1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
|
(**************************************************************************)
(* *)
(* The Why platform for program certification *)
(* Copyright (C) 2002-2008 *)
(* Romain BARDOU *)
(* Jean-Franois COUCHOT *)
(* Mehdi DOGGUY *)
(* Jean-Christophe FILLITRE *)
(* Thierry HUBERT *)
(* Claude MARCH *)
(* Yannick MOY *)
(* Christine PAULIN *)
(* Yann RGIS-GIANAS *)
(* Nicolas ROUSSET *)
(* Xavier URBAIN *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU General Public *)
(* License version 2, as published by the Free Software Foundation. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(* See the GNU General Public License version 2 for more details *)
(* (enclosed in the file GPL). *)
(* *)
(**************************************************************************)
open Creport
open Cast
open Info
open Clogic
open Cnorm
open Cenv
(* Automatic invariants expressing validity of local/global variables *)
open Clogic
open Ctypes
let tpred t = match t.nterm_node with
| NTconstant (IntConstant c) ->
let c = string_of_int (int_of_string c - 1) in
{ t with nterm_node = NTconstant (IntConstant c) }
| _ ->
{ t with nterm_node = NTbinop (t, Bsub, int_nconstant "1") }
let make_valid_range_from_0 t ts=
if ts = Int64.one
then
npvalid t
else
npvalid_range (t, nzero, int_nconstant (Int64.to_string (Int64.pred ts)))
let fresh_index =
let r = ref (-1) in fun () -> incr r; "index_" ^ string_of_int !r
let indirection loc ty t =
let info = make_field ty in
let info = declare_arrow_var info in
let zone = find_zone_for_term t in
let () = type_why_new_zone zone info in
{ nterm_node = NTarrow (t, zone, info);
nterm_loc = loc;
nterm_type = ty;}
(*
[make_forall_range loc t b f] builds the formula
forall i, 0 <= i < b -> (f t i)
unless b is 1, in which case it produces (f t 0)
*)
let make_forall_range loc t b f =
if b = Int64.one
then f t nzero
else
let i = default_var_info (fresh_index ()) in
set_var_type (Var_info i) c_int false;
let vari = { nterm_node = NTvar i;
nterm_loc = loc;
nterm_type = c_int;} in
let ti =
{ nterm_node = NTbinop (t, Badd, vari);
nterm_loc = loc;
nterm_type = t.nterm_type}
in
let ineq = npand (nprel (nzero, Le, vari),
nprel (vari, Lt, int_nconstant (Int64.to_string b))) in
make_forall [c_int, i] (make_implies ineq (f ti vari))
let valid_for_type ?(fresh=false) loc name (t : Cast.nterm) =
let rec valid_fields valid_for_current n (t : Cast.nterm) =
begin match tag_type_definition n with
| TTStructUnion (Tstruct (_), fl) ->
List.fold_right
(fun f acc ->
let zone = find_zone_for_term t in
let () = type_why_new_zone zone f in
let tf =
{ nterm_node = NTarrow (t, zone, f);
nterm_loc = loc;
nterm_type = f.var_type}
in
make_and acc (valid_for tf))
fl
(if valid_for_current then
if fresh then npand(npvalid t, npfresh t) else npvalid t
else nptrue)
| TTIncomplete ->
error loc "`%s' has incomplete type" name
| _ ->
assert false
end
and valid_for (t : Cast.nterm) = match t.nterm_type.Ctypes.ctype_node with
| Tstruct n ->
valid_fields true n t
| Tarray (_, ty, None) ->
error loc "array size missing in `%s'" name
| Tarray (Not_valid,_,_) -> assert false
| Tarray (Valid(i,j), ty, Some s) ->
assert (i <= Int64.zero && j > Int64.zero);
let vrange = make_valid_range_from_0 t s in
let valid_form =
make_and
vrange
(if fresh then npfresh t else nptrue)
in
begin match ty.Ctypes.ctype_node with
| Tstruct n ->
let vti t i = valid_fields false n t in
make_and valid_form (make_forall_range loc t s vti)
| _ ->
make_and valid_form
