File: cnorm.ml

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (1525 lines) | stat: -rw-r--r-- 47,994 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
(**************************************************************************)
(*                                                                        *)
(*  The Why platform for program certification                            *)
(*  Copyright (C) 2002-2008                                               *)
(*    Romain BARDOU                                                       *)
(*    Jean-Franois COUCHOT                                               *)
(*    Mehdi DOGGUY                                                        *)
(*    Jean-Christophe FILLITRE                                           *)
(*    Thierry HUBERT                                                      *)
(*    Claude MARCH                                                       *)
(*    Yannick MOY                                                         *)
(*    Christine PAULIN                                                    *)
(*    Yann RGIS-GIANAS                                                   *)
(*    Nicolas ROUSSET                                                     *)
(*    Xavier URBAIN                                                       *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU General Public                   *)
(*  License version 2, as published by the Free Software Foundation.      *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(*  See the GNU General Public License version 2 for more details         *)
(*  (enclosed in the file GPL).                                           *)
(*                                                                        *)
(**************************************************************************)

(*i $Id: cnorm.ml,v 1.114 2008/05/28 14:53:34 marche Exp $ i*)

open Creport
open Cconst
open Info
open Cenv
open Cltyping
open Ctypes
open Cast
open Clogic
open Int64


let int_nconstant n = 
  { nterm_node = NTconstant (IntConstant n); 
    nterm_loc = Loc.dummy_position;
    nterm_type = c_int;}

let nzero = int_nconstant "0"

(*
let eval_array_size e = 
  { nterm_node = NTconstant (IntConstant (Int64.to_string (eval_const_expr e))); 
    nterm_loc = e.nexpr_loc;
    nterm_type = c_int }
*)



let var_requires_indirection v =
  v.var_is_referenced && 
  (match v.var_type.Ctypes.ctype_node with
     | Tstruct _ | Tunion _ -> false
     | Tarray (_,ty,_) -> (match ty.Ctypes.ctype_node with 
			     | Tstruct _ | Tunion _ -> false
			     | _ -> true)
     | _ -> true)

let var_is_referenced_or_struct_or_union v =
  v.var_is_referenced || 
  (match v.var_type.Ctypes.ctype_node with
     | Tstruct _ | Tunion _ -> true
     | _ -> false)

open Cast


let noattr2 loc ty e =
  { nexpr_node = e;
    nexpr_type = ty;
    nexpr_loc  = loc
  }

let arrow_vars = Hashtbl.create 97
  
let declare_arrow_var info =
  try  
    let info' = Hashtbl.find arrow_vars info.var_name in
    if not (same_why_type_no_zone info.var_why_type info'.var_why_type) then
      begin
	let t1 = output_why_type info.var_why_type
	and t2 = output_why_type info'.var_why_type
	in
	Format.eprintf "anomaly: unify why types `%a' and `%a'@."
	  Output.fprintf_logic_type t1 Output.fprintf_logic_type t2;
      assert false
      end;
    info'
  with Not_found ->
    Hashtbl.add arrow_vars info.var_name info;
    info

let make_field ty =
  let rec name ty =
    match ty.Ctypes.ctype_node with 
      | Tvoid -> "void"
      | Tint si when Coptions.machine_ints -> int_type_for si
      | Tenum e when Coptions.enum_check -> enum_type_for e
      | Tint  _ | Tenum _ -> "int"
      | Tfloat _ -> "float"
      | Ctypes.Tvar s -> s
      | Tarray (_, ty ,_) | Tpointer (_,ty) -> (name ty) ^"P" 
      | Tstruct s | Tunion s -> s^"P" (* "P" for "pointer" *)
      | Tfun _ -> "fun"
  in
  let n = (name ty) ^ "M" in (* "M" for "memory" *)
  let info = default_var_info n in
  set_var_type (Info.Var_info info)  ty  false;
  info

let rec assoc_zone z assoc =
  match assoc with 
    | [] -> raise Not_found
    | (x,y)::l ->
	if (repr x) == z then y else assoc_zone z l

let rename_zone assoc ty =
  match ty with
    | Pointer z ->
	let z = repr z in
	begin
	  try
	    Pointer(assoc_zone z assoc)
	  with
	      Not_found -> ty
	end
    | _ -> ty

(* table qui a tout couple zone champ associe le type why des elements pointers par p->champ ou p est un pointeur sur zone*)
let type_why_table = Hashtbl.create 97 

let why_type_for_float_kind fk =
  if Coptions.floats then match fk with
    | Float ->  Why_Logic "single"
    | Double ->  Why_Logic "double"
    | LongDouble ->  Why_Logic "quad"
    | Real -> Info.Real
  else
    Info.Real

let why_type_for_float t = match t.Ctypes.ctype_node with
  | Tfloat fk -> why_type_for_float_kind fk
  | _ -> assert false

let why_type_for_int_kind = function
  | _, ExactInt -> Info.Int
  | _ when not Coptions.machine_ints -> Info.Int
  | ik -> Why_Logic (Cenv.int_type_for ik)

let why_type_for_int t = match t.Ctypes.ctype_node with
  | Tint ik -> why_type_for_int_kind ik
  | Tenum _ -> Info.Int (*TODO*)
  | _ -> assert false

let why_type_op op =
  match op with
    | Bsub_pointer 
    | Blt_pointer | Bgt_pointer | Ble_pointer 
    | Bge_pointer | Beq_pointer | Bneq_pointer
	-> Info.Int
    | Bneq_float _ | Beq_float _ | Bge_float _
    | Ble_float _ | Bgt_float _ | Blt_float _ 
	-> Info.Int
    | Bdiv_float _ | Bmul_float _ | Bsub_float _ | Badd_float _
	-> Info.Real
    | Bmod_int _|Bdiv_int _| Bmul_int _|Bsub_int _|Badd_int _
	  -> Info.Int
    | Badd_pointer_int -> assert false
    | Bneq_int | Beq_int | Bge_int
    | Ble_int | Bgt_int | Blt_int
	  -> Info.Int
    | Bshift_right | Bshift_left 
	  -> Info.Int
    | Bor | Band | Bbw_or | Bbw_xor| Bbw_and
	  -> Info.Int
    | Bneq | Beq | Bge | Ble | Bgt | Blt 
	  -> Info.Int
    | Bmod | Bdiv | Bmul | Bsub | Badd
	  -> assert false


let rec type_why e =
  match e.nexpr_node with
    | NEvar e -> get_why_type e 
    | NEarrow (_,z,f) -> 
	begin
	  try
	    let z = repr z in
	    let t = Hashtbl.find type_why_table z  in
	    Hashtbl.find t f
	  with Not_found -> 
	    Format.eprintf "no  why type for %a@\n" Cprint.nexpr e;
	    assert false
	end
    | NEnop -> assert false (* 	Unit *)
    | NEconstant (IntConstant _)
    | NEunary (Uint_of_float, _)
    | NEunary (Uint_conversion, _) ->
	why_type_for_int e.nexpr_type
    | NEcast ({Ctypes.ctype_node = Tint ik}, _) -> 
	why_type_for_int_kind ik
    | NEconstant (RealConstant x) -> 
	let _,fk = Ctyping.float_constant_type x in 
	why_type_for_float_kind fk
    | NEstring_literal s ->  Pointer (make_zone false)
    | NEseq (e1,e2) -> 
	type_why e2 
    | NEassign (l,e) -> 
	type_why e
    | NEassign_op (l,op,e) -> 
	type_why e
    | NEbinary (e, Badd_pointer_int, _) -> type_why e
    | NEbinary (_, op, _) -> why_type_op op
    | NEunary ((Ufloat_conversion | Ufloat_of_int), _) 
    | NEcast ({Ctypes.ctype_node = Tfloat _}, _) -> 
	why_type_for_float e.nexpr_type
(*
    | NEcast (ty,e') -> 
	unsupported e.nexpr_loc "separation analysis do no support casts"
*)
    | NEcast (ty,e) ->
	let tw = type_why e in
	begin match ty.Ctypes.ctype_node, tw with
	  | Tpointer _, Info.Pointer _ -> tw
	  | Tpointer _, _ -> Info.Pointer (make_zone true)
	  | _ -> tw
	end
    | NEunary (_,e) 
    | NEincr (_,e) 
    | NEcond (_,_,e) -> type_why e
    | NEcall {ncall_fun = e; ncall_zones_assoc = assoc } ->
	let tw = type_why e in
	rename_zone assoc tw 
    | NEmalloc _ -> 
	Info.Pointer (make_zone true)
	
