File: cparser.mly

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (953 lines) | stat: -rw-r--r-- 30,177 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
/**************************************************************************/
/*                                                                        */
/*  The Why platform for program certification                            */
/*  Copyright (C) 2002-2008                                               */
/*    Romain BARDOU                                                       */
/*    Jean-Franois COUCHOT                                               */
/*    Mehdi DOGGUY                                                        */
/*    Jean-Christophe FILLITRE                                           */
/*    Thierry HUBERT                                                      */
/*    Claude MARCH                                                       */
/*    Yannick MOY                                                         */
/*    Christine PAULIN                                                    */
/*    Yann RGIS-GIANAS                                                   */
/*    Nicolas ROUSSET                                                     */
/*    Xavier URBAIN                                                       */
/*                                                                        */
/*  This software is free software; you can redistribute it and/or        */
/*  modify it under the terms of the GNU General Public                   */
/*  License version 2, as published by the Free Software Foundation.      */
/*                                                                        */
/*  This software is distributed in the hope that it will be useful,      */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of        */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  */
/*                                                                        */
/*  See the GNU General Public License version 2 for more details         */
/*  (enclosed in the file GPL).                                           */
/*                                                                        */
/**************************************************************************/

/* from http://www.lysator.liu.se/c/ANSI-C-grammar-y.html */

%{

  open Format
  open Coptions
  open Ptree
  open Ctypes
  open Cast
  open Parsing
  open Cerror

  let loc () = (symbol_start_pos (), symbol_end_pos ())
  let loc_i i = (rhs_start_pos i, rhs_end_pos i)

  let locate x = { node = x; loc = loc() }
  let locate_i i x = { node = x; loc = loc_i i }
  let with_loc l x = { node = x; loc = l }

  let error s = 
    Creport.raise_located (loc ()) (AnyMessage ("Syntax error: " ^ s))

  let uns () = error "Unsupported C syntax"
  let unss s = error ("Unsupported C syntax: " ^ s)

  let warning s =
    Format.eprintf "%a warning: %s\n" Loc.report_line (symbol_start_pos ()) s
  let vwarning s = if verbose then warning s
  let dwarning s = if debug then warning s

  let no_loop_annot = 
    { Clogic.invariant = None; 
      Clogic.assume_invariant = None;
      Clogic.loop_assigns = None;
      Clogic.variant = None }

  let add_pre_loc lb = function
    | Some (b,_) -> Loc.join (b,0) lb 
    | _ -> lb

  let expr_of_statement s = match s.node with
    | CSnop -> { node = CEnop; loc = s.loc }
    | CSexpr e -> e
    | _ -> assert false

  (* used only for parsing types *)

  type specifier = 
    | Stypedef 
    | Sstorage of storage_class
    | Stype of cexpr ctype_node
    | Slong
    | Sshort
    | Sconst
    | Svolatile
    | Srestrict
    | Ssign of sign
    | Sstruct_decl of string option * fields
    | Sunion_decl of string option * fields
	
  and specifiers = specifier list

  and declarator =
    | Dsimple
    | Dpointer of declarator
    | Darray of declarator * cexpr option
    | Dfunction of declarator * parameters

  and parameters = (specifiers * declarator * string) list

  and fields = (specifiers * declarator * string * cexpr option) list

  (* interps a list of specifiers / declarators as a [ctype] *)
  (* TODO: short/long *)

  let storage_class = 
    let rec loop st = function
      | [] -> 
	  st
      | Sstorage st' :: s when st = No_storage -> 
	  loop st' s
      | Sstorage st' :: s when st' = st ->
	  warning "duplicate storage class"; loop st s
      | Sstorage st' :: _ ->
	  error "multiple storage class"
      | _ :: s -> 
	  loop st s
    in
    loop No_storage

  let sign =
    let rec loop so = function
      | [] -> 
	  so
      | Ssign b' :: sp -> 
	  (match so with 
	     | None -> loop (Some b') sp
	     | Some b when b = b' -> warning "duplicate (un)signed"; loop so sp
	     | Some b -> error "both signed and unsigned")
      | _ :: sp -> 
	  loop so sp
    in
    loop None

  let apply_sign sg ty = match sg, ty with
    | None, _ -> ty
    | Some b, (CTint (_, i)) -> CTint (b, i)
    | Some _, _ -> error "signed or unsigned invalid"