(make_forall_range loc t s
(fun t i -> valid_for
(indirection loc ty t)))
end
| _ ->
nptrue
in
valid_for t
let not_alias loc x y =
if Info.same_why_type (type_why_for_term x) (type_why_for_term y)
then
let ba t = { nterm_node = NTbase_addr t;
nterm_loc = loc;
nterm_type = c_addr} in
nprel (ba x, Neq, ba y)
else
{npred_node = NPtrue; npred_loc = loc}
let var_to_term loc v =
{
nterm_node = NTvar v;
nterm_loc = loc;
nterm_type = v.var_type}
let in_struct v1 v =
(* match v1.nterm_node with
| NTarrow(x,ty,_,_) ->
| _ -> *)
let zone = find_zone_for_term v1 in
let () = type_why_new_zone zone v in
{ nterm_node = NTarrow (v1, zone, v);
nterm_loc = v1.nterm_loc;
nterm_type = v.var_type}
let compatible_type ty1 ty2 =
match ty1.Ctypes.ctype_node,ty2.Ctypes.ctype_node with
| Tfun _ , _ | Tenum _, _ | Tpointer _ , _
| Ctypes.Tvar _ , _ | Tvoid, _ | Tint _, _ | Tfloat _, _ -> false
| _, Tfun _ | _, Tenum _| _, Tpointer _
| _, Ctypes.Tvar _ | _, Tvoid | _, Tint _ | _, Tfloat _ -> false
| _, _ -> true
let full_compatible_type ty1 ty2 =
match ty1.Ctypes.ctype_node,ty2.Ctypes.ctype_node with
| Tfun _ , _ | Tenum _, _
| Ctypes.Tvar _ , _ | Tvoid, _ | Tint _, _ | Tfloat _, _ -> false
| _, Tfun _ | _, Tenum _
| _, Ctypes.Tvar _ | _, Tvoid | _, Tint _ | _, Tfloat _ -> false
| _, _ -> true
(* assumes v2 is an array of objects of type ty *)
let rec tab_struct mark loc v1 v2 s ty n n1 n2=
let l = begin
match tag_type_definition n with
| TTStructUnion ((Tstruct _),fl) ->
fl
| _ -> assert false
end in
if mark then
List.fold_left
(fun p t ->
if compatible_type t.var_type v2.nterm_type
then make_and p (not_alias loc v2 (in_struct v1 t))
else p)
nptrue l
else
make_and (List.fold_left
(fun p t ->
if compatible_type t.var_type v2.nterm_type
then make_and p (not_alias loc v2 (in_struct v1 t))
else p)
nptrue l)
(make_forall_range loc v2 s
(fun t i ->
local_separation mark loc n1 v1 (n2^"[i]") (indirection loc ty t)))
and local_separation mark loc n1 v1 n2 v2 =
match (v1.nterm_type.Ctypes.ctype_node,v2.nterm_type.Ctypes.ctype_node)
with
| Tarray (_,ty, None), _ ->
error loc "array size missing in `%s'" n1
| _, Tarray (_,ty, None) ->
error loc "array size missing in `%s'" n2
| Tstruct n , Tarray (_,ty,Some s) ->
tab_struct mark loc v1 v2 s ty n n1 n2
| Tarray (_,ty,Some s) , Tstruct n ->
tab_struct mark loc v2 v1 s ty n n1 n2
| Tarray (_,ty1,Some s1), Tarray(_,ty2,Some s2) ->
make_and
(if compatible_type v1.nterm_type v2.nterm_type
then
(not_alias loc v1 v2)
else
nptrue)
(make_and
(make_forall_range loc v1 s1
(fun t i -> local_separation mark loc (n1^"[i]")
(indirection loc ty1 t) n2 v2))
(make_forall_range loc v2 s2
(fun t i -> local_separation true loc n1 v1 (n2^"[j]")
(indirection loc ty2 t))))
| _, _ -> nptrue
let separation loc v1 v2 =
local_separation false loc v1.var_name (var_to_term loc v1)
v2.var_name (var_to_term loc v2)
let rec full_tab_struct mark loc v1 v2 s ty n n1 n2=
let l = begin
match tag_type_definition n with
| TTStructUnion ((Tstruct _),fl) ->
fl
| _ -> assert false
end in
if mark then
List.fold_left
(fun p t ->
if full_compatible_type t.var_type v2.nterm_type
then make_and p (not_alias loc v2 (in_struct v1 t))
else p)
nptrue l
else
make_and (List.fold_left
(fun p t ->
if full_compatible_type t.var_type v2.nterm_type
then make_and p (not_alias loc v2 (in_struct v1 t))
else p)
nptrue l)
(make_forall_range loc v2 s
(fun t i ->
full_local_separation mark loc n1 v1 (n2^"[i]") (indirection loc ty t)))
and full_local_separation mark loc n1 v1 n2 v2 =
match (v1.nterm_type.Ctypes.ctype_node,v2.nterm_type.Ctypes.ctype_node)
