1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
|
(**************************************************************************)
(* *)
(* The Why platform for program certification *)
(* Copyright (C) 2002-2008 *)
(* Romain BARDOU *)
(* Jean-Franois COUCHOT *)
(* Mehdi DOGGUY *)
(* Jean-Christophe FILLITRE *)
(* Thierry HUBERT *)
(* Claude MARCH *)
(* Yannick MOY *)
(* Christine PAULIN *)
(* Yann RGIS-GIANAS *)
(* Nicolas ROUSSET *)
(* Xavier URBAIN *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU General Public *)
(* License version 2, as published by the Free Software Foundation. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(* See the GNU General Public License version 2 for more details *)
(* (enclosed in the file GPL). *)
(* *)
(**************************************************************************)
(*i $Id: cprint.ml,v 1.50 2008/02/05 12:10:47 marche Exp $ i*)
(* Pretty-printer for normalized AST *)
open Format
open Ctypes
open Clogic
open Cast
open Info
open Pp
open Cutil
let declare_struct fmt s (_,fields) =
fprintf fmt "@[<hov 2>struct %s {@\n" s;
begin match Cenv.tag_type_definition s with
| Cenv.TTStructUnion(_,fields) ->
List.iter (fun f ->
fprintf fmt "%a %s;@\n" ctype f.var_type f.var_unique_name) fields
| _ -> assert false
end;
fprintf fmt "};@]@\n@\n"
let term_unop = function
| Clogic.Uminus -> "-"
| Clogic.Utilde -> "~"
| Clogic.Ustar -> "*"
| Clogic.Uamp -> "&"
| Clogic.Ufloat_of_int -> "float_of_int"
| Clogic.Uint_of_float -> "int_of_float"
| Clogic.Ufloat_conversion -> "float_conversion"
| Clogic.Uint_conversion -> "int_conversion"
| Clogic.Uabs_real -> "abs_real"
| Clogic.Usqrt_real -> "sqrt_real"
| Clogic.Uround_error -> "round_error"
| Clogic.Utotal_error -> "total_error"
| Clogic.Uexact -> "exact"
| Clogic.Umodel -> "model"
| Clogic.Unot -> "!"
| Clogic.Uplus -> "+"
let term_binop = function
| Clogic.Badd -> "+"
| Clogic.Bsub -> "-"
| Clogic.Bmul -> "*"
| Clogic.Bdiv -> "/"
| Clogic.Bmod -> "%"
| Clogic.Bpow_real -> "^^"
| Clogic.Bbw_and -> "&"
| Clogic.Bbw_or -> "|"
| Clogic.Bbw_xor -> "^"
| Clogic.Bshift_right -> ">>"
| Clogic.Bshift_left -> "<<"
let rec nterm fmt t = match t.nterm_node with
| NTconstant (IntConstant s | RealConstant s) ->
fprintf fmt "%s" s
| NTvar x ->
fprintf fmt "%s" x.var_unique_name
| NTapp {napp_pred = li; napp_args = tl;} ->
fprintf fmt "%s(%a)" li.logic_name (print_list comma nterm) tl
| NTunop (op, t) ->
fprintf fmt "%s%a" (term_unop op) nterm_p t
(* | NTstar t ->
fprintf fmt "*%a" nterm_p t*)
| NTbinop (t1, op, t2) ->
fprintf fmt "%a %s %a" nterm_p t1 (term_binop op) nterm_p t2
| NTarrow (t,_, vi) ->
fprintf fmt "%a->%s" nterm_p t vi.var_unique_name
| NTif (t1, t2, t3) ->
fprintf fmt "%a ? %a : %a" nterm_p t1 nterm_p t2 nterm_p t3
| NTold t ->
fprintf fmt "\\old(%a)" nterm t
| NTat (t, l) ->
fprintf fmt "\\at(%a, %s)" nterm t l
| NTbase_addr t ->
fprintf fmt "\\base_addr(%a)" nterm t
| NToffset t ->
fprintf fmt "\\offset(%a)" nterm t
| NTblock_length t ->
fprintf fmt "\\block_length(%a)" nterm t
