouble | LTreal), 
	  (Tenum _ | Tint _ | Tfloat _) -> 
	    let t = coerce (type_logic_type loc env ty) t in
	    t.term_node, t.term_type
	| _ -> 
	    warning loc "ignored cast in annotation"; t.term_node, tt
      end
  | PLvalid _ | PLvalid_index _ | PLvalid_range _ | PLfresh _ | PLseparated _ 
  | PLexists _ | PLforall _ | PLimplies _ | PLiff _ | PLfalse
  | PLfullseparated _ | PLor _ | PLand _ | PLrel _ | PLtrue | PLnamed _ 
  | PLbound_separated _ | PLfull_separated _ ->
      raise_located loc (AnyMessage "predicates are not allowed here")

and type_int_term env t =
  let tt = type_term env t in
  expected_int t.lexpr_loc tt;
  coerce c_exact_int tt

and type_real_term env t = 
  let tt = type_num_term env t in
  coerce c_real tt

and type_float_term env t = 
  let tt = type_num_term env t in
  match tt.term_type.ctype_node with
    | Tfloat (Ctypes.Float | Double | LongDouble) -> tt
    | _ -> error t.lexpr_loc "illegal operand (expected float)"

and type_int_term_option env = function
  | None -> None 
  | Some t -> Some (type_int_term env t)

and type_num_term env t =
  let tt = type_term env t in
  expected_num t.lexpr_loc tt;
  tt

and type_num_pointer_term env t =
  let tt = type_term env t in
  expected_num_pointer t.lexpr_loc tt;
  tt

and type_terms loc env at tl =
  let rec type_list = function
    | [], [] -> 
	[]
    | et :: etl, ({lexpr_loc=tloc} as t) :: tl ->
	let t = type_term env t in
	expected_term_type tloc t et;
  	coerce et t :: type_list (etl, tl)
    | [], _ ->
	raise_located loc TooManyArguments
    | _, [] ->
	raise_located loc PartialApp
  in
  type_list (at, tl)


(* ghost *)

let rec type_ghost_lvalue env t =
  let t', ty =   type_ghost_lvalue_node t.lexpr_loc env t.lexpr_node in
  { term_node = t'; term_loc = t.lexpr_loc; term_type = ty}

and type_ghost_lvalue_node loc env t =
  match t with
    | PLvar x ->
	let v = 
	  try find_ghost x.var_name
	  with Not_found -> 
            error loc "unbound ghost variable %s" x.var_name
	in 
	Clogic.Tvar v, v.var_type
    | PLarrget (t1, t2) ->
	let t1 = type_ghost_lvalue env t1 in
	(match t1.term_type.ctype_node with
	   | Tarray (_,ty,_) | Tpointer (_,ty) ->
	       let t2 = type_int_term env t2 in
	       Tarrget (t1, t2), ty
	   | _ ->
	       error loc "subscripted value is neither array nor pointer")
    | _ ->
	error loc "not allowed as ghost left value"




(* Typing logic types *)

let rec type_type env t = 
  { t with ctype_node = type_type_node env t.ctype_node }

and type_type_node env = function
  | Tint _ | Tfloat _ as t -> t
  | Tarray (valid,ty,t) -> Tarray (valid,type_type env ty,t)
  | _ -> assert false


(*
let type_quantifier env (ty, x) = (type_logic_type env ty, x)
let type_quantifiers env = List.map (type_quantifier env)
*)

let add_quantifiers loc q env =
  let (tq,env) =
    List.fold_left
      (fun (tq,env) (ty, x) -> 
	 let i = Info.default_var_info x 
	 and ty = type_logic_type loc env ty in
	 ((ty,i)::tq, Env.add x ty (Var_info i) env))
      ([],env) q
  in
  (List.rev tq,env)


let int_constant n = 
  { term_node = Tconstant (IntConstant n); 
    term_loc = Loc.dummy_position;
    term_type = c_exact_int}

let zero = int_constant "0"

let compat_pointers ty1 ty2 = 
  (ty1.ctype_node = Tvoid) || (ty2.ctype_node = Tvoid) || eq_type ty1 ty2