  type length = Short | Long | LongLong

  let length =
    let rec loop lo = function
      | [] -> 
	  lo
      | (Sshort | Slong as s) :: sp -> 
	  (match s, lo with 
	     | Sshort, None -> 
		 loop (Some Short) sp
	     | Slong, None -> 
		 loop (Some Long) sp
	     | Sshort, Some Short -> 
		 warning "duplicate short"; loop lo sp
	     | Sshort, Some (Long | LongLong) | Slong, Some Short -> 
		 error "both long and short specified"
	     | Slong, Some Long -> 
		 loop (Some LongLong) sp
	     | Slong, Some LongLong ->
		 error "too long for caduceus"
	     | _ -> 
		 assert false)
      | _ :: sp -> 
	  loop lo sp
    in
    loop None

  let apply_length lg ty = match lg, ty with
    | None, _ -> ty
    | Some Short, (CTint (s, _)) -> CTint (s, Cast.Short)
    | Some Long, (CTint (s, _)) -> CTint (s, Cast.Long)
    | Some LongLong, (CTint (s, _)) -> CTint (s, Cast.LongLong)
    | Some Long, CTfloat Double -> CTfloat LongDouble
    | Some _, CTfloat Float 
    | Some Short, CTfloat _ -> 
	error "long or short specified with floating type"
    | Some LongLong, CTfloat _ -> 
	error "the only valid combination is `long double'"
    | Some _, _ -> ty

  (* debug *)
  let rec explain_type fmt = function
    | CTfun (_, t) -> 
	fprintf fmt "function returning %a" explain_type t.ctype_node
    | CTpointer t -> 
	fprintf fmt "pointer on %a" explain_type t.ctype_node
    | CTarray (t, _) -> 
	fprintf fmt "array[] of %a" explain_type t.ctype_node
    | _ -> 
	fprintf fmt "other"

  (* fresh names for anonymous structures *)

  let fresh_name =
    let r = ref (-1) in
    function 
      | Some s -> s
      | None -> incr r; "anonymous_" ^ string_of_int !r

  (* Interpretation of type expression.
     [gl] indicates a global declaration (implies the check for a type or 
     a storage class) *)

  let rec interp_type gl specs decl = 
    let st = storage_class specs in
    let cst = List.exists ((=) Sconst) specs in
    let vl = List.exists ((=) Svolatile) specs in
    let sg = sign specs in
    let lg = length specs in
    let rec base_type tyo = function
      | [] -> 
	  (match tyo with 
	     | Some ty -> ty
	     | None when gl && st = No_storage && sg = None && lg = None -> 
		 error "data definition has no type or storage class"
	     | None -> CTint (Signed, Int))
      | Stype t :: sp when tyo = None ->
	  base_type (Some t) sp
      | Sstruct_decl (so, pl) :: sp when tyo = None ->
	  base_type (Some (CTstruct (fresh_name so, Decl (fields pl)))) sp
      | Sunion_decl (so, pl) :: sp when tyo = None ->
	  base_type (Some (CTunion (fresh_name so, Decl (fields pl)))) sp
      | (Stype _ | Sstruct_decl _ | Sunion_decl _) :: _ ->
	  error "two or more data types in declaration"
      | _ :: sp ->
	  base_type tyo sp
    and full_type ty = function
      | Dsimple -> ty
      | Dpointer d -> full_type (Cast_misc.noattr (CTpointer ty)) d
      | Darray (d, so) -> full_type (Cast_misc.noattr (CTarray (ty, so))) d
      | Dfunction (d, pl) -> full_type (Cast_misc.noattr (CTfun (params pl, ty))) d
    and params pl = 
      List.map (fun (s,d,x) -> (interp_type false s d, x)) pl
    and fields fl =
      List.map (fun (s,d,x,bf) -> (interp_type false s d, x, bf)) fl
    in
    let bt = base_type None specs in
    let bt = apply_sign sg bt in
    let bt = apply_length lg bt in
    let bt = { ctype_node = bt; ctype_storage = st;
	       ctype_const = cst; ctype_volatile = vl } 
    in
    let ty = full_type bt decl in
    if debug then eprintf "%a@." explain_type ty.ctype_node;
    ty