let find_zone e = 
  match type_why e with
    | Pointer z -> repr z
    | _ -> assert false

let rec type_why_for_term t = 
  match t.nterm_node with
    | NTconstant (IntConstant _) -> Info.Int     
    | NTconstant (RealConstant _)
    | NTunop ((Clogic.Usqrt_real | Clogic.Uabs_real 
	      |Clogic.Uround_error | Clogic.Utotal_error
	      |Clogic.Uexact | Clogic.Umodel), _) -> Info.Real
    | NTvar v -> v.var_why_type
    | NTapp {napp_pred = f; napp_zones_assoc = assoc } -> 
	rename_zone assoc f.logic_why_type
    | NTunop (Clogic.Uminus,t) | NTunop (Clogic.Utilde,t) 
    | NTunop (Clogic.Uplus,t) | NTunop (Clogic.Unot,t) -> 
	type_why_for_term t
    | NTunop (Clogic.Ustar,_) | NTunop (Clogic.Uamp,_) -> assert false
    | NTunop ((Clogic.Ufloat_of_int | Clogic.Ufloat_conversion),_) -> 
	why_type_for_float t.nterm_type
    | NTunop ((Clogic.Uint_of_float | Clogic.Uint_conversion),_) -> 
	why_type_for_int t.nterm_type
    | NTbinop (t1,Clogic.Bsub,t2) -> 
	begin
	  match type_why_for_term t1, type_why_for_term t2 with
	    | Pointer _, Pointer _ -> Info.Int
	    | Pointer _, _ -> assert false
	    | _, Pointer _ -> assert false
	    | ty,_ -> ty
	end
    | NTbinop (t1,_,_) -> type_why_for_term t1
    | NTarrow (_,z,f) ->
	begin
	  let z = repr z in
	  try
	    let t = Hashtbl.find type_why_table z  in
	    Hashtbl.find t f
	  with Not_found -> assert false
	end
    | NTif (_,_,t) -> type_why_for_term t
    | NTold t -> type_why_for_term t
    | NTat (t,_) -> type_why_for_term t
    | NTbase_addr t ->
	begin match type_why_for_term t with
	  | Pointer z -> Addr z
	  | _ -> assert false
	end  
    | NToffset t -> Info.Int
    | NTblock_length t -> Info.Int
    | NTarrlen _ -> Info.Int
    | NTstrlen _ -> Info.Int
    | NTmin _ | NTmax _ | NTminint _ | NTmaxint _ -> Info.Int
    | NTcast (ty,t) -> 
 	let tw = type_why_for_term t in
	begin match ty.Ctypes.ctype_node, tw with
	  | Tpointer _, Info.Pointer _ -> tw
	  | Tpointer _, _ -> Info.Pointer (make_zone true)
	  | _ -> tw
	end
   | NTrange (_,_,_,z,f) ->
	begin
	  let z = repr z in
	  try
	    let t = Hashtbl.find type_why_table z  in
	    Hashtbl.find t f
	  with Not_found -> assert false
	end

	
let find_zone_for_term e = 
  match type_why_for_term e with
    | Pointer z -> repr z
    | ty -> 
	let wt = output_why_type ty in
	Format.eprintf "type of term %a : %a@." 
	  Cprint.nterm e Output.fprintf_logic_type wt; 
	assert false 

let type_why_new_zone zone field_info =
  let t =
    try
      Hashtbl.find type_why_table zone 
    with Not_found ->
      let t = Hashtbl.create 5 in
      Hashtbl.add type_why_table zone t; t
  in
  try
    let _ = Hashtbl.find t field_info in
    ()
  with Not_found ->
    let tw =  
      match field_info.var_why_type with 
	| Pointer z -> 
	    Pointer (make_zone ~name:z.name zone.zone_is_var)
	| tw -> tw
    in
(*    let l,n = output_why_type tw in
    Format.eprintf "adding in type_why_table :(%s,%s) -> %s@." 
      zone.name field_info.var_name n;*)
    Hashtbl.add t field_info tw 

	

let ne_arrow loc valid ty e z f =
  let () = type_why_new_zone z f in 
  NEarrow (    {nexpr_node = e;
		nexpr_type = noattr (Tpointer (valid,ty));
		nexpr_loc = loc},z,f)

let dot_translate t' var_info ty loc =
  let zone = find_zone t' in
  let () = type_why_new_zone zone var_info in 
  let t' = NEarrow (t', zone, var_info) in
  if var_requires_indirection var_info then
    let info = make_field ty in
    let info = declare_arrow_var info in
    let zone = find_zone (noattr2 loc ty t') in
    ne_arrow loc (Valid(Int64.zero,Int64.one)) ty t' zone info
  else t'	
	  
let rec expr t =
  let ty = t.texpr_type in
  { nexpr_node = expr_node t.texpr_loc ty t.texpr_node;
    nexpr_type = ty ;
    nexpr_loc = t.texpr_loc;
  }