| NTarrlen t ->
fprintf fmt "\\arrlen(%a)" nterm t
| NTstrlen (t,_, _) ->
fprintf fmt "\\strlen(%a)" nterm t
| NTmin (t1,t2) ->
fprintf fmt "\\min(%a,%a)" nterm t1 nterm t2
| NTmax (t1,t2) ->
fprintf fmt "\\max(%a,%a)" nterm t1 nterm t2
| NTminint ty ->
fprintf fmt "\\minint(%a)" ctype ty
| NTmaxint ty ->
fprintf fmt "\\maxint(%a)" ctype ty
| NTcast (ty, t) ->
fprintf fmt "(%a)%a" ctype ty nterm t
| NTrange (t1, t2, t3, _,f) ->
fprintf fmt "(%a+%a..%a+%a)->%s" nterm t1 nterm_option t2 nterm t1 nterm_option t3 f.var_unique_name
and nterm_p fmt t = match t.nterm_node with
| NTconstant _ | NTvar _ | NTapp _ | NTold _ | NTat _
| NTarrlen _ | NTstrlen _ | NTmin _ | NTmax _ ->
nterm fmt t
| _ ->
fprintf fmt "(%a)" nterm t
and nterm_option fmt = function
| None -> ()
| Some t -> nterm fmt t
let quantifier fmt (ty, x) = fprintf fmt "%a %s" ctype ty x.var_unique_name
let quantifiers = print_list comma quantifier
let relation = function
| Lt -> "<"
| Gt -> ">"
| Le -> "<="
| Ge -> ">="
| Eq -> "=="
| Neq -> "!="
let rec npredicate fmt p = match p.npred_node with
| NPfalse ->
fprintf fmt "false"
| NPtrue ->
fprintf fmt "true"
| NPapp {napp_pred = li; napp_args = tl;} ->
fprintf fmt "%s(%a)" li.logic_name (print_list comma nterm) tl
| NPrel (t1, rel, t2) ->
(* no need for parentheses around a relation. It can only be used
inside a boolean formula, with the relational operator morally
binding tighter than any boolean operator. *)
fprintf fmt "@[%a %s %a@]" nterm t1 (relation rel) nterm t2
| NPand (p1, p2) ->
(* improved printing for range inequalities, e.g. 0 <= i < 100 *)
nconjunct fmt p
| NPor (p1, p2) ->
fprintf fmt "@[(%a ||@ %a)@]" npredicate p1 npredicate p2
| NPimplies (p1, p2) ->
fprintf fmt "@[(%a =>@ %a)@]" npredicate p1 npredicate p2
| NPiff (p1, p2) ->
fprintf fmt "@[(%a <=>@ %a)@]" npredicate p1 npredicate p2
| NPnot p ->
fprintf fmt "! %a" npredicate p
| NPif (t, p1, p2) ->
fprintf fmt "@[(%a ? %a : %a)@]" nterm t npredicate p1 npredicate p2
| NPforall (q, p) ->
fprintf fmt "@[(\\forall %a;@ %a)@]" quantifiers q npredicate p
| NPexists (q, p) ->
fprintf fmt "@[(\\exists %a;@ %a)@]" quantifiers q npredicate p
| NPold p ->
fprintf fmt "\\old(%a)" npredicate p
| NPat (p, l) ->
fprintf fmt "\\at(%a, %s)" npredicate p l
| NPvalid t ->
fprintf fmt "\\valid(%a)" nterm t
| NPvalid_index (t1, t2) ->
fprintf fmt "\\valid_index(%a, %a)" nterm t1 nterm t2
| NPvalid_range (t1, t2, t3) ->
fprintf fmt "\\valid_range(%a, %a, %a)" nterm t1 nterm t2 nterm t3
| NPfresh t ->
fprintf fmt "\\fresh(%a)" nterm t
| NPnamed (id, p) ->
fprintf fmt "@[(%s::@ %a)@]" id npredicate p
| NPseparated (t1,t2) ->
fprintf fmt "\\separated(%a, %a)" nterm t1 nterm t2
| NPfull_separated (t1,t2) ->
fprintf fmt "\\full_separated(%a, %a)" nterm t1 nterm t2
| NPbound_separated (t1,t2,t3,t4) ->
fprintf fmt "\\bound_separated(%a, %a, %a, %a)"
nterm t1 nterm t2 nterm t3 nterm t4
(* given a conjunct [p], try to match relations inside p's conjuncts, in order
to print together range inequalities that refer to the same variable, e.g.