  let interp_param (s, d, id) = interp_type false s d, id
  let interp_params = List.map interp_param

  let is_typedef = List.exists ((=) Stypedef)

  let declaration specs decls =
    if is_typedef specs then
      let interp = function
	| (n,d), None -> 
	    Ctypes.add n; Ctypedef (interp_type true specs d, n)
	| (n,_), _ -> 
	    error ("typedef " ^ n ^ " is initialized")
      in
      List.map interp decls
    else
      let interp ((n,d),i) =
	Ctypes.remove n; Cdecl (interp_type true specs d, n, i)
      in
      List.map interp decls

  let spec_declaration s specs decls =
    match declaration specs decls with
      | [Cdecl ({ ctype_node = CTfun (pl, ty) }, f, _)] ->
	  Cfunspec (s, ty, f, pl)
      | _ ->
	  raise Parsing.Parse_error

  let type_declarations specs =
    if is_typedef specs then warning "useless keyword in empty declaration";
    let ty = interp_type true specs Dsimple in
    match ty.ctype_node with
      | CTstruct _ | CTunion _ | CTenum _ ->
          [ locate (Ctypedecl ty) ]
      | _ ->
	  warning "empty declaration";
	  []

  (* old style function prototype: f(x,y,z) t1 x; t2 y; ...
     some parameters may be omitted *)
  let old_style_params pl decls =
    let pids = List.map (fun (_,x) -> x) pl in
    let h = Hashtbl.create 17 in
    (* we first check that no parameter is initialized or occurs twice *)
    List.iter
      (fun d -> match d.node with
	 | Cdecl (ty, x, None) -> 
	     if not (List.mem x pids) then 
	       error ("declaration for " ^ x ^ " but no such parameter");
	     if Hashtbl.mem h x then error ("duplicate declaration for " ^ x);
	     Hashtbl.add h x ty
	 | Cdecl (_,x,_) -> error ("parameter " ^ x ^ " is initialized")
	 | _ -> ()) 
      decls;
    (* do it for all parameters *)
    List.map (fun (tx, x) -> (try Hashtbl.find h x with Not_found -> tx), x) pl

  let function_declaration specs (id,d) decls = 
    let ty = interp_type false specs d in
    match ty.ctype_node with
      | CTfun (pl, tyf) ->
	  let pl = 
	    if decls = [] then pl else old_style_params pl decls 
	  in
	  List.iter (fun (_,x) -> Ctypes.remove x) pl;
	  tyf, id, pl
      | _ -> 
	  raise Parsing.Parse_error

%}

%token <Cast.parsed_spec> SPEC
%token <Cast.parsed_decl list> DECL
%token <Cast.parsed_code_annot> CODE_ANNOT
%token <Cast.parsed_loop_annot> LOOP_ANNOT

%token <Clogic.constant> CONSTANT
%token <string> IDENTIFIER STRING_LITERAL TYPE_NAME
%token SIZEOF
%token PTR_OP INC_OP DEC_OP LEFT_OP RIGHT_OP LE_OP GE_OP EQ_OP NE_OP
%token AND_OP OR_OP MUL_ASSIGN DIV_ASSIGN MOD_ASSIGN ADD_ASSIGN
%token SUB_ASSIGN LEFT_ASSIGN RIGHT_ASSIGN AND_ASSIGN
%token XOR_ASSIGN OR_ASSIGN

%token TYPEDEF EXTERN STATIC AUTO REGISTER
%token CHAR SHORT INT LONG SIGNED UNSIGNED FLOAT DOUBLE CONST VOLATILE VOID
%token STRUCT UNION ENUM ELLIPSIS

%token CASE DEFAULT IF ELSE SWITCH WHILE DO FOR GOTO CONTINUE BREAK RETURN

%token SEMICOLON LBRACE RBRACE COMMA COLON EQUAL LPAR RPAR LSQUARE RSQUARE
%token DOT AMP EXL TILDE MINUS PLUS STAR SLASH PERCENT LT GT HAT PIPE
%token QUESTION EOF