and expr_node loc ty t =
    match t with
      | TEnop -> NEnop
      | TEconstant constant -> NEconstant constant
      | TEstring_literal string -> NEstring_literal string
      | TEvar env_info ->
	  (match env_info with
	    | Var_info v ->
		let t' = NEvar env_info in
		if var_requires_indirection v then(
		   let info = make_field ty in
		   let info = declare_arrow_var info in
		   let zone = 
		     match v.var_why_type with
		       | Pointer z -> z
		       | _ -> assert false 
		   in
		   ne_arrow loc (Valid(Int64.zero,Int64.one)) ty t' zone info)
		else t'
	    | Fun_info _  -> NEvar env_info)
      | TEdot (lvalue,var_info) ->
	  begin    
	    match lvalue.Cast.texpr_node with
	      | TEunary(Ustar, e) -> 
		  dot_translate (expr lvalue) var_info ty loc
	      | TEarrget (e1, e2) -> 
		  let a = 
		    { lvalue with 
			texpr_node = TEbinary (e1, Badd_pointer_int, e2);
			texpr_type = e1.texpr_type }
	      in
	      dot_translate (expr a) var_info ty loc
	      | _ -> dot_translate (expr lvalue) var_info ty loc
	  end 
    | TEarrow (lvalue,var_info) ->
	  let expr = expr lvalue in
	  let zone = find_zone expr in
	  let () = type_why_new_zone zone var_info in
	  let t' = NEarrow (expr, zone, var_info) in
	  if var_requires_indirection var_info then
	    let info = make_field ty in
	    let info = declare_arrow_var info in
	    let zone = find_zone (noattr2 loc ty t') in
	    ne_arrow loc (Valid(Int64.zero,Int64.one)) ty t' zone info
	  else t'
      | TEarrget (lvalue,texpr) -> 
	  (* t[e] -> *(t+e) *)
	  let is_valid =
	    if lvalue.texpr_type.Ctypes.ctype_ghost 
	    then Valid(Int64.min_int,Int64.max_int)
	    else
	      begin
		match lvalue.texpr_type.Ctypes.ctype_node with
		  | Tarray(Valid(a,b),_,Some n) ->
		      assert (b = n);
		      begin
			try
			  let i = Ctyping.eval_const_expr_noerror texpr in
			  Valid(Int64.sub a i,Int64.sub b i)
			with Invalid_argument _ -> Not_valid
		      end
		  | _ -> Not_valid
	      end
	  in
	  let info = make_field ty in
	  let info = declare_arrow_var info in
	  let nexpr = expr lvalue in
	  let zone = find_zone nexpr in
	  let ty = { ty with Ctypes.ctype_node = Tpointer (is_valid,ty); 
		       ctype_ghost = lvalue.texpr_type.ctype_ghost } in
	  let () = type_why_new_zone zone info in
	  NEarrow ( 
	    {
	      nexpr_node = NEbinary(nexpr, Badd_pointer_int, expr texpr);
	      nexpr_type = ty ;
	      nexpr_loc = loc;
	    },
	    zone, info)
      | TEseq (texpr1,texpr2) -> NEseq ((expr texpr1) , (expr texpr2))
      | TEassign (lvalue ,texpr) -> NEassign ((expr lvalue) , (expr texpr))
      | TEassign_op (lvalue ,binary_operator, texpr) ->
	  NEassign_op ((expr lvalue),binary_operator , (expr texpr))
      | TEunary (Ustar ,texpr) -> 
	  begin
	    match texpr.texpr_type.Ctypes.ctype_node with
	      | Tvoid -> assert false
	      | Ctypes.Tvar _ -> assert false
	      | Tstruct _ 
	      | Tfun (_, _) 
	      | Tunion _ -> 
		  unsupported loc "normalization failed"
	      | Tenum _
	      | Tpointer (_, _)
	      | Tarray (_, _, _)
	      | Tfloat _|Tint _ ->
		  let info = make_field ty in
		  let info = declare_arrow_var info in
		  let expr = expr texpr in
		  let zone = find_zone expr in
		  let () = type_why_new_zone zone info in
		  NEarrow (expr, zone, info)
	  end
      | TEunary (Uamp ,texpr) ->
	  (match texpr.texpr_node with
	     | TEvar v -> NEvar v
	     | TEunary (Ustar, texpr)-> expr_node loc ty texpr.texpr_node
	     | TEdot(lvalue,var_info)->
		 begin    
		   match lvalue.Cast.texpr_node with
		     | TEunary(Ustar, e) ->  
			 let t' = (expr lvalue) in
			 let zone = find_zone t' in
			 let () = type_why_new_zone zone var_info in 
			 NEarrow (t', zone, var_info)
		     | TEarrget (e1, e2) -> 
			 let a = 
			   { lvalue with 
			       texpr_node = 
			       TEbinary (e1, Badd_pointer_int, e2);
			       texpr_type = e1.texpr_type }
			 in
			 let t' = expr a in
			 let zone = find_zone t' in
			 let () = type_why_new_zone zone var_info in 
			 NEarrow (t', zone, var_info)
		     | _ ->   
			 let t' = (expr lvalue) in
			 let zone = find_zone t' in
			 let () = type_why_new_zone zone var_info in 
			 NEarrow (t', zone, var_info)
		 end 
	     | TEarrow(lvalue,var_info) ->
		 let t' = expr lvalue in
		 let zone = find_zone t' in 
		 let () = type_why_new_zone zone var_info in
		 NEarrow (t', zone, var_info)
	     | TEarrget (lvalue,t) ->
		 NEbinary(expr lvalue, Badd_pointer_int, expr t)
	     | _ -> 
		 warning loc "this & cannot be normalized";
		 NEunary (Uamp,expr texpr))
      | TEunary (unary_operator ,texpr) ->
	  NEunary(unary_operator, expr texpr)
      | TEincr (incr_operator,texpr) ->	NEincr(incr_operator, expr texpr)
      | TEbinary (texpr1 , binary_operator , texpr2) ->	
	  NEbinary ((expr texpr1), binary_operator , (expr texpr2))
      | TEcall (texpr ,list) -> 
	  NEcall { ncall_fun = expr texpr ;
		   ncall_args = List.map expr list;
		   ncall_zones_assoc = [] }
      | TEcond (texpr1, texpr2, texpr3) ->
	  NEcond ((expr texpr1), (expr texpr2), (expr texpr3))
      | TEsizeof (tctype,n) ->
	  NEconstant (IntConstant (Int64.to_string n))
      | TEcast({Ctypes.ctype_node = Tpointer _}as ty, e') ->
	  begin
	    try
	      let n = Ctyping.eval_const_expr_noerror e' in
	      let name =
		if n = Int64.zero then "null" else
		  "const_ptr_" ^ Int64.to_string n
	      in
	      let info = default_var_info name in 
	      Cenv.set_var_type (Var_info info) ty false;
	      NEvar (Var_info info)    
	    with
		Invalid_argument _ ->
		  unsupported loc "pointer cast"
	  end
(*
       | TEcast({Ctypes.ctype_node = Tpointer _}as ty, 
	       {texpr_node = TEconstant (IntConstant "0")}) -> 
	  let info = default_var_info "null" in 
	  Cenv.set_var_type (Var_info info) ty false;
	  NEvar (Var_info info)    
*)
      | TEcast (tctype ,texpr) -> NEcast (tctype, expr texpr)
      | TEmalloc (tctype, texpr) -> NEmalloc (tctype, expr texpr)

let nt_arrow loc valid ty e z f =
  let () = type_why_new_zone z f in
  NTarrow ({nterm_node = e;
	    nterm_type = ty;
	    nterm_loc = loc},z,f)
      
(* transformation from a normalized term [t] to a normalized node representing
   the application of logical function [strlen] to [t]. 
   This has been factorized so that it can be called outside of [Cnorm]. *)
let make_nstrlen_node_from_nterm t =
  (* [strlen(p)] depends on the value pointed to by [p].
     Add fields to describe this dependency. *)
  let ty = match t.nterm_type.Ctypes.ctype_node with
  | Ctypes.Tarray (_,ty,_) | Ctypes.Tpointer (_,ty) -> 
      ty
  | Ctypes.Tvoid | Ctypes.Tint _ | Ctypes.Tfloat _ | Ctypes.Tvar _ 
  | Ctypes.Tstruct _ | Ctypes.Tunion _ | Ctypes.Tenum _ 
  | Ctypes.Tfun _ ->
      assert false
  in
  let info = make_field ty in
  let info = declare_arrow_var info in
  let zone = find_zone_for_term t in
  let () = type_why_new_zone zone info in
  NTstrlen (t, zone, info)

let dot_translate t' var_info ty loc =
  let zone = find_zone_for_term t' in
  let () = type_why_new_zone zone var_info in
  let t' = NTarrow (t', zone, var_info) in
  if var_requires_indirection var_info then
    let info = make_field ty in
    let info = declare_arrow_var info in
    let zone = find_zone_for_term {nterm_node = t';
				   nterm_loc = loc;
				   nterm_type =  var_info.var_type}  
    in
    nt_arrow loc true var_info.var_type t' zone info
  else
    t'