print
0 <= i < 100
instead of
(i < 100) && (i >= 0)
*)
and nconjunct fmt p =
(* extract the conjuncts *)
let rec cnf p = match p.npred_node with
| NPand (p1,p2) -> cnf p1 @ (cnf p2)
| _ -> [p]
in
(* change sides in a relation *)
let change_side_rel rel = match rel with
| Lt -> Gt | Le -> Ge | Gt -> Lt | Ge -> Le | Eq -> Eq | Neq -> Neq
in
(* if a valid combination exists, return it.
Each parameter is a pair of a boolean stating whether the matching term
was found on the left-hand side or right-hand side of the corresponding
relation, and the predicate for this relation.
*)
let combine (left1,p1) (left2,p2) =
if left1 = left2 then
match p1.npred_node,p2.npred_node with
| NPrel (tl1,op1,tr1),NPrel (tl2,op2,tr2) ->
begin match op1,op2 with
| (Lt | Le),(Gt | Ge) | (Gt | Ge),(Lt | Le) ->
(* combination is possible *)
if left1 then
begin match op1 with
| Lt | Le ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tr2 (relation (change_side_rel op2))
nterm tl1 (relation op1) nterm tr1)
| Gt | Ge ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tr1 (relation (change_side_rel op1))
nterm tl1 (relation op2) nterm tr2)
| Eq | Neq ->
(* not a valid combination *)
assert false
end
else
begin match op1 with
| Lt | Le ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tl1 (relation op1) nterm tr1
(relation (change_side_rel op2)) nterm tl2)
| Gt | Ge ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tl2 (relation op2) nterm tr1
(relation (change_side_rel op1)) nterm tl1)
| Eq | Neq ->
(* not a valid combination *)
assert false
end
| _ -> None
end
| _ ->
(* both [p1] and [p2] should be relations *)
assert false
else
match p1.npred_node,p2.npred_node with
| NPrel (tl1,op1,tr1),NPrel (tl2,op2,tr2) ->
begin match op1,op2 with
| (Lt | Le),(Lt | Le) | (Gt | Ge),(Gt | Ge) ->
(* combination is possible *)
if left1 then
begin match op1 with
| Lt | Le ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tl2 (relation op2)
nterm tl1 (relation op1) nterm tr1)
| Gt | Ge ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tr1 (relation (change_side_rel op1))
nterm tl1 (relation (change_side_rel op2))
nterm tl2)
| Eq | Neq ->
(* not a valid combination *)
assert false
end
else
begin match op1 with
| Lt | Le ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tl1 (relation op1) nterm tr1
(relation op2) nterm tr2)
| Gt | Ge ->
Some (fun fmt ->
fprintf fmt "%a %s %a %s %a"
nterm tr2 (relation (change_side_rel op2))
nterm tr1 (relation op1) nterm tl1)
| Eq | Neq ->
(* not a valid combination *)
assert false
end
| _ -> None
end
| _ ->
(* both [p1] and [p2] should be relations *)
assert false
in
(* search if sub-term [t] of relational predicate [p] can be recognized
in another relation. We base this search on names used for printing.
If another relation [mp] is found in map [m] with the same term [t],
consider whether they can be combined by calling [combine].
Otherwise, add the correspondance [t] -> [p] to the map.