/* non-ANSI tokens */
%token ATTRIBUTE RESTRICT

%nonassoc specs
%nonassoc TYPE_NAME
%nonassoc no_annot
/* %nonassoc ANNOT */

%type <Cast.file> file
%start file
%%

file
        : translation_unit EOF { $1 }
        | EOF { [] }
        ;

primary_expression
        : IDENTIFIER { locate (CEvar $1) }
        | CONSTANT { locate (CEconstant $1) }
        | STRING_LITERAL { locate (CEstring_literal $1) }
        | LPAR expression RPAR { $2 }
        ;

postfix_expression
        : primary_expression 
            { $1 }
        | postfix_expression LSQUARE expression RSQUARE 
	    { locate (CEarrget ($1, $3)) }
        | postfix_expression LPAR RPAR 
	    { locate (CEcall ($1, [])) }
        | postfix_expression LPAR argument_expression_list RPAR 
	    { locate (CEcall ($1, $3)) }
        | postfix_expression DOT identifier/*ICI*/ 
	    { locate (CEdot ($1, $3)) }
        | postfix_expression PTR_OP identifier/*ICI*/ 
	    { locate (CEarrow ($1, $3)) }
        | postfix_expression INC_OP 
	    { locate (CEincr (Upostfix_inc, $1)) }
        | postfix_expression DEC_OP
	    { locate (CEincr (Upostfix_dec, $1)) }
        ;

argument_expression_list
        : assignment_expression { [$1] }
        | argument_expression_list COMMA assignment_expression { $1 @ [$3] }
        ;

unary_expression
        : postfix_expression { $1 }
        | INC_OP unary_expression { locate (CEincr (Uprefix_inc, $2)) }
        | DEC_OP unary_expression { locate (CEincr (Uprefix_dec, $2)) }
        | unary_operator cast_expression { locate (CEunary ($1, $2)) }
        | SIZEOF unary_expression { locate (CEsizeof_expr $2) }
        | SIZEOF LPAR type_name RPAR 
	    { let s,d = $3 in locate (CEsizeof (interp_type false s d)) }
        ;

unary_operator
        : AMP { Uamp }
        | STAR { Ustar }
        | PLUS { Uplus }
        | MINUS { Uminus }
        | TILDE { Utilde }
        | EXL { Unot }
        ;

cast_expression
        : unary_expression { $1 }
        | LPAR type_name RPAR cast_expression 
	    { let s,d = $2 in locate (CEcast (interp_type false s d, $4)) }
        ;

multiplicative_expression
        : cast_expression 
            { $1 }
        | multiplicative_expression STAR cast_expression 
	    { locate (CEbinary ($1, Bmul, $3)) }
        | multiplicative_expression SLASH cast_expression 
	    { locate (CEbinary ($1, Bdiv, $3)) }
        | multiplicative_expression PERCENT cast_expression 
	    { locate (CEbinary ($1, Bmod, $3)) }
        ;

additive_expression
        : multiplicative_expression 
           { $1 }
        | additive_expression PLUS multiplicative_expression 
	    { locate (CEbinary ($1, Badd, $3)) }
        | additive_expression MINUS multiplicative_expression 
	    { locate (CEbinary ($1, Bsub, $3)) }
        ;

shift_expression
        : additive_expression { $1 }
        | shift_expression LEFT_OP additive_expression 
	    { locate (CEbinary ($1, Bshift_left, $3)) }
        | shift_expression RIGHT_OP additive_expression 
	    { locate (CEbinary ($1, Bshift_right, $3)) }
        ;

relational_expression
        : shift_expression 
            { $1 }
        | relational_expression LT shift_expression 
	    { locate (CEbinary ($1, Blt, $3)) }
        | relational_expression GT shift_expression
	    { locate (CEbinary ($1, Bgt, $3)) }
        | relational_expression LE_OP shift_expression
	    { locate (CEbinary ($1, Ble, $3)) }
        | relational_expression GE_OP shift_expression
	    { locate (CEbinary ($1, Bge, $3)) }
        ;

equality_expression
        : relational_expression 
            { $1 }
        | equality_expression EQ_OP relational_expression 
	    { locate (CEbinary ($1, Beq, $3)) }
        | equality_expression NE_OP relational_expression 
	    { locate (CEbinary ($1, Bneq, $3)) }
        ;

and_expression
        : equality_expression 
            { $1 }
        | and_expression AMP equality_expression 
	    { locate (CEbinary ($1, Bbw_and, $3)) }
        ;