with
| Tarray (_,ty, None), _ ->
error loc "array size missing in `%s'" n1
| _, Tarray (_,ty, None) ->
error loc "array size missing in `%s'" n2
| Tstruct n , Tarray (_,ty,Some s) ->
full_tab_struct mark loc v1 v2 s ty n n1 n2
| Tarray (_,ty,Some s) , Tstruct n ->
full_tab_struct mark loc v2 v1 s ty n n1 n2
| Tarray (_,ty1,Some s1), Tarray(_,ty2,Some s2) ->
make_and
(if full_compatible_type v1.nterm_type v2.nterm_type
then
(not_alias loc v1 v2)
else
nptrue)
(make_and
(make_forall_range loc v1 s1
(fun t i -> full_local_separation mark loc (n1^"[i]")
(indirection loc ty1 t) n2 v2))
(make_forall_range loc v2 s2
(fun t i -> full_local_separation true loc n1 v1 (n2^"[j]")
(indirection loc ty2 t))))
| Tpointer (_,ty1) , Tpointer (_,ty2) ->
if full_compatible_type v1.nterm_type v2.nterm_type
then
(not_alias loc v1 v2)
else
nptrue
| Tarray (_,ty2,Some s2) , Tpointer (_,ty1)
| Tpointer (_,ty1), Tarray (_,ty2,Some s2) ->
make_and
(if full_compatible_type v1.nterm_type v2.nterm_type
then
(not_alias loc v1 v2)
else
nptrue)
(make_forall_range loc v2 s2
(fun t i -> full_local_separation true loc n1 v1 (n2^"[j]")
(indirection loc ty2 t)))
| Tstruct n, Tpointer (_,ty) ->
let l = begin
match tag_type_definition n with
| TTStructUnion ((Tstruct _),fl) ->
fl
| _ -> assert false
end in
(List.fold_left
(fun p t ->
make_and p (full_local_separation mark loc n2 v2 n1
(in_struct v1 t)))
nptrue l)
| Tpointer (_,ty), Tstruct n ->
let l = begin
match tag_type_definition n with
| TTStructUnion ((Tstruct _),fl) ->
fl
| _ -> assert false
end in
(List.fold_left
(fun p t ->
make_and p (full_local_separation mark loc n1 v1 n2
(in_struct v2 t)))
nptrue l)
| Tstruct n1, Tstruct n2 ->
let l2 = begin
match tag_type_definition n2 with
| TTStructUnion ((Tstruct _),fl) ->
fl
| _ -> assert false
end in
let l1 = begin
match tag_type_definition n1 with
| TTStructUnion ((Tstruct _),fl) ->
fl
| _ -> assert false
end in
(List.fold_left
(fun p1 t1 ->
(List.fold_left
(fun p2 t2 ->
make_and p2 (full_local_separation mark loc n1
(in_struct v1 t1)
n2 (in_struct v2 t2)))
p1 l2))
nptrue l1)
| _, _ -> nptrue
let fullseparation loc v1 v2 =
full_local_separation false loc v1.var_name (var_to_term loc v1)
v2.var_name (var_to_term loc v2)
let rec rehash z1 z2 =
let t =
(try
let t2 = Hashtbl.find type_why_table z2 in
Hashtbl.remove type_why_table z2;
(try
let t1 = Hashtbl.find type_why_table z1 in
Hashtbl.remove type_why_table z1;
Hashtbl.iter
(fun a1 tw2 ->
try
begin
let tw1 = Hashtbl.find t1 a1 in
unifier_type_why tw1 tw2
end
with Not_found -> Hashtbl.add t1 a1 tw2
)
t2;
t1
with Not_found -> t2)
with Not_found ->
try
Hashtbl.find type_why_table z1
with Not_found -> Hashtbl.create 5)
in
Hashtbl.add type_why_table z1 t;
Hashtbl.add type_why_table z2 t
and unifier_type_why tw1 tw2 =
match tw1,tw2 with
| Pointer z1 , Pointer z2 -> unifier_zone z1 z2
| Addr z1 , Addr z2 -> unifier_zone z1 z2
| Why_Logic s1, Why_Logic s2 when s1 = s2 -> ()
(* int types *)
| Info.Int, Info.Int -> ()
| Why_Logic s, Info.Int
| Info.Int, Why_Logic s when is_int_type s -> ()
| Why_Logic s1, Why_Logic s2 when is_int_type s1 && is_int_type s2 -> ()
(* float types *)
| Info.Real, Info.Real -> ()
| Why_Logic s, Info.Real
| Info.Real, Why_Logic s when is_real_type s -> ()
| Why_Logic s1, Why_Logic s2 when is_real_type s1 && is_real_type s2 -> ()
(* errors *)
| Memory _, _ | _, Memory _ -> assert false
| _ ->
let t1 = output_why_type tw1
and t2 = output_why_type tw2
in
Format.eprintf "anomaly: unify why types `%a' and `%a'@."