*)
let search_and_combine p t left m =
match t.nterm_node with
| NTvar _ | NTstrlen _ | NTarrlen _ ->
let name = match t.nterm_node with
| NTvar v -> Some v.var_unique_name
| NTstrlen (t1,_,_) ->
begin match t1.nterm_node with
| NTvar v -> Some ("\\strlen(" ^ v.var_unique_name ^ ")")
| _ -> None
end
| NTarrlen t1 ->
begin match t1.nterm_node with
| NTvar v -> Some ("\\arrlen(" ^ v.var_unique_name ^ ")")
| _ -> None
end
| _ -> assert false
in
begin match name with
| Some name ->
begin try
let mp = StringMap.find name m in
match combine (left,p) mp with
| Some cp -> (Some cp),StringMap.remove name m
| None -> None,StringMap.add name (left,p) m
with Not_found ->
None,StringMap.add name (left,p) m
end
| _ -> None,m
end
| _ -> None,m
in
(* [list_conjuncts] is the list of relational predicates combined.
[name_map] is the pending list of correspondance from term to predicates.
*)
let list_conjuncts,name_map =
List.fold_left
(fun (cl,m) p -> match p.npred_node with
| NPrel (t1,rel,t2) ->
begin match search_and_combine p t1 (* left = *)true m with
| (Some cp),new_m ->
(* [p] combined, do not search with [t2] *)
cp :: cl,new_m
| None,new_m ->
(* continue search for a combination with [t2] *)
begin match search_and_combine p t2 (* left = *)false new_m
with
| (Some cp),new_m ->
cp :: cl,new_m
| None,new_m ->
(* if [p] added to [m], do not return it now *)
if m == new_m then
(fun fmt -> npredicate fmt p) :: cl,m
else cl,new_m
end
end
| _ -> (fun fmt -> npredicate fmt p) :: cl,m
) ([],StringMap.empty) (cnf p)
in
(* if [name_map] not empty, add these predicates to the list of conjuncts *)
let list_conjuncts =
StringMap.fold (fun _ (_,p) cl -> (fun fmt -> npredicate fmt p) :: cl)
name_map list_conjuncts
in
fprintf fmt "@[(%a)@]"
(print_list (fun fmt () -> fprintf fmt "@\n && ") (fun fmt f -> f fmt))
list_conjuncts
let parameter fmt x = fprintf fmt "%a %s" ctype x.var_type x.var_unique_name
let parameters = print_list comma parameter
let logic_parameter fmt (x, ty) = fprintf fmt "%a %s" ctype ty x.var_unique_name
let logic_parameters = print_list comma logic_parameter
let location = nterm
let locations = print_list comma location
let nlogic_symbol fmt li = function
| NPredicate_reads (pl, locs) ->
fprintf fmt "/*@@ @[predicate %s(%a) reads %a@] */@\n" li.logic_name
logic_parameters pl locations locs
| NPredicate_def (pl, p) ->
fprintf fmt "/*@@ @[predicate %s(%a) { %a }@] */@\n" li.logic_name
logic_parameters pl npredicate p
| NFunction (pl, ty, locs) ->
fprintf fmt "/*@@ @[logic %a %s(%a) reads %a@] */@\n" ctype ty