let rec term_node loc t ty =
  match t with
  | Tconstant constant -> NTconstant constant
  | Tvar var_info -> 
      let t' = NTvar var_info in
      if var_requires_indirection var_info then
	let info = make_field ty in
	let info = declare_arrow_var info in
	let zone = 
	  match var_info.var_why_type with
	    | Pointer z -> z
	    | _ -> assert false 
	in
	nt_arrow loc true var_info.var_type t' zone info
      else
	t'
  | Tapp (logic_info ,l) -> NTapp  {napp_pred = logic_info; 
				    napp_args = List.map term l;
				    napp_zones_assoc = []}
  | Tunop (Clogic.Uamp,t) -> 
      begin match t.term_node with
	| Tvar v-> NTvar v
	| Tunop(Clogic.Ustar, t) -> term_node loc t.term_node ty
	| Tarrow(t,f) -> 
	    let t = term t in
	    let zone = find_zone_for_term t in
	    let () = type_why_new_zone zone f in
	    NTarrow (t, zone,  f) 
	| Tdot(t,f) ->  
	    begin    
	      match t.term_node with
		| Tunop (Clogic.Ustar, e) -> 
		    dot_translate (term t) f ty loc
		| Tarrget (e1, e2) -> 
		    let a = 
		      { t with 
			  term_node = Tbinop (e1, Clogic.Badd, e2);
			  term_type = e1.term_type }
		    in
		    dot_translate (term a) f ty loc
		| Trange (e1, e2,e3) -> 
		    let t' = term e1 in
		    let zone = find_zone_for_term t' in
		    let () = type_why_new_zone zone f in
		    NTrange (term e1, term_option e2, term_option e3, 
			     zone, f)
		| _ -> dot_translate (term t) f ty loc
	    end  
      (*let t =
	      match t.term_node with
		| Tunop (Clogic.Ustar ,t) -> term t
		| _ -> term t
	    in
	    let zone = find_zone_for_term t in
	    let () = type_why_new_zone zone f in
	    NTarrow (t, zone, f)
      *)
	| _ -> 
	    unsupported loc "cannot handle this & operator"
	    (* NTunop(Clogic.Uamp,term t)    *)
      end
  | Tunop (Clogic.Ustar,t) ->  
      let info = make_field ty in
      let info = declare_arrow_var info in
      let t = term t in
      let zone = find_zone_for_term t in
      let () = type_why_new_zone zone info in
      NTarrow (t, zone, info)
  | Tunop (unop,t) -> NTunop(unop,term t)
  | Tbinop (t1, binop, t2) -> NTbinop (term t1, binop, term t2)
  | Tdot (t', var_info) ->
      begin    
	match t'.term_node with
	  | Tunop (Clogic.Ustar, e) -> dot_translate (term t') var_info ty loc
	  | Tarrget (e1, e2) -> 
	      let a = 
		{ t' with 
		    term_node = Tbinop (e1, Clogic.Badd, e2);
		    term_type = e1.term_type }
	      in
	      dot_translate (term a) var_info ty loc
	  | Trange (e1, e2,e3) -> 
	      let t' = term e1 in
	      let zone = find_zone_for_term t' in
	      let () = type_why_new_zone zone var_info in
	      NTrange (term e1, term_option e2, term_option e3, zone, var_info)
	  | _ -> dot_translate (term t') var_info ty loc
      end 
  | Tarrow (t', var_info) ->
	  let t' = term t' in
	  let zone = find_zone_for_term t' in
	  let () = type_why_new_zone zone var_info in
	  let t' = NTarrow (t', zone, var_info) in
	  if var_requires_indirection var_info then
	    let info = make_field ty in
	    let info = declare_arrow_var info in
	    let zone = find_zone_for_term {nterm_type = ty;
					   nterm_loc = loc;
					   nterm_node= t'}
	    in
	    nt_arrow loc true ty t' zone info
	  else t'
  | Tarrget (t1, t2) ->
	  let info = make_field ty in
	  let info = declare_arrow_var info in
	  let t1' = term t1 in
	  let zone = find_zone_for_term t1' in
	  let valid =
	    try
		let n = eval_const_term_noerror t2 in
		Valid(Int64.zero,n)
	      with Invalid_argument _ -> Not_valid
	    in
	  let ty = { ty with Ctypes.ctype_node = Tpointer (valid,ty); 
		       ctype_ghost = t1.term_type.ctype_ghost } in
	  let () = type_why_new_zone zone info in
	  NTarrow ( 
	    {
	      nterm_node = NTbinop(t1', Clogic.Badd, term t2);
	      nterm_type = ty ;
	      nterm_loc = loc;
	    },
	    zone, info)
  | Tif (t1, t2, t3) -> NTif (term t1, term t2 , term t3)
  | Told t1 -> NTold (term t1)
  | Tat (t1, s) -> NTat (term t1, s)
  | Tbase_addr t -> NTbase_addr (term t)
  | Toffset t -> NToffset (term t)
  | Tblock_length t -> NTblock_length (term t)
  | Tarrlen t -> NTarrlen (term t)
  | Tstrlen t ->
      (* [strlen(p)] depends on the value pointed to by [p].
	 Add fields to describe this dependency.
	 This treatment has be factorized. *)
      make_nstrlen_node_from_nterm (term t)
  | Tmin (t1,t2) -> NTmin (term t1, term t2)
  | Tmax (t1,t2) -> NTmax (term t1, term t2)
  | Tminint ty -> NTminint ty
  | Tmaxint ty -> NTmaxint ty
  | Tcast ({Ctypes.ctype_node = Tpointer _}as ty, 
	    {term_node = Tconstant (IntConstant "0")}) ->      
      let info = default_var_info "null" in 
      Cenv.set_var_type (Var_info info) ty false;
      NTvar info
  | Tcast (ty, t) -> NTcast (ty, term t)
  | Trange (t1, t2, t3) -> 
      let t1 = term t1 in
      let info = make_field ty in
      let info = declare_arrow_var info in
      let zone = find_zone_for_term t1 in 
      let () = type_why_new_zone zone info in
      NTrange (t1, term_option t2, term_option t3, zone, info)

and term t = 
{ 
  nterm_node = term_node t.term_loc t.term_node t.term_type;
  nterm_loc = t.term_loc;
  nterm_type = t.term_type
}

and term_option t = Option_misc.map term t

let nlocation = term
(***
let nlocation l =
  match l with
    | Lterm(t) -> Lterm(term t)
    | Lstar(t) -> Lstar(term t)
    | Lrange(t1,t2,t3) -> Lrange(term t1,term t2,term t3)
***)
	
let nvariant v =
  match v with (t, sopt) -> (term t,sopt)

	
let rec predicate p =
  { npred_node = predicate_node p.pred_node;
    npred_loc = p.pred_loc }