Output.fprintf_logic_type t1 Output.fprintf_logic_type t2;
assert false
and unifier_zone z1 z2 =
let z1' = Info.repr z1
and z2' = Info.repr z2
in
if z1' == z2' then ()
else
begin
rehash z1' z2';
match z1'.repr, z2'.repr with
| None, None ->
if z1'.zone_is_var then z1'.repr <- Some z2' else
if z2'.zone_is_var then z2'.repr <- Some z1' else
if z1'.number < z2'.number then z2'.repr <- Some z1'
else z1'.repr <- Some z2'
| _ -> assert false
end
let loc_name loc =
let (f,l,fc,lc) = Loc.extract loc in
Format.sprintf "line %d, characters %d-%d" l fc lc
let unifier_type_why ?(var_name="?") tw1 tw2 =
try
unifier_type_why tw1 tw2
with
e ->
Format.eprintf "Anomaly in unifier_type_why for var '%s'@." var_name;
raise e
let assoctype ty assoc =
match ty with
| Pointer z ->
let z = repr z in
let z = try Cnorm.assoc_zone z assoc with Not_found -> z in
Pointer z
| _ -> ty
let copyhash z za assoc =
try let t = Hashtbl.copy (Hashtbl.find type_why_table z) in
Hashtbl.iter (fun x y -> Hashtbl.replace t x (assoctype y assoc) ) t;
(* Hashtbl.iter
(fun f tw ->
let l,n = output_why_type tw in
Format.eprintf "adding in type_why_table :(%s,%s) -> %s@."
za.name f.var_name n)
t;*)
Hashtbl.add type_why_table za t
with Not_found -> ()
let rec term tyf t =
match t.nterm_node with
| NTconstant _ -> ()
| NTvar v ->
if v.var_name = "result" then
unifier_type_why ~var_name:v.var_name v.var_why_type tyf
| NTapp ({napp_pred = f;napp_args = l} as call) ->
List.iter (term tyf) l;
let assoc = List.map (fun z -> (z,make_zone true)) f.logic_args_zones in
call.napp_zones_assoc <- assoc;
List.iter (fun (x,y) ->
let x = repr x in
copyhash x y assoc) assoc ;
let li =
List.map
(fun v ->
let t =
match v.var_why_type with
| Pointer z as ty ->
begin
try
let z = repr z in
Pointer (assoc_zone z assoc)
with
Not_found -> ty
end
| ty -> ty in v,t)
f.logic_args in
assert (List.length li = List.length l ||
(Format.eprintf " wrong arguments for %s : expected %d, got %d\n"
f.logic_name (List.length li) (List.length l); false));
begin
try
List.iter2
(fun (v,ty) e ->
unifier_type_why ~var_name:v.var_name ty (type_why_for_term e))
li l
with Invalid_argument _ -> assert false
end
| NTunop (_,t) -> term tyf t
| NTbinop (t1,_,t2)
| NTmin (t1,t2)
| NTmax (t1,t2) -> term tyf t1; term tyf t2
| NTarrow (t,_,_) -> term tyf t
| NTif (t1,t2,t3) -> term tyf t1; term tyf t2; term tyf t3
| NTold t
| NTat (t,_)
| NTbase_addr t
| NToffset t
| NTblock_length t
| NTarrlen t
| NTstrlen (t,_,_)
| NTcast (_,t)
| NTrange (t,None,None,_,_) -> term tyf t
| NTrange (t1,Some t2,None,_,_) | NTrange (t1,None,Some t2,_,_) ->
term tyf t1; term tyf t2
| NTminint _ | NTmaxint _ ->
()
| NTrange (t1,Some t2,Some t3,_,_) -> term tyf t1; term tyf t2; term tyf t3
let rec predicate tyf p =
match p.npred_node with
| NPfalse
| NPtrue -> ()
| NPapp ({napp_pred = f;napp_args = l} as call) ->
List.iter (term tyf) l;
let assoc = List.map (fun z -> (z,make_zone true)) f.logic_args_zones in
call.napp_zones_assoc <- assoc;
List.iter (fun (x,y) ->
let x = repr x in
copyhash x y assoc) assoc ;
let li =
List.map
(fun v ->
let t =
match v.var_why_type with
| Pointer z as ty ->
begin
try
let z = repr z in
Pointer (assoc_zone z assoc)
with