li.logic_name logic_parameters pl locations locs
| NFunction_def (pl, ty, t) ->
fprintf fmt "/*@@ @[logic %a %s(%a) { %a }@] */@\n" ctype ty
li.logic_name logic_parameters pl nterm t
let spec fmt = function
| { requires = None; assigns = None; ensures = None; decreases = None } ->
()
| s ->
let requires fmt p = fprintf fmt "@[requires %a@]@\n" npredicate p in
let assigns fmt (_,a) = fprintf fmt "@[assigns %a@]@\n" locations a in
let ensures fmt p = fprintf fmt "@[ensures %a@]@\n" npredicate p in
let decreases fmt = function
| (t, None) -> fprintf fmt "@[decreases %a@]@\n" nterm t
| (t, Some r) -> fprintf fmt "@[decreases %a for %s@]@\n" nterm t r
in
fprintf fmt "/*@@ @[%a%a%a%a@] */@\n"
(print_option requires) s.requires
(print_option assigns) s.assigns
(print_option ensures) s.ensures
(print_option decreases) s.decreases
let loop_annot fmt = function
| { invariant = None; assume_invariant = None;
loop_assigns = None; variant = None } ->
()
| a ->
let invariant fmt p = fprintf fmt "@[invariant %a@]@\n" npredicate p in
let assume_invariant fmt p =
fprintf fmt "@[assume invariant %a@]@\n" npredicate p in
let loop_assigns fmt (_,a) =
fprintf fmt "@[assigns %a@]@\n" locations a in
let variant fmt = function
| (t, None) -> fprintf fmt "@[variant %a@]@\n" nterm t
| (t, Some r) -> fprintf fmt "@[variant %a for %s@]@\n" nterm t r
in
fprintf fmt "/*@@ @[%a%a%a%a@] */@\n"
(print_option assume_invariant) a.assume_invariant
(print_option invariant) a.invariant
(print_option loop_assigns) a.loop_assigns
(print_option variant) a.variant
let binop fmt = function
| Badd | Badd_int _ | Badd_float _ | Badd_pointer_int -> fprintf fmt "+"
| Bsub | Bsub_int _ | Bsub_float _ | Bsub_pointer -> fprintf fmt "-"
| Bmul | Bmul_int _ | Bmul_float _ -> fprintf fmt "*"
| Bdiv | Bdiv_int _ | Bdiv_float _ -> fprintf fmt "/"
| Bmod | Bmod_int _ -> fprintf fmt "%%"
| Blt | Blt_int | Blt_float _ | Blt_pointer -> fprintf fmt "<"
| Bgt | Bgt_int | Bgt_float _ | Bgt_pointer -> fprintf fmt ">"
| Ble | Ble_int | Ble_float _ | Ble_pointer -> fprintf fmt "<="
| Bge | Bge_int | Bge_float _ | Bge_pointer -> fprintf fmt ">="
| Beq | Beq_int | Beq_float _ | Beq_pointer -> fprintf fmt "=="
| Bneq | Bneq_int | Bneq_float _ | Bneq_pointer -> fprintf fmt "!="
| Bbw_and -> fprintf fmt "&"
| Bbw_xor -> fprintf fmt "^"
| Bbw_or -> fprintf fmt "|"
| Band -> fprintf fmt "&&"
| Bor -> fprintf fmt "||"
| Bshift_left -> fprintf fmt "<<"
| Bshift_right -> fprintf fmt ">>"
let unop fmt = function
| Uplus -> fprintf fmt "+"
| Uminus -> fprintf fmt "-"
| Unot -> fprintf fmt "!"