and predicate_node = function
    | Pfalse -> NPfalse
    | Ptrue -> NPtrue 
    | Papp (info,l) -> NPapp {napp_pred = info; napp_args = List.map term l;
			      napp_zones_assoc = []}
    | Prel (t1 , relation , t2) -> NPrel (term t1,relation,term t2)
    | Pand (p1, p2) -> NPand (predicate p1, predicate p2)
    | Por (p1, p2) -> NPor (predicate p1, predicate p2)
    | Pimplies (p1, p2) -> NPimplies (predicate p1, predicate p2)
    | Piff (p1, p2) -> NPiff (predicate p1, predicate p2)
    | Pnot p1 -> NPnot (predicate p1)
    | Pif (t,p1,p2) -> NPif (term t,predicate p1 ,predicate p2)
    | Pforall (typed_quantifiers, p) -> NPforall (
	(List.map (fun (x,y) -> (x,y)) typed_quantifiers),
	(predicate p))
    | Pexists (typed_quantifiers, p) -> NPexists (
	(List.map (fun (x,y) -> (x,y)) typed_quantifiers),
	(predicate p)) 
    | Pold p -> NPold (predicate p)
    | Pat (p, s) -> NPat ((predicate p),s)
    | Pseparated (t1,t2) -> NPseparated (term t1, term t2)
    | Pbound_separated (t1,t2,t3,t4) -> 
	NPbound_separated (term t1, term t2, term t3, term t4)
    | Pfull_separated (t1,t2) -> NPfull_separated (term t1, term t2)
    | Pfullseparated (t1,t2) ->
	assert false (* TODO *)
    | Pvalid (t) -> NPvalid (term t) 
    | Pvalid_index (t1 , t2) -> NPvalid_index (term t1 , term t2) 
    | Pvalid_range (t1,t2,t3) -> NPvalid_range (term t1, term t2 , term t3)
    | Pfresh t -> NPfresh (term t)  
    | Pnamed (n, p) -> NPnamed (n, predicate p)

let loop_annot a =
  {
    invariant = Option_misc.map predicate a.invariant;
    assume_invariant = Option_misc.map predicate a.assume_invariant;
    loop_assigns = 
     Option_misc.map (fun (loc, l) -> loc, List.map nlocation l) 
       a.loop_assigns;
    variant = Option_misc.map nvariant a.variant;
  }

let logic_symbol l =
  match l with
    | Predicate_reads(param_list,loc_list) ->
	NPredicate_reads(param_list, List.map nlocation loc_list)
    | Predicate_def  (param_list , p ) ->
	NPredicate_def(param_list, predicate p)
    | Function (l1 , c , l2) -> 
	NFunction (l1,c,List.map nlocation l2)
    | Function_def (param_list, t, e) ->
	NFunction_def (param_list, t, term e)

let rec c_initializer c = match c with
  | Iexpr e ->  Iexpr (expr e)
  | Ilist l -> Ilist (List.map (fun x -> (c_initializer x))l)

let c_initializer_option = Option_misc.map c_initializer

let ilist = function
  | None -> None
  | Some i -> Some (Ilist [i])

let variant v = let (x,y) = v in ((term x), y)


let make_and p1 p2 = match p1.npred_node, p2.npred_node with
  | NPtrue, _ -> p2
  | _, NPtrue -> p1
  | _ -> { p1 with npred_node = NPand (p1, p2) }

let make_or p1 p2 = match p1.npred_node, p2.npred_node with
  | NPfalse, _ -> p2
  | _, NPfalse -> p1
  | _ -> { p1 with npred_node = NPor (p1, p2) }

let make_implies p1 p2 = match p2.npred_node with
  | NPtrue -> { p1 with npred_node = NPtrue }
  | _ -> { p1 with npred_node = NPimplies (p1, p2) }

let make_forall q p = match p.npred_node with
  | NPtrue -> { p with npred_node = NPtrue }
  | _ -> { p with npred_node = NPforall (q, p) }

let dummy_pred p = { npred_node = p; npred_loc = Loc.dummy_position }
let nprel (t1, r, t2) = dummy_pred (NPrel (t1, r, t2))
let npand (p1, p2) = make_and p1 p2
let npor (p1, p2) = make_or p1 p2
let npvalid t = dummy_pred (NPvalid t)
let npvalid_range (t,i,j) = dummy_pred (NPvalid_range (t,i,j))
let npfresh t = dummy_pred (NPfresh t)
let nptrue = dummy_pred NPtrue
let npfalse = dummy_pred NPfalse
let npapp (f, l) = dummy_pred (NPapp {napp_pred = f;napp_args =  l; 
				      napp_zones_assoc = []})
let npiff (p1, p2) = dummy_pred (NPiff (p1, p2))

let spec ?(add=nptrue) s = 
  let pred = match s.requires with 
    | None -> add
    | Some pred -> npand (add,(predicate pred))
  in
  let pred = if pred = nptrue then None else Some pred in
  { 
    requires = pred;
    assigns  = 
      Option_misc.map 
	(fun (loc,l) -> loc, List.map (fun x -> nlocation x) l) s.assigns;
    ensures = Option_misc.map predicate s.ensures;
    decreases = Option_misc.map variant s.decreases;
  }


let noattr loc ty e =
  { texpr_node = e;
    texpr_type = ty;
    texpr_loc  = loc
  }

let in_struct2 v1 v = 
  let x = begin
    match v1.texpr_node with
    | TEunary (Ustar, x)-> TEarrow (x, v)
    | TEarrget (x,i) -> 
	TEarrow 
	  ((noattr v1.texpr_loc v1.texpr_type 
	     (TEbinary(x, Badd_pointer_int, i))),v)
    | _ -> TEarrow (v1, v)
  end in
  { texpr_node = x; 
    texpr_loc = v1.texpr_loc;
    texpr_type = v.var_type }





let noattr3 tyn = { Ctypes.ctype_node = tyn; 
		   Ctypes.ctype_storage = No_storage;
		   Ctypes.ctype_const = false;
		   Ctypes.ctype_volatile = false;
		  Ctypes.ctype_ghost = false}

let alloca loc n =
  {nexpr_node = NEcall 
      {ncall_fun = 
	  (noattr2  loc 
	     (noattr3(
		Tfun ([noattr3
			 (Tint(Signed,Ctypes.Int))], 
		      noattr3 (Tpointer (Valid(Int64.zero,Int64.of_string n),
					 noattr3 Tvoid)))))
	     (NEvar  (Fun_info (default_fun_info "alloca"))));
       ncall_args = [{ nexpr_node = NEconstant  (IntConstant n);
		       nexpr_type =  noattr3 (Tint (Signed,Ctypes.Int));
		       nexpr_loc  = loc }];
       ncall_zones_assoc = []};
   nexpr_type = noattr3 (Tpointer (Valid(Int64.zero,Int64.of_string n),
				   noattr3 Tvoid));
   nexpr_loc  = loc
  }	  

let copyattr s s' = 
  { nst_node = s';
    nst_break = s.st_break;
    nst_continue = s.st_continue;
    nst_return = s.st_return;
    nst_term = s.st_term;
    nst_loc = s.st_loc;
  }

let rec pop_initializer loc t i =
  match i with 
    | [] ->None,[]
    | (Iexpr e)::l -> Some e,l
    | (Ilist [])::l -> pop_initializer loc t l
    | (Ilist l)::l' -> 
	let e,r = pop_initializer loc t l in e,r@l'