Not_found -> ty
end
| ty -> ty in v,t )
f.logic_args in
assert (List.length li = List.length l ||
(Format.eprintf " wrong arguments for %s : expected %d, got %d\n"
f.logic_name (List.length li) (List.length l); false));
begin
try List.iter2
(fun (v,ty) e ->
unifier_type_why ~var_name:v.var_name ty (type_why_for_term e)) li l
with Invalid_argument _ -> assert false
end
| NPrel (t1,op,t2) ->
term tyf t1;
term tyf t2;
unifier_type_why ~var_name:(loc_name t1.nterm_loc) (type_why_for_term t1)
(type_why_for_term t2)
| NPand (p1,p2)
| NPor (p1,p2)
| NPimplies (p1,p2)
| NPiff (p1,p2) -> predicate tyf p1; predicate tyf p2
| NPnot p -> predicate tyf p
| NPif (t,p1,p2) -> term tyf t; predicate tyf p1; predicate tyf p2
| NPforall (_,p)
| NPexists (_,p)
| NPold p
| NPat (p,_) -> predicate tyf p
| NPvalid t -> term tyf t
| NPvalid_index (t1,t2) -> term tyf t1; term tyf t2
| NPvalid_range (t1,t2,t3) -> term tyf t1; term tyf t2; term tyf t3
| NPfresh t -> term tyf t
| NPnamed (_,p) -> predicate tyf p
| NPseparated (t1,t2)
| NPfull_separated (t1,t2) -> term tyf t1; term tyf t2
| NPbound_separated (t1,t2,t3,t4) ->
term tyf t1; term tyf t2; term tyf t3; term tyf t4
let rec calcul_zones expr =
match expr.nexpr_node with
| NEnop -> ()
| NEconstant _
| NEstring_literal _
| NEvar _ -> ()
| NEarrow (e,_,_) -> calcul_zones e
| NEseq (e1,e2) -> calcul_zones e1; calcul_zones e2
| NEassign_op (lv,_,e) -> () (* no 2 pointers here *)
| NEassign (lv,e) -> calcul_zones lv; calcul_zones e;
(*
Format.eprintf "lv = %a, e = %a@."
Cprint.nexpr lv Cprint.nexpr e;
*)
let tw1 = type_why lv in
let tw2 = type_why e in
unifier_type_why ~var_name:(loc_name lv.nexpr_loc) tw1 tw2
| NEunary (_,e) -> calcul_zones e
| NEincr (_,e) -> calcul_zones e
| NEbinary (e1,Bsub_pointer,e2) | NEbinary (e1,Blt_pointer,e2)
| NEbinary (e1,Bgt_pointer,e2) | NEbinary (e1,Ble_pointer,e2)
| NEbinary (e1,Bge_pointer,e2) | NEbinary (e1,Beq_pointer,e2)
| NEbinary (e1,Bneq_pointer,e2) -> calcul_zones e1; calcul_zones e2;
let tw1 = type_why e1 in
let tw2 = type_why e2 in
unifier_type_why ~var_name:(loc_name e1.nexpr_loc) tw1 tw2
| NEbinary (e1,_,e2) -> calcul_zones e1; calcul_zones e2
| NEcall ({ncall_fun = e;ncall_args = l} as call) ->
List.iter calcul_zones l;
let f = match e.nexpr_node with
| NEvar (Fun_info f) -> f
| _ -> assert false
in
let assoc = List.map (fun z ->(z,make_zone true)) f.args_zones in
call.ncall_zones_assoc <- assoc;
List.iter (fun (x,y) ->
let x = repr x in
copyhash x y assoc) assoc ;
let arg_types =
List.map
(fun v ->
let t =
match v.var_why_type with
| Pointer z as ty ->
begin
try
let z = repr z in
Pointer (assoc_zone z assoc)
with
Not_found -> ty
end
| ty -> ty in v,t)
f.args
in
begin
try List.iter2 (fun (v,ty) e -> unifier_type_why ~var_name:v.var_name ty
(type_why e))
arg_types l
with Invalid_argument _ ->
warning expr.nexpr_loc "Call to variable args function"
end
| NEcond (e1,e2,e3)-> calcul_zones e1; calcul_zones e2; calcul_zones e3
| NEcast (_,e) -> calcul_zones e
| NEmalloc (_,e) -> calcul_zones e
let rec c_initializer ty tw init =
match init with
| Iexpr e ->
calcul_zones e;
let twe = type_why e in
unifier_type_why ~var_name:(loc_name e.nexpr_loc) tw twe