| Ustar -> fprintf fmt "*"
| Uamp -> fprintf fmt "&"
| Utilde -> fprintf fmt "~"
(* these are introduced during typing *)
| Ufloat_of_int -> fprintf fmt "float_of_int"
| Uint_of_float -> fprintf fmt "int_of_float"
| Ufloat_conversion -> fprintf fmt "float_conversion"
| Uint_conversion -> fprintf fmt "int_conversion"
let rec nexpr fmt e = match e.nexpr_node with
| NEnop ->
()
| NEconstant (IntConstant s | RealConstant s) ->
fprintf fmt "%s" s
| NEstring_literal s ->
fprintf fmt "\"%S\"" s
| NEvar (Var_info x) ->
fprintf fmt "%s" x.var_unique_name
| NEvar (Fun_info x) ->
fprintf fmt "%s" x.fun_name
| NEarrow (e,_,x) ->
let typ = e.nexpr_type in
begin match typ.Ctypes.ctype_node with
| Ctypes.Tpointer (Ctypes.Valid (i,j),_)
| Ctypes.Tarray (Ctypes.Valid(i,j),_,_) ->
fprintf fmt "%a-%d-ok-%d->%s" nexpr_p e (Int64.to_int i)
(Int64.to_int j) x.var_unique_name
| _ ->
fprintf fmt "%a->%s" nexpr_p e x.var_unique_name
end
(* | NEstar e ->
fprintf fmt "*%a" nexpr_p e*)
| NEseq (e1, e2) ->
fprintf fmt "%a, %a" nexpr e1 nexpr e2
| NEassign (e1, e2) ->
fprintf fmt "%a = %a" nexpr e1 nexpr e2
| NEassign_op (e1, op, e2) ->
fprintf fmt "%a %a= %a" nexpr e1 binop op nexpr e2
| NEunary (op, e) ->
fprintf fmt "%a(%a)" unop op nexpr_p e
| NEincr (Uprefix_inc, e) -> fprintf fmt "++%a" nexpr_p e
| NEincr (Uprefix_dec, e) -> fprintf fmt "--%a" nexpr_p e
| NEincr (Upostfix_inc, e) -> fprintf fmt "%a++" nexpr_p e
| NEincr (Upostfix_dec, e) -> fprintf fmt "%a--" nexpr_p e
| NEbinary (e1, op, e2) ->
fprintf fmt "%a %a %a" nexpr_p e1 binop op nexpr_p e2
| NEcall { ncall_fun = e ; ncall_args = l } ->
fprintf fmt "%a(%a)" nexpr e (print_list comma nexpr) l
| NEcond (e1, e2, e3) ->
fprintf fmt "%a ? %a : %a" nexpr e1 nexpr e2 nexpr e3
| NEcast (ty, e) ->
fprintf fmt "(%a)%a" ctype ty nexpr_p e
| NEmalloc (ty, e) ->
fprintf fmt "(%a*)malloc(%a * sizeof(%a))" ctype ty nexpr_p e ctype ty
and nexpr_p fmt e = match e.nexpr_node with
| NEnop | NEconstant _ | NEstring_literal _ | NEvar _ -> nexpr fmt e
| _ -> fprintf fmt "(@[%a@])" nexpr e
let rec c_initializer fmt = function
| Iexpr e -> nexpr fmt e
| Ilist l -> fprintf fmt "@[{ %a }@]" (print_list comma c_initializer) l
let ngoto_status = function
| GotoBackward -> "backward"
| GotoForwardOuter -> "forward,outer"
| GotoForwardInner -> "forward,inner"
let rec nstatement fmt s = match s.nst_node with
| NSnop ->
fprintf fmt ";"
| NSexpr e ->
fprintf fmt "@[%a;@]" nexpr e
| NSif (e, s1, s2) ->
fprintf fmt "@[if (%a) {@\n @[%a@]@\n} else {@\n @[%a@]@\n}@]"
nexpr e nstatement_nb s1 nstatement_nb s2
| NSwhile (a, e, s) ->
fprintf fmt "@[%awhile (%a) {@\n @[%a@]@\n}@]"
loop_annot a nexpr e nstatement_nb s
| NSdowhile (a, s, e) ->
fprintf fmt "@[%ado {@\n @[%a@]@\n} while (%a);@]"
loop_annot a nstatement_nb s nexpr e
| NSfor (a, e1, e2, e3, s) ->
fprintf fmt "@[%afor (%a; %a; %a) {@\n @[%a@]@\n}@]"
loop_annot a nexpr e1 nexpr e2 nexpr e3 nstatement_nb s
| NSreturn None ->