(* Typing predicates *)

let rec type_term env t =
  let t', ty = type_term_node t.lexpr_loc env t.lexpr_node in
  { term_node = t'; term_loc = t.lexpr_loc; term_type = ty}


let rec type_predicate env p0 = 
  let p' = type_predicate_node env p0 in
  { pred_node = p'; pred_loc = p0.lexpr_loc }

and type_predicate_node env p0 = match p0.lexpr_node with
  | PLfalse -> Pfalse
  | PLtrue -> Ptrue
  | PLrel ({lexpr_node = PLrel (_, _, t2)} as p1, op, t3) ->
      let p1 = type_predicate env p1 in
      let p2 = { lexpr_node = PLrel (t2, op, t3); 
		 lexpr_loc = p0.lexpr_loc } in
      let p2 = type_predicate env p2 in
      Pand (p1, p2)
  | PLrel (t1, (Lt | Le | Gt | Ge as r), t2) -> 
      let loc = Loc.join t1.lexpr_loc t2.lexpr_loc in
      let t1 = type_num_pointer_term env t1 in
      let t2 = type_num_pointer_term env t2 in
       begin match t1.term_type.ctype_node, t2.term_type.ctype_node with
	| (Tint _ | Tenum _ | Tfloat _), (Tint _ | Tenum _ | Tfloat _) ->
	    let t1,t2,_ = arith_conversion t1 t2 in
	    Prel (t1, r, t2)
	| (Tpointer (_,ty1)  | Tarray (_,ty1,_)), 
	  (Tpointer (_,ty2) | Tarray (_,ty2,_)) ->
	    if not (compat_pointers ty1 ty2) then
	      warning loc "comparison of distinct pointer types lacks a cast";
	    Prel (t1, r, t2)
	| (Tpointer _  | Tarray _), (Tint _ | Tenum _ | Tfloat _)
	| (Tint _ | Tenum _ | Tfloat _), (Tpointer _  | Tarray _) ->
	    error loc "comparison between pointer and integer" (* C warning *)
	    (* Prel (t1, r, t2) *)
	| _ ->
	    error loc "invalid operands to comparison"
       end
  | PLrel (t1, (Eq | Neq as r), t2) -> 
      let loc = Loc.join t1.lexpr_loc t2.lexpr_loc in
      let t1 = type_term env t1 in
      let t2 = type_term env t2 in
       begin match t1.term_type.ctype_node, t2.term_type.ctype_node with
	| (Tint _ | Tenum _ | Tfloat _), (Tint _ | Tenum _ | Tfloat _) ->
	    let t1,t2,_ = arith_conversion t1 t2 in
	    Prel (t1, r, t2)
	| (Tpointer (_,ty1)  | Tarray (_,ty1,_)), 
	  (Tpointer (_,ty2) | Tarray (_,ty2,_)) ->
	    if not (compat_pointers ty1 ty2) then
	      warning loc "comparison of distinct pointer types lacks a cast";
	    Prel (t1, r, t2)
	| (Tpointer _  | Tarray _), (Tint _ | Tenum _ | Tfloat _) ->
	    if t2.term_node = Tconstant (IntConstant "0") then
	      let ty1 = Tpointer ( Not_valid, t1.term_type) in
	      let ty1 = 
		{ ctype_node = ty1;
		  ctype_storage = No_storage;
		  ctype_const = false;
		  ctype_volatile = false;
		  ctype_ghost = false;
		}
	      in
	      Prel(t1, r, 
		   { term_node = Tcast(ty1,t2);
		     term_type = ty1;
		     term_loc  = t2.term_loc;})
	    else
	      error loc "comparison between pointer and integer" (* C warning *)
		(* Prel (t1, r, t2) *)
	| (Tint _ | Tenum _ | Tfloat _), (Tpointer _  | Tarray _) ->
	    if t1.term_node = Tconstant (IntConstant "0") then
	      let ty2 = Tpointer ( Not_valid, t2.term_type) in
	      let ty2 = 
		{ ctype_node = ty2;
		  ctype_storage = No_storage;
		  ctype_const = false;
		  ctype_volatile = false;
		  ctype_ghost = false;
		}
	      in
	      Prel({ term_node = Tcast(ty2,t1);