| Ilist l ->
match ty.ctype_node with
| Tstruct tag ->
begin
match tag_type_definition tag with
| TTStructUnion(ty,fields) ->
begin
try List.iter2
(fun f v ->
c_initializer f.var_type f.var_why_type v)
fields l
with Invalid_argument _ -> assert false
end
| _ -> assert false
end
| Tarray (_,ty,_) ->
let tw = type_type_why ty false in
List.iter (fun init -> c_initializer ty tw init) l
| _ -> assert false
let option_iter f x =
match x with
| None -> ()
| Some x -> f x
let loop_annot tyf la =
option_iter (predicate tyf) la.invariant;
option_iter (fun (_,l) -> List.iter (term tyf) l) la.loop_assigns;
option_iter (fun (t,_) -> term tyf t) la.variant
let spec tyf sp =
begin
match sp.requires with
| None -> ()
| Some p ->
predicate tyf p
end;
begin
match sp.assigns with
| None -> ()
| Some (_,l) -> List.iter (term tyf) l
end;
begin
match sp.ensures with
| None -> ()
| Some p -> predicate tyf p
end;
begin
match sp.decreases with
| None -> ()
| Some (t,_) -> term tyf t
end
let rec statement twf st =
match st.nst_node with
| NSnop | NSreturn None | NSbreak | NScontinue | NSlogic_label _
| NSgoto _ -> ()
| NSassert p | NSassume p -> predicate twf p
| NSexpr e -> calcul_zones e
| NSif (e,st1,st2) -> calcul_zones e; statement twf st1; statement twf st2
| NSwhile (lannot,e,st)
| NSdowhile (lannot,st,e)->
loop_annot twf lannot; calcul_zones e;statement twf st
| NSfor (lannot, e1, e2, e3, st)->
loop_annot twf lannot;
calcul_zones e1; calcul_zones e2;
calcul_zones e3; statement twf st
| NSblock ls -> List.iter (statement twf) ls
| NSreturn (Some e) -> calcul_zones e ;
unifier_type_why ~var_name:(loc_name e.nexpr_loc) twf (type_why e)
| NSlabel (_,st) -> statement twf st
| NSswitch (e1, e2, l) -> calcul_zones e1;
List.iter (fun (x, y) -> List.iter (statement twf) y) l
| NSspec (sp,st) -> spec twf sp; statement twf st
| NSdecl (_, v, None, st) -> statement twf st
| NSdecl (_, v, Some i, st) ->
c_initializer v.var_type v.var_why_type i;
statement twf st
module Hzone = Hashtbl.Make(struct
type t = zone
let equal z1 z2 = z1.number == z2.number
let hash z = z.number
end)
let rec add_zone ty l =
(* Format.eprintf "add_zone ty=%s@." (snd (output_why_type ty));*)
match ty with
| Pointer z ->
let z = repr z in
if List.mem z l then l else
begin match z.repr with
| None ->
begin
try
let t = Hashtbl.find type_why_table z in
Hashtbl.fold (fun _ tw l ->
add_zone tw l) t (z::l)
with Not_found -> z::l
end
| Some _ -> l
end
| _ -> l
let collect_zones args ret_type =
let l =
List.fold_left
(fun l v ->
add_zone v.var_why_type l) [] args
in
add_zone ret_type l
let global_decl e =
match e with
| Naxiom (_,sp) | Ninvariant (_,sp) | Ninvariant_strong (_,sp) ->
predicate Unit sp
| Nlogic (f, NPredicate_def (_,p)) ->
predicate Unit p;
f.logic_args_zones <- collect_zones f.logic_args f.logic_why_type
| Nlogic (f, NFunction_def (_,_,t)) ->
term Unit t;
f.logic_args_zones <- collect_zones f.logic_args f.logic_why_type
| Nlogic (f, (NPredicate_reads _ | NFunction _)) ->
f.logic_args_zones <- collect_zones f.logic_args f.logic_why_type
(* | Nfunspec (sp,_,f) ->
spec f.type_why_fun sp;
if f.args_zones = [] then f.args_zones <- collect_zones f.args f.type_why_fun
*)
| Ntypedef _