exclusive_or_expression
        : and_expression 
            { $1 }
        | exclusive_or_expression HAT and_expression 
	    { locate (CEbinary ($1, Bbw_xor, $3)) }
        ;

inclusive_or_expression
        : exclusive_or_expression 
            { $1 }
        | inclusive_or_expression PIPE exclusive_or_expression 
	    { locate (CEbinary ($1, Bbw_or, $3)) }
        ;

logical_and_expression
        : inclusive_or_expression 
            { $1 }
        | logical_and_expression AND_OP inclusive_or_expression 
	    { locate (CEbinary ($1, Band, $3)) }
        ;

logical_or_expression
        : logical_and_expression 
            { $1 }
        | logical_or_expression OR_OP logical_and_expression 
	    { locate (CEbinary ($1, Bor, $3)) }
        ;

conditional_expression
        : logical_or_expression 
            { $1 }
        | logical_or_expression QUESTION expression COLON conditional_expression 
	    { locate (CEcond ($1, $3, $5)) }
        ;

assignment_expression
        : conditional_expression 
            { $1 }
        | unary_expression assignment_operator assignment_expression 
	    { locate (match $2 with
			| Aequal -> CEassign ($1, $3)
			| Amul -> CEassign_op ($1, Bmul, $3)
			| Adiv -> CEassign_op ($1, Bdiv, $3)
			| Amod -> CEassign_op ($1, Bmod, $3)
			| Aadd -> CEassign_op ($1, Badd, $3)
			| Asub -> CEassign_op ($1, Bsub, $3)
			| Aleft -> CEassign_op ($1, Bshift_left, $3)
			| Aright -> CEassign_op ($1, Bshift_right, $3)
			| Aand -> CEassign_op ($1, Bbw_and, $3)
			| Axor -> CEassign_op ($1, Bbw_xor, $3)
			| Aor -> CEassign_op ($1, Bbw_or, $3)) }
        ;

assignment_operator
        : EQUAL { Aequal }
        | MUL_ASSIGN { Amul }
        | DIV_ASSIGN { Adiv }
        | MOD_ASSIGN { Amod }
        | ADD_ASSIGN { Aadd }
        | SUB_ASSIGN { Asub }
        | LEFT_ASSIGN { Aleft }
        | RIGHT_ASSIGN { Aright }
        | AND_ASSIGN { Aand }
        | XOR_ASSIGN { Axor }
        | OR_ASSIGN { Aor }
        ;

expression
        : assignment_expression { $1 }
        | expression COMMA assignment_expression { locate (CEseq ($1, $3)) }
        ;

constant_expression
        : conditional_expression { $1 }
        ;

declaration
        : declaration_specifiers SEMICOLON 
            { type_declarations $1 }
        | declaration_specifiers init_declarator_list attributes_opt SEMICOLON 
	    { List.map locate (declaration $1 $2) }
        | SPEC 
	  declaration_specifiers init_declarator_list attributes_opt SEMICOLON 
	    { [locate (spec_declaration $1 $2 $3)] }
	| DECL  /* ADDED FOR WHY */
	    { List.map (fun d -> locate (Cspecdecl d)) $1 }
        ;

/* the precedence specs indicates to keep going with declaration_specifiers */
declaration_specifiers
        : storage_class_specifier %prec specs { [$1] }
        | storage_class_specifier declaration_specifiers { $1 :: $2 }
        | type_specifier { [$1] }
        | type_specifier declaration_specifiers_no_name { $1 :: $2 }
        | type_qualifier %prec specs { [$1] }
        | type_qualifier declaration_specifiers { $1 :: $2 }
        ;
/* same thing, with TYPE_NAME no more allowed */
declaration_specifiers_no_name
        : storage_class_specifier %prec specs { [$1] }
        | storage_class_specifier declaration_specifiers_no_name { $1 :: $2 }
        | type_specifier_no_name { [$1] }
        | type_specifier_no_name declaration_specifiers_no_name { $1 :: $2 }
        | type_qualifier %prec specs { [$1] }
        | type_qualifier declaration_specifiers { $1 :: $2 }
        ;

init_declarator_list
        : init_declarator { [$1] }
        | init_declarator_list COMMA init_declarator { $1 @ [$3] }
        ;