fprintf fmt "return;"
| NSreturn (Some e) ->
fprintf fmt "@[return %a;@]" nexpr e
| NSbreak ->
fprintf fmt "break;"
| NScontinue ->
fprintf fmt "continue;"
| NSlabel (l, s) ->
fprintf fmt "%s: %a" l.label_info_name nstatement s
| NSgoto (status, l) ->
fprintf fmt "goto(%s) %s" (ngoto_status status) l.label_info_name
| NSswitch (e, m, l) ->
fprintf fmt "@[switch (%a) {@\n @[%a@]@\n}@]"
nexpr e (print_list newline ncase) l
| NSassert p ->
fprintf fmt "/*@@ assert %a */" npredicate p
| NSassume p ->
fprintf fmt "/*@@ assume %a */" npredicate p
| NSlogic_label l ->
fprintf fmt "/*@@ label %s */" l
| NSspec (sp, s) ->
fprintf fmt "%a%a" spec sp nstatement s
| NSblock b ->
fprintf fmt "@[{@\n @[%a@]@\n}@]" nblock b
| NSdecl _ ->
(* successive declarations share the same block statement *)
fprintf fmt "@[<hov 2>{@\n";
nsdecl fmt s;
fprintf fmt "@\n}@\n@]"
and nsdecl fmt s = match s.nst_node with
| NSdecl (ty, vi, None,rem) ->
fprintf fmt "%a %s;@\n" ctype ty vi.var_unique_name;
nsdecl fmt rem
| NSdecl (ty, vi, Some i, rem) ->
fprintf fmt "%a %s = %a;@\n" ctype ty vi.var_unique_name c_initializer i;
nsdecl fmt rem
| _ -> nstatement fmt s
and nstatement_nb fmt s = match s.nst_node with
| NSblock b -> nblock fmt b
| _ -> nstatement fmt s
and nblock fmt sl =
fprintf fmt "@[%a@]"
(print_list newline nstatement) sl
and ncase fmt (cmap,sl) =
fprintf fmt "@[%a %a@]"
(fun fmt ->
if Cconst.IntMap.is_empty cmap then
(fun _ -> fprintf fmt "default:@\n")
else
Cconst.IntMap.iter
(fun _ e -> fprintf fmt "case %a:@\n" nexpr e)) cmap
nblock sl
and ndecl fmt d = match d.node with
| Nlogic (li, ls) ->
nlogic_symbol fmt li ls
| Naxiom (x, p) ->
fprintf fmt "/*@@ @[axiom %s:@ %a@] */@\n" x npredicate p
| Ninvariant (x, p) ->
fprintf fmt "/*@@ @[<hov 2>invariant %s:@ %a@] */@\n" x npredicate p
| Ninvariant_strong (x, p) ->
fprintf fmt "/*@@ @[<hov 2>strong invariant %s:@ %a@] */@\n" x
npredicate p
| Ntypedef (ty, x) ->
fprintf fmt "typedef %a %s;@\n" ctype ty x
| Ntypedecl ty ->
fprintf fmt "%a;@\n" ctype ty
| Ndecl (ty, vi, None) ->
fprintf fmt "%a %s;@\n" ctype ty vi.var_unique_name
| Ndecl (ty, vi, Some i) ->
fprintf fmt "%a %s = %a;@\n" ctype ty vi.var_unique_name c_initializer i
(* | Nfunspec (s, ty, fi) ->
fprintf fmt "%a%a %s(@[%a@]);@\n" spec s ctype ty fi.fun_name
parameters fi.args
| Nfundef (s, ty, fi, st) ->
fprintf fmt "%a%a %s(@[%a@])@\n%a@\n" spec s ctype ty fi.fun_name
parameters fi.args nstatement st
*)
| Ntype s ->
fprintf fmt "/*@@ type %s */@\n" s
let nfile fmt p =
fprintf fmt "@[";
Cenv.iter_all_struct (declare_struct fmt);
List.iter (fun d -> ndecl fmt d; fprintf fmt "@\n") p;
fprintf fmt "@]@."
let nfunctions fmt =
Hashtbl.iter
(fun f (s, ty, fi, st,_) ->
match st with
| Some st ->
fprintf fmt "%a%a %s(@[%a@])@\n%a@\n" spec s ctype ty fi.fun_name
parameters fi.args nstatement st
| None ->
fprintf fmt "%a%a %s(@[%a@]);@\n" spec s ctype ty fi.fun_name
parameters fi.args)
Cenv.c_functions
|