		     term_type = ty2;
		     term_loc  = t1.term_loc;},
		   r, t2)
	    else
	      error loc "comparison between pointer and integer" (* C warning *)
		(* Prel (t1, r, t2) *)
	| Tvar s1, Tvar s2 when s1 = s2 -> Prel (t1, r, t2)
	| _ ->
	    error loc "invalid operands to comparison"
      end
  | PLand (p1, p2) -> 
      Pand (type_predicate env p1, type_predicate env p2)
  | PLor (p1, p2) -> 
      Por (type_predicate env p1, type_predicate env p2)
  | PLimplies (p1, p2) -> 
      Pimplies (type_predicate env p1, type_predicate env p2) 
  | PLiff (p1, p2) -> 
      Piff (type_predicate env p1, type_predicate env p2) 
  | PLnot p -> 
      (match type_predicate env p with
	 | { pred_node = Prel (t, Neq, z) } when z == zero -> 
	     Prel (t, Eq, zero)
	 | p -> Pnot p)
  | PLapp (p, tl) ->
      (try
	 let pl,info = find_pred p.logic_name in
	 let tl = type_terms p0.lexpr_loc env pl tl in
	 Papp (info, tl)
       with Not_found -> 
	 error p0.lexpr_loc "unbound predicate %s" p.logic_name)
  | PLif (t, p1, p2) -> 
      let t = type_int_term env t in
      Pif (t, type_predicate env p1, type_predicate env p2)
  | PLforall (q, p) -> 
      let q, env' = add_quantifiers p0.lexpr_loc q env in
      Pforall (q, type_predicate env' p)
  | PLexists (q, p) -> 
      let q, env' = add_quantifiers p0.lexpr_loc q env in
      Pexists (q, type_predicate env' p)
  | PLfresh (t) ->
      let tloc = t.lexpr_loc in
      let t = type_term env t in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Pfresh(t)
	 | _ -> error tloc "subscripted value is neither array nor pointer")
  | PLseparated (t1,t2) ->
      let t1loc = t1.lexpr_loc in
      let t1 = type_term env t1 in 
      let t2loc = t2.lexpr_loc in
      let t2 = type_term env t2 in
      Pseparated (
      (match t1.term_type.ctype_node with
	 | Tstruct _ | Tarray _ | Tpointer _ -> t1
	 | _ -> error t1loc "subscripted value is neither array nor pointer"),
	(match t2.term_type.ctype_node with
	 | Tstruct _ | Tarray _ | Tpointer _ -> t2
	 | _ -> error t2loc "subscripted value is neither array nor pointer"))
  | PLbound_separated (t1,tu1,t2,tu2) ->
      let t1loc = t1.lexpr_loc in
      let t1 = type_term env t1 in 
      let tu1 = type_int_term env tu1 in
      let t2loc = t2.lexpr_loc in
      let t2 = type_term env t2 in
      let tu2 = type_int_term env tu2 in
      Pbound_separated (
      (match t1.term_type.ctype_node with
	 | Tstruct _ | Tarray _ | Tpointer _ -> t1
	 | _ -> error t1loc "subscripted value is neither array nor pointer"),
	tu1,
	(match t2.term_type.ctype_node with
	 | Tstruct _ | Tarray _ | Tpointer _ -> t2
	 | _ -> error t2loc "subscripted value is neither array nor pointer"),
	tu2)
  | PLfull_separated (t1,t2) ->
      let t1loc = t1.lexpr_loc in
      let t1 = type_term env t1 in 
      let t2loc = t2.lexpr_loc in
      let t2 = type_term env t2 in
      Pfull_separated (
      (match t1.term_type.ctype_node with
	 | Tstruct _ | Tarray _ | Tpointer _ -> t1
	 | _ -> error t1loc "subscripted value is neither array nor pointer"),
	(match t2.term_type.ctype_node with