init_declarator
        : declarator 
            { $1, None }
        | declarator EQUAL c_initializer 
	    { $1, Some $3 }
        ;

storage_class_specifier
        : TYPEDEF { Stypedef }
        | EXTERN { Sstorage Extern }
        | STATIC { Sstorage Static }
        | AUTO { Sstorage Auto }
        | REGISTER { Sstorage Register }
        ;

type_specifier
        : type_specifier_no_name { $1 }
        | TYPE_NAME { Stype (CTvar $1) }
        ;
type_specifier_no_name
        : VOID { Stype CTvoid }
        | CHAR { Stype (CTint (Unsigned, Char)) }
        | SHORT { Sshort }
        | INT { Stype (CTint (Signed, Int)) }
        | LONG { Slong }
        | FLOAT { Stype (CTfloat Float) }
        | DOUBLE { Stype (CTfloat Double) }
        | SIGNED { Ssign Signed }
        | UNSIGNED { Ssign Unsigned }
        | struct_or_union_specifier { $1 }
        | enum_specifier { $1 }
        ;

identifier
        : IDENTIFIER { $1 }
        | TYPE_NAME  { $1 }
	;

struct_or_union_specifier
        : struct_or_union identifier/*ICI*/ LBRACE struct_declaration_list RBRACE 
            { if $1 then 
		Sstruct_decl (Some $2, $4) 
	      else 
		Sunion_decl (Some $2, $4) }
        | struct_or_union LBRACE struct_declaration_list RBRACE 
	    { if $1 then Sstruct_decl (None, $3) else Sunion_decl (None, $3) }
        | struct_or_union identifier/*ICI*/ 
	    { Stype (if $1 then CTstruct ($2, Tag) else CTunion ($2, Tag)) }
        ;

struct_or_union
        : STRUCT { true }
        | UNION { false }
        ;

struct_declaration_list
        : struct_declaration { $1 }
        | struct_declaration_list struct_declaration { $1 @ $2 }
        ;

struct_declaration
        : specifier_qualifier_list struct_declarator_list SEMICOLON 
            { let s = $1 in List.map (fun ((id,d),bf) -> s,d,id,bf) $2 }
        ;

specifier_qualifier_list
        : type_specifier specifier_qualifier_list_no_name { $1 :: $2 }
        | type_specifier { [$1] }
        | type_qualifier specifier_qualifier_list { $1 :: $2 }
        | type_qualifier %prec specs { [$1] }
        ;
/* same thing, with TYPE_NAME no more allowed */
specifier_qualifier_list_no_name
        : type_specifier_no_name specifier_qualifier_list_no_name { $1 :: $2 }
        | type_specifier_no_name { [$1] }
        | type_qualifier specifier_qualifier_list_no_name { $1 :: $2 }
        | type_qualifier { [$1] }
        ;

struct_declarator_list
        : struct_declarator { [$1] }
        | struct_declarator_list COMMA struct_declarator { $1 @ [$3] }
        ;

struct_declarator
        : declarator 
            { $1, None }
        | COLON constant_expression 
	    { ("_", Dsimple), Some $2 }
        | declarator COLON constant_expression 
	    { $1, Some $3 }
        ;

enum_specifier
        : ENUM LBRACE enumerator_list RBRACE 
            { Stype (CTenum (fresh_name None, Decl $3)) }
        | ENUM identifier/*ICI*/ LBRACE enumerator_list RBRACE 
	    { Stype (CTenum ($2, Decl $4)) }
        | ENUM identifier/*ICI*/ 
	    { Stype (CTenum ($2, Tag)) }
        ;

enumerator_list
        : enumerator { [$1] }
        | enumerator_list COMMA enumerator { $1 @ [$3] }
        ;

enumerator
        : IDENTIFIER { $1, None }
        | IDENTIFIER EQUAL constant_expression { $1, Some $3 }
        ;

type_qualifier
        : CONST { Sconst }
        | VOLATILE { Svolatile }
	| RESTRICT { dwarning "ignored __restrict"; Srestrict }
        ;

declarator
        : pointer direct_declarator { let id,d = $2 in id, $1 d }
        | direct_declarator { $1 }
        ;