let rec init_expr loc t lvalue initializers =
  match t.Ctypes.ctype_node with
    | Tint _ | Tfloat _ | Tpointer _ | Tenum _ -> 
	let x,l = pop_initializer loc t initializers in
	(match x with 
	  | Some x ->
	      [{nst_node = 
		   NSexpr (noattr2 loc t (NEassign(expr lvalue, expr x)));
		nst_break = false;    
		nst_continue = false; 
		nst_return = false;   
		nst_term = true;
		nst_loc = loc     
	       }]
	  | None -> []), l
    | Tstruct n ->
	begin match tag_type_definition n with
	  | TTStructUnion (Tstruct (_), fl) ->
	      let l1,l2 = List.fold_left 
		(fun (acc,init) f -> 
		   let block, init' =
		     init_expr loc f.var_type 
		       (in_struct2 lvalue f) init
		   in (acc@block,init'))
		([],initializers)  fl
	      in
	      l1,l2
	  | _ ->
	      assert false
	end
    | Tunion n ->
	begin match tag_type_definition n with
	  | TTStructUnion (Tstruct (_), f::_) ->
	      let block, init' =
		init_expr loc f.var_type 
		  (noattr loc f.var_type (TEarrow(lvalue, f)))
		  initializers
	      in 
	      block,init'
	  | _ ->
	      assert false
	end
    | Tarray (_,ty, Some t) ->
	let int_to_init loc ty i=
	  let e = 
	    { texpr_node = TEconstant (IntConstant (Format.sprintf "%d" i));
	      texpr_type = c_int; texpr_loc = loc; }
	  in
	  Iexpr (Ctyping.coerce ty e)
	in
	let rec expand_initializer = function
	  | Iexpr e -> 	      
	      begin
		match e.texpr_node with
		  | TEstring_literal s ->
		      let ty = 
			match e.texpr_type.Ctypes.ctype_node with
			  | Tpointer (_,ty) | Tarray (_,ty,_) -> ty
			  | _ ->  ty
		      in
		      let l = ref [int_to_init e.texpr_loc ty 0] in 
		      let n = (String.length s) -1 in
		      for i = 1 to n-1  do
			l := int_to_init e.texpr_loc ty 
			  (Char.code (String.get s (n-i)))::!l
		      done; 
		      Ilist !l
		  | _ -> Iexpr e
	      end
	  | Ilist el -> Ilist el
	in
	let rec init_cells i (block,init) =
	  if i >= t then (block,init)
	  else
	    let ts = Ctyping.int_teconstant (Int64.to_string i) in
	    let (b,init') = 
	      init_expr loc ty (noattr loc ty (TEarrget(lvalue,ts))) init 
	    in
	    init_cells (Int64.add i Int64.one) (block@b,init')
	in
	let initializers = List.map expand_initializer initializers in
	init_cells Int64.zero ([],initializers)
    | Tarray (_,ty,None) -> assert false
    | Tfun (_, _) -> assert false
    | Ctypes.Tvar _ -> assert false
    | Tvoid -> assert false

let rec texpr_of_term (t : tterm) : texpr = 
 {
  texpr_node = 
    begin
      match t.term_node with 
	| Tconstant c ->  TEconstant c
	| Tvar v -> TEvar (Var_info v)
	| Tapp _ -> error t.term_loc 
	      "logic function can't be used with ghost variables"
	| Tunop (t , term) -> TEunary(
	    begin  match t with 
	      | Clogic.Uplus -> Uplus
	      | Clogic.Unot -> Unot
	      | Clogic.Uminus -> Uminus 
	      | Clogic.Utilde -> Utilde 
	      | Clogic.Ustar -> assert false
	      | Clogic.Uamp -> assert false
	      | Clogic.Ufloat_of_int -> Ufloat_of_int
	      | Clogic.Uint_of_float -> Uint_of_float
	      | Clogic.Ufloat_conversion -> Ufloat_conversion
	      | Clogic.Uint_conversion -> Uint_conversion
	      | Clogic.Usqrt_real
	      | Clogic.Uabs_real
	      | Clogic.Uround_error
	      | Clogic.Utotal_error
	      | Clogic.Uexact
	      | Clogic.Umodel -> assert false
	    end,
	    (texpr_of_term term))     
	| Tbinop (t1, b, t2) -> 
	    let t1 = (texpr_of_term t1) in
	    let t2 = (texpr_of_term t2) in
	    TEbinary 
	      (t1,
	       begin match b,t1.texpr_type.Ctypes.ctype_node,
	       t2.texpr_type.Ctypes.ctype_node with
		 | Clogic.Badd,Tint i , Tint _ -> Badd_int i
		 | Clogic.Badd,Tfloat fk , Tfloat _ -> Badd_float fk
		 | Clogic.Badd,Tpointer _ , Tint _ -> Badd_pointer_int
		 | Clogic.Bsub,Tint i , Tint _ -> Bsub_int i
		 | Clogic.Bsub,Tfloat fk , Tfloat _ -> Bsub_float fk
		 | Clogic.Bsub,Tpointer _ , Tint _ -> Bsub_pointer
		 | Clogic.Bmul,Tfloat fk , Tfloat _ -> Bmul_float fk
		 | Clogic.Bmul,Tint i , Tint _ -> Bmul_int i
		 | Clogic.Bdiv,Tfloat fk , Tfloat _ -> Bdiv_float fk
		 | Clogic.Bdiv,Tint i , Tint _ -> Bdiv_int i
		 | Clogic.Bmod,Tint i ,Tint _ -> Bmod_int i
		 | Clogic.Badd,Tarray _ , Tint _ -> Badd_pointer_int
		 | Clogic.Bsub,Tarray _ , Tint _ -> Bsub_pointer   
		 | _ -> error  t.term_loc 
		     "this operation can't be used with ghost variables"
	       end,
	       t2)
	| Tdot (t,v) -> TEdot (texpr_of_term t,v)
	| Tarrow (t,v) -> TEarrow (texpr_of_term t,v)
	| Tarrget (t1,t2) -> TEarrget (texpr_of_term t1, texpr_of_term t2)
	| Tif (t1,t2,t3)-> TEcond 
	      (texpr_of_term t1,texpr_of_term t2,texpr_of_term t3)
	| Told t -> error t.term_loc 
	      "old can't be used here"
	| Tat (t , s)-> error t.term_loc 
	      "@ can't be used here"
	| Tbase_addr t -> error t.term_loc 
	      "base_addr can't be used here"
	| Toffset t -> error t.term_loc 
	      "offset can't be used here"
	| Tblock_length t -> error t.term_loc 
	      "block_length can't be used here"
	| Tarrlen _ -> error t.term_loc 
	    "arrlen can't be used here"
	| Tstrlen _ -> error t.term_loc 
	    "strlen can't be used here"
	| Tmin _ -> error t.term_loc 
	    "min can't be used here"
	| Tmax _ -> error t.term_loc 
	    "max can't be used here"
	| Tminint _ -> error t.term_loc 
	    "minint can't be used here"
	| Tmaxint _ -> error t.term_loc 
	    "maxint can't be used here"
	| Tcast (ty,t) -> TEcast(ty,texpr_of_term t)
	| Trange _ -> 
	    error t.term_loc "range cannot by used here"
    end;
    texpr_type = t.term_type;
    texpr_loc  = t.term_loc
 }


let rec expr_of_term (t : nterm) : nexpr = 
 {
  nexpr_node = 
    begin
      match t.nterm_node with 
	| NTconstant c ->  NEconstant c
	| NTvar v -> NEvar (Var_info v)
	| NTapp _ -> error t.nterm_loc 
	      "logic function can't be used with ghost variables"
	| NTunop (t , term) -> NEunary(
	    begin  match t with 
	      | Clogic.Uplus -> Uplus
	      | Clogic.Unot -> Unot
	      | Clogic.Uminus -> Uminus 
	      | Clogic.Utilde -> Utilde 
	      | Clogic.Ustar -> assert false
	      | Clogic.Uamp -> assert false
	      | Clogic.Ufloat_of_int -> Ufloat_of_int
	      | Clogic.Uint_of_float -> Uint_of_float
	      | Clogic.Ufloat_conversion -> Ufloat_conversion
	      | Clogic.Uint_conversion -> Uint_conversion
	      | Clogic.Usqrt_real
	      | Clogic.Uabs_real
	      | Clogic.Uround_error
	      | Clogic.Utotal_error
	      | Clogic.Uexact
	      | Clogic.Umodel -> assert false
	    end,
	    (expr_of_term term))
	      