	 | Tstruct _ | Tarray _ | Tpointer _ -> t2
	 | _ -> error t2loc "subscripted value is neither array nor pointer"))
  | PLfullseparated (t1,t2) ->
      let t1loc = t1.lexpr_loc in
      let t1 = type_term env t1 in 
      let t2loc = t2.lexpr_loc in
      let t2 = type_term env t2 in
      Pfullseparated (
      (match t1.term_type.ctype_node with
	 | Tstruct _ -> t1
	 | _ -> error t1loc "subscripted value is neither array nor pointer"),
	(match t2.term_type.ctype_node with
	 | Tstruct _ -> t2
	 | _ -> error t2loc "subscripted value is neither array nor pointer"))
  | PLvalid (t) ->
      let tloc = t.lexpr_loc in
      let t = type_term env t in
      (match t.term_type.ctype_node with
	 | Tstruct _ | Tunion _
	 | Tarray _ | Tpointer _ -> Pvalid(t)
	 | _ -> error tloc "subscripted value is neither array nor pointer")
  | PLvalid_index (t,a) ->
      let tloc = t.lexpr_loc in
      let t = type_term env t in
      let a = type_int_term env a in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Pvalid_index(t,a)
	 | _ -> error tloc "subscripted value is neither array nor pointer")
  | PLvalid_range (t,a,b) ->
      let tloc = t.lexpr_loc in
      let t = type_term env t in
      let a = type_int_term env a in
      let b = type_int_term env b in
      (match t.term_type.ctype_node with
	 | Tarray _ | Tpointer _ -> Pvalid_range(t,a,b)
	 | _ -> error tloc "subscripted value is neither array nor pointer")
  | PLold p ->
      Pold (type_predicate env p)
  | PLat (p, l) ->
      (* TODO check label l *)
      Pat (type_predicate env p, l)
  | PLcast _ | PLblock_length _ | PLarrlen _ | PLstrlen _ 
  | PLbase_addr _ | PLoffset _ | PLarrget _ | PLarrow _ 
  | PLdot _ | PLbinop _ | PLunop _ | PLconstant _ | PLvar _ | PLnull 
  | PLresult | PLrange _ | PLmin _ | PLmax _ | PLminint _ | PLmaxint _ ->
      (*raise (Stdpp.Exc_located (p0.lexpr_loc, Parsing.Parse_error))*)
      (* interpret term [t] as [t != 0] *)
      let t = type_int_term env p0 in
      Prel (t, Neq, zero)
  | PLnamed (n, p) ->
      Pnamed (n, type_predicate env p)

let type_variant env = function 
  | (t, None) -> (type_int_term env t, None)
  | (t, r) -> (type_term env t, r)

let type_location = type_term

let type_loop_annot env la =
  { invariant = option_app (type_predicate env) la.invariant;
    assume_invariant = option_app (type_predicate env) la.assume_invariant;
    loop_assigns = 
      option_app (fun (loc,l) -> loc, List.map (type_location env) l) 
	la.loop_assigns;
    variant = option_app (type_variant env) la.variant }

let type_spec result env s = 
  let p = option_app (type_predicate env) s.requires in
  let env' = match result with
    | None -> env
    | Some ty ->
	let v = Var_info (Info.default_var_info "result") in
	Cenv.set_var_type v ty true;
	Env.add "result" ty v env
  in
  let q = option_app (type_predicate env') s.ensures in
  let v = option_app (type_variant env) s.decreases in
  let m = option_app (fun (loc,l) -> loc, List.map (type_location env) l) s.assigns in
  { requires = p;
    assigns = m;
    ensures = q;
    decreases = v }