direct_declarator
        : identifier
            { $1, Dsimple }
        | LPAR declarator RPAR 
	    { $2 }
        | direct_declarator LSQUARE constant_expression RSQUARE 
	    { let id,d = $1 in id, Darray (d, Some $3) }
        | direct_declarator LSQUARE RSQUARE 
	    { let id,d = $1 in id, Darray (d, None) }
        | direct_declarator LPAR parameter_type_list RPAR
	    { let id,d = $1 in id, Dfunction (d, $3) }
        | direct_declarator LPAR identifier_list RPAR
	    { let pl = List.map (fun x -> ([], Dsimple, x)) $3 in
	      let id,d = $1 in id, Dfunction (d, pl) }
        | direct_declarator LPAR RPAR
            { let id,d = $1 in id, Dfunction (d, []) }
        ;

/* ADDED FOR WHY */
loop_annot
        : LOOP_ANNOT                   { $1 }
        | /* epsilon */ %prec no_annot { no_loop_annot }
        ;

pointer
        : STAR { fun d -> Dpointer d }
        | STAR type_qualifier_list 
	    { dwarning "ignored qualifiers"; fun d -> Dpointer d }
        | STAR pointer { fun d -> Dpointer ($2 d) }
        | STAR type_qualifier_list pointer 
	    { dwarning "ignored qualifiers"; fun d -> Dpointer ($3 d) }
        ;

type_qualifier_list
        : type_qualifier { [$1] }
        | type_qualifier_list type_qualifier { $1 @ [$2] }
        ;


parameter_type_list
        : parameter_list { $1 }
        /* TODO */
        | parameter_list COMMA ELLIPSIS { dwarning "ignored <...>"; $1 }
        ;

parameter_list
        : parameter_declaration { [$1] }
        | parameter_list COMMA parameter_declaration { $1 @ [$3] }
        ;

parameter_declaration
        : declaration_specifiers declarator 
            { let id,d = $2 in $1, d, id }
        | declaration_specifiers abstract_declarator 
	    { $1, $2, "" }
        | declaration_specifiers 
	    { ($1, Dsimple, "") }
        ;

identifier_list
        : IDENTIFIER { [$1] }
        | identifier_list COMMA IDENTIFIER { $1 @ [$3] }
        ;

type_name
        : specifier_qualifier_list { $1, Dsimple }
        | specifier_qualifier_list abstract_declarator { $1, $2 }
        ;

abstract_declarator
        : pointer { $1 Dsimple }
        | direct_abstract_declarator { $1 }
        | pointer direct_abstract_declarator { $1 $2 }
        ;

direct_abstract_declarator
        : LPAR abstract_declarator RPAR 
            { $2 }
        | LSQUARE RSQUARE 
	    { Darray (Dsimple, None) }
        | LSQUARE constant_expression RSQUARE 
	    { Darray (Dsimple, Some $2) }
        | direct_abstract_declarator LSQUARE RSQUARE 
	    { Darray ($1, None) }
        | direct_abstract_declarator LSQUARE constant_expression RSQUARE 
	    { Darray ($1, Some $3) }
        | LPAR RPAR 
	    { Dfunction (Dsimple, []) }
        | LPAR parameter_type_list RPAR 
	    { Dfunction (Dsimple, $2) }
        | direct_abstract_declarator LPAR RPAR 
	    { Dfunction ($1, []) }
        | direct_abstract_declarator LPAR parameter_type_list RPAR 
	    { Dfunction ($1, $3) }
        ;

c_initializer
        : assignment_expression { Iexpr $1 }
        | LBRACE c_initializer_list RBRACE { Ilist $2 }
        | LBRACE c_initializer_list COMMA RBRACE { Ilist $2 }
        ;

c_initializer_list
        : c_initializer { [$1] }
        | c_initializer_list COMMA c_initializer { $1 @ [$3] }
        ;

statement
        : labeled_statement { $1 }
        | compound_statement { locate (CSblock $1) }
        | expression_statement { $1 }
        | selection_statement { $1 }
        | iteration_statement { $1 }
        | jump_statement { $1 }
	| SPEC statement { locate (CSspec ($1,$2)) }
        ;

labeled_statement
        : identifier/*ICI*/ COLON statement { locate (CSlabel ($1, $3)) }
        | CASE constant_expression COLON statement { locate (CScase ($2, $4)) }
        | DEFAULT COLON statement { locate (CSdefault($3)) }
        ;