(*	| NTstar t ->  NEstar (expr_of_term t)*)
	| NTbinop (t1, b, t2) -> 
	    let t1 = (expr_of_term t1) in
	    let t2 = (expr_of_term t2) in
	    NEbinary 
	      (t1,
	       begin match b,t1.nexpr_type.Ctypes.ctype_node,
	       t2.nexpr_type.Ctypes.ctype_node with
		 | Clogic.Badd,Tint i , Tint _ -> Badd_int i
		 | Clogic.Badd,Tfloat fk , Tfloat _ -> Badd_float fk
		 | Clogic.Badd,Tpointer _ , Tint _ -> Badd_pointer_int
		 | Clogic.Bsub,Tint i , Tint _ -> Bsub_int i
		 | Clogic.Bsub,Tfloat fk , Tfloat _ -> Bsub_float fk
		 | Clogic.Bsub,Tpointer _ , Tint _ -> Bsub_pointer
		 | Clogic.Bmul,Tfloat fk , Tfloat _ -> Bmul_float fk
		 | Clogic.Bmul,Tint i , Tint _ -> Bmul_int i
		 | Clogic.Bdiv,Tfloat fk , Tfloat _ -> Bdiv_float fk
		 | Clogic.Bdiv,Tint i , Tint _ -> Bdiv_int i
		 | Clogic.Bmod,Tint i ,Tint _ -> Bmod_int i
		 | Clogic.Badd,Tarray _ , Tint _ -> Badd_pointer_int
		 | Clogic.Bsub,Tarray _ , Tint _ -> Bsub_pointer   
		 | _ -> error  t.nterm_loc 
		     "this operation can't be used with ghost variables"
	       end,
	       t2)
	| NTarrow (t,z,v) -> NEarrow (expr_of_term t,z,v)
	| NTif (t1,t2,t3)-> NEcond 
	      (expr_of_term t1,expr_of_term t2,expr_of_term t3)
	| NTold t -> error t.nterm_loc 
	      "old can't be used here"
	| NTat (t , s)-> error t.nterm_loc 
	      "@ can't be used here"
	| NTbase_addr t -> error t.nterm_loc 
	      "base_addr can't be used here"
	| NToffset t -> error t.nterm_loc 
	      "offset can't be used here"
	| NTblock_length t -> error t.nterm_loc 
	      "block_length can't be used here"
	| NTarrlen t -> error t.nterm_loc 
	    "arrlen can't be used here"
	| NTstrlen (t,z,v) -> error t.nterm_loc 
	    "strlen can't be used here"
	| NTmin _ -> error t.nterm_loc 
	    "min can't be used here"
	| NTmax _ -> error t.nterm_loc 
	    "max can't be used here"
	| NTminint _ -> error t.nterm_loc 
	    "minint can't be used here"
	| NTmaxint _ -> error t.nterm_loc 
	    "maxint can't be used here"
	| NTcast (ty,t) -> NEcast(ty,expr_of_term t)
	| NTrange _ -> 
	    error t.nterm_loc "range cannot by used here"
    end;
    nexpr_type = t.nterm_type;
    nexpr_loc  = t.nterm_loc
 }

let rec st_cases default used_cases (i : tstatement) 
  : bool * 'a IntMap.t * 'a IntMap.t * tstatement =
  match i.st_node with 
    | TScase ( e ,i') ->
	let n =  Ctyping.eval_const_expr e in
	let e = expr e in
	if IntMap.mem n used_cases 
	then
	  error i.st_loc ("duplicate case")
	else
	  let (default, used_cases' , l, i) = 
	    st_cases default (IntMap.add n e used_cases) i' in
	  (default, used_cases', (IntMap.add n e l),i)
    | TSdefault s -> (true, used_cases, IntMap.empty, s)
    | _ -> (false, used_cases, IntMap.empty, i)

and st_instr (l : tstatement list) : tstatement list * nstatement list =
  match l with
    | [] -> l,[]
    | i ::l' -> 
	match i .st_node with
	  | TSdefault _ -> l,[]
	  | TScase(_,_) -> l,[]
	  | _ -> let (l,instr) = st_instr l' in
	    (l,(statement i)::instr)

      
    

and st_case_list (used_cases : 'a IntMap.t) (l : tstatement list) :
  'a IntMap.t * ('a IntMap.t * nstatement list) list =
  match l with 
    | [] -> (used_cases, [] )
    | i::l ->
	match i.st_node with 
	  | TSdefault s ->
	      begin
		match s.st_node with
		  | TScase _ -> unsupported s.st_loc "case following default"
		  | _ ->		 
		      let (l,instr) = st_instr l in
		      let(used_cases'', l'') = (st_case_list used_cases l) in
		      (used_cases'',(IntMap.empty,(statement s)::instr)::l'')
	      end
	  | TScase(e,i) -> 
	      let n = Ctyping.eval_const_expr e in 
	      let e = expr e in
	      if IntMap.mem n used_cases 
	      then
		error i.st_loc ("duplicate case")
	      else
		let (default,used_cases', l', i') = 
		  st_cases false (used_cases) i in 
		if default then begin
		    match i'.st_node with
		      | TScase _ -> 
			  unsupported i'.st_loc "case following default"
		      | _ ->
			  let i' = statement i' in
			  let (l,instr) = st_instr l in
			  let (used_cases'', l'') = (st_case_list used_cases l)
			  in
			  (used_cases'',
			   (IntMap.empty,i'::instr)::l'')
		  end
		else
		  let i' = statement i' in
		  let (l,instr) = st_instr l in
		  let (used_cases'', l'') = 
		    st_case_list (IntMap.add n e used_cases') l in
		  (used_cases'',((IntMap.add n e l'),i'::instr)::l'')
	  | _ ->  
	      let (used_cases', l') = st_case_list used_cases l in
	      match l' with
		| [] -> 
		    error i.st_loc 
		      ("unreachable statement at beginning of switch")
		| (lc,i')::l -> (used_cases',(lc,i'@[statement i])::l)
		



and st_switch i =
  match i.st_node with 
    | TSblock (_,l) -> st_case_list IntMap.empty l
    | _ -> st_case_list IntMap.empty [i]