compound_statement
        : compound_statement_LBRACE RBRACE 
            { Ctypes.pop (); [], [] }
        | compound_statement_LBRACE statement_list RBRACE 
	    { Ctypes.pop (); [], $2 }
        | compound_statement_LBRACE declaration_list RBRACE 
	    { Ctypes.pop (); $2, [] }
        | compound_statement_LBRACE declaration_list statement_list RBRACE 
	    { Ctypes.pop (); $2, $3 }
        ;

compound_statement_LBRACE:
  LBRACE { Ctypes.push () }
;

declaration_list
        : declaration { $1 }
        | declaration_list declaration { $1 @ $2 }
        ;

statement_list
        : statement { [$1] }
        | statement_list statement { $1 @ [$2] }
        ;

expression_statement
        : SEMICOLON { locate CSnop }
	| CODE_ANNOT { locate (CSannot $1) } /* ADDED FOR WHY */
        | expression SEMICOLON { locate (CSexpr $1) }
        ;

selection_statement
        : IF LPAR expression RPAR statement 
            { locate (CSif ($3, $5, locate CSnop)) }
        | IF LPAR expression RPAR statement ELSE statement 
	    { locate (CSif ($3, $5, $7)) }
        | SWITCH LPAR expression RPAR statement 
	    { locate (CSswitch ($3, $5)) }
        ;

iteration_statement
        : loop_annot WHILE LPAR expression RPAR statement 
            { locate (CSwhile ($1, $4, $6)) }
        | loop_annot DO statement WHILE LPAR expression RPAR SEMICOLON 
	    { locate (CSdowhile ($1, $3, $6)) }
        | loop_annot FOR LPAR expression_statement expression_statement RPAR 
          statement
	    { locate (CSfor ($1, expr_of_statement $4, expr_of_statement $5, 
			     locate CEnop, $7)) }
        | loop_annot 
          FOR LPAR expression_statement expression_statement expression RPAR 
          statement 
	    { locate (CSfor ($1, expr_of_statement $4, expr_of_statement $5, 
			     $6, $8)) }
        ;

jump_statement
        : GOTO identifier/*ICI*/ SEMICOLON { locate (CSgoto $2) }
        | CONTINUE SEMICOLON { locate CScontinue }
        | BREAK SEMICOLON { locate CSbreak }
        | RETURN SEMICOLON { locate (CSreturn None) }
        | RETURN expression SEMICOLON { locate (CSreturn (Some $2)) }
        ;

translation_unit
        : external_declaration { $1 }
        | translation_unit external_declaration { $1 @ $2 }
        ;

external_declaration
        : function_definition { [$1] }
        | declaration { $1 }
        ;

function_definition
        : function_prototype compound_statement
            { Ctypes.pop (); (* pushed by function_prototype *)
	      let ty,id,pl = $1 in
	      let bl = locate_i 2 (CSblock $2) in
	      locate (Cfundef (None, ty, id, pl, bl)) }
        | SPEC function_prototype compound_statement
            { Ctypes.pop (); (* pushed by function_prototype *)
	      let ty,id,pl = $2 in
	      let bl = locate_i 3 (CSblock $3) in
	      locate (Cfundef (Some $1, ty, id, pl, bl)) }
        ;
	      
function_prototype
        : declaration_specifiers declarator declaration_list 
            { Ctypes.push (); function_declaration $1 $2 $3 }
        | declaration_specifiers declarator 
	    { Ctypes.push (); function_declaration $1 $2 [] }
        | declarator declaration_list
	    { Ctypes.push (); function_declaration [] $1 $2 }
        | declarator
	    { Ctypes.push (); function_declaration [] $1 [] }
        ;

/* non-ANSI */

attributes_opt:
  /* empty */ {}
| attributes { dwarning "ignored attributes" }
;

attributes:
  attribute {}
| attributes attribute {} 
;

attribute:
  ATTRIBUTE LPAR LPAR attribute_list RPAR RPAR {}
;

attribute_list:
  attrib {}
| attribute_list COMMA attrib {}
;

attrib:
  /* empty */ {}
| identifier {}
| identifier LPAR RPAR {}
| identifier LPAR argument_expression_list RPAR {}
| CONST {}
;