and statement s =
  let nst =
    match s.st_node with
  | TSnop -> NSnop
  | TSexpr texpr -> NSexpr (expr texpr)
  | TSif (texpr, tstatement1, tstatement2) -> NSif ((expr texpr),
						  (statement tstatement1),
						  (statement tstatement2))
  | TSwhile (loop, texpr, tstatement) -> NSwhile (loop_annot loop,
						  (expr texpr),
						  (statement tstatement))
  | TSdowhile (loop, tstatement, texpr) -> 
      NSdowhile (loop_annot loop,statement tstatement, expr texpr) 
  | TSfor (loop ,texpr1, texpr2, texpr3, tstatement) ->
      NSfor (loop_annot loop,
	     (expr texpr1),
	     (expr texpr2),
	     (expr texpr3),
	      (statement tstatement))
  | TSblock (l1,l2) -> 
      local_decl s l1 l2
  | TSreturn option -> NSreturn (Option_misc.map expr option)
  | TSbreak -> NSbreak
  | TScontinue -> NScontinue
  | TSlabel (string, tstatement) -> NSlabel (string, (statement tstatement)) 
  | TSswitch (texpr, tstatement) -> 
      let (used_cases,s) = st_switch tstatement in
      NSswitch(expr texpr, used_cases, s) 
  | TScase (texpr, tstatement) -> 
      unsupported s.st_loc "misplaced case statement"
  | TSdefault tstatement -> assert false
  | TSgoto(status,l) -> NSgoto(status,l)
  | TSassert p -> NSassert (predicate p)
  | TSassume p -> NSassume (predicate p)
  | TSlogic_label  string -> NSlogic_label string
  | TSspec (s, tstatement) -> NSspec (spec s, statement tstatement)
  | TSset (x, t) -> 
      NSexpr (noattr2 s.st_loc x.term_type 
		(NEassign 
		   (expr (texpr_of_term x),expr (texpr_of_term t))))
  in
  { nst_node = nst;
    nst_break = s.st_break;
    nst_continue = s.st_continue;
    nst_return =  s.st_return;
    nst_term = s.st_term;
    nst_loc = s.st_loc;
  }

and local_decl s l l2 = 
  match l with 
    | [] -> NSblock (List.map statement l2)
    | {node = Tdecl (t,v,init); loc = l}::decl -> 
	if var_is_referenced_or_struct_or_union v then
	  set_var_type (Var_info v) 
	    (c_array_size (Valid(Int64.zero,Int64.one)) 
	       v.var_type Int64.one) true;
	begin match init with
	  | None ->
	      let declar = local_decl s decl l2 in
	      NSdecl(v.var_type,v,None,copyattr s declar)
	  | Some c ->
	      match v.var_type.Ctypes.ctype_node with
		| Tenum _ | Tint _ | Tfloat _ | Tpointer _ -> 
		    let declar = local_decl s decl l2 in
		    begin match c with
		      | Iexpr e ->
			  NSdecl(v.var_type, v, Some (Iexpr (expr e)),
				 copyattr s declar)
		      | _ -> assert false
		    end
		| Tarray (_,_, Some length) ->
		    let lvalue = noattr l v.var_type (TEvar (Var_info v)) in
		    let declar,_ = 
		      without_dereference v
			(init_expr l v.var_type lvalue) [c] 
		    in
		    NSdecl(v.var_type,v,
			   None,
			   let rest = copyattr s (local_decl s decl l2) in
			   copyattr s (NSblock (declar @ [rest])))
		| Tarray _ | Tstruct _ | Tunion _ -> 
		    let lvalue = (noattr l v.var_type (TEvar (Var_info v))) in
		    let declar,_ = init_expr l v.var_type lvalue [c] in
		    NSdecl(v.var_type,v,
			   Some (Iexpr (alloca l "1")),
			   let rest = copyattr s (local_decl s decl l2) in
			   copyattr s (NSblock (declar @ [rest])))
		| Tvoid | Ctypes.Tvar _ | Tfun _ -> assert false		      
	end
    | _  -> assert false

let add_c_function spec ty f sta loc =
  try 
    let (spec2,ty2,f2,sta2,loc2) = 
      find_c_fun f.fun_name 
    in
    let spec = 
      {requires = begin
	 match spec.requires with
	   | None -> spec2.requires
	   | Some p -> Some p
       end;
       assigns = begin 
	 match spec.assigns with
	   | None -> spec2.assigns
	   | Some l -> Some l
       end;
       ensures = begin
	  match spec.ensures with
	    | None -> spec2.ensures
	    | Some p -> Some p
       end;
       decreases = begin 
	 match spec.decreases with
	   | None -> spec2.decreases
	   | Some t -> Some t
       end;
      }
    in
    let sta = begin 
      match sta with 
	| None -> sta2
	| Some s -> Some s
    end 
    in
    add_c_fun  f.fun_name (spec,ty,f,sta,loc)
  with Not_found -> add_c_fun f.fun_name (spec,ty,f,sta,loc)
  


let global_decl e1 loc =
  match e1 with    
  | Tlogic(info, l) -> Nlogic (info , logic_symbol l)
  | Taxiom (s, p) -> Naxiom (s, predicate p)
  | Tinvariant(s, p) -> Ninvariant (s, predicate p)
  | Ttypedef (t, s) -> Ntypedef(t,s)
  | Ttypedecl t -> Ntypedecl (t)
  | Tdecl (t, v, c) -> 
      let t =
	if  (not v.var_is_assigned) && Coptions.closed_program then   
	  { t with Ctypes.ctype_const = true }
	else t 
      in
      set_var_type (Var_info v) t false;
      if var_is_referenced_or_struct_or_union v
      then
	begin
	  set_var_type (Var_info v) (c_array_size (Valid(Int64.zero,Int64.one))
				       v.var_type Int64.one) false;
	  Ndecl(v.var_type,v,ilist (c_initializer_option c))
	end
      else Ndecl(t,v,c_initializer_option c)
  | Tfunspec (s, t, f) -> 
      if not f.has_body then
	begin
	  set_var_type (Fun_info f) (f.fun_type) true;
	  List.iter (fun arg -> 
		       set_var_type (Var_info arg) (arg.var_type) true) f.args
	end;
      (*Nfunspec (spec s,t,f)*)
      add_c_function (spec s) t f None loc;
      raise Exit

  | Tfundef (s, t, f, st) ->
      let validity_for_struct = 
	List.fold_left 
	  (fun acc y ->
	     let x = y.var_type in
	     match x.Ctypes.ctype_node with
	       | Tstruct _ | Tunion _ -> 
		   npand (npvalid 
			    {nterm_node = NTvar y;
			     nterm_type = x;
			     nterm_loc = Loc.dummy_position},acc)
	       | _ -> acc) 
	  nptrue f.args in
      set_var_type (Fun_info f) (f.fun_type) true;
      List.iter (fun arg -> 
		   set_var_type (Var_info arg) (arg.var_type) true) f.args;
      (*Nfundef (spec ~add:validity_for_struct s,t,f,statement st)*)
      add_c_function (spec ~add:validity_for_struct s) t f 
	(Some (statement st)) loc;
      raise Exit
  | Tghost(x,cinit) ->
      let cinit = 
	match cinit with
	  | None -> None
	  | Some (Iexpr t) -> Some(Iexpr (expr (texpr_of_term t)))
	  | _ -> assert false
      in
      Info.set_assigned x;
      if var_is_referenced_or_struct_or_union x
      then
	begin
	  set_var_type (Var_info x) (c_array_size (Valid(Int64.zero,Int64.one))
				       x.var_type Int64.one) false;
	  Ndecl(x.var_type,x,ilist cinit)
	end
      else Ndecl(x.var_type,x,cinit)
  | Ttype s ->
      Ntype s
      

let rec map_succeed f = function
  | [] -> 
      []
  | x :: r -> 
      try let y = f x in y :: map_succeed f r 
      with Exit -> map_succeed f r
	
let file = map_succeed (fun d -> { node = global_decl d.node d.loc ; 
				   loc = d.loc})




(*
Local Variables: 
compile-command: "make -j -C .. bin/caduceus.byte"
End: 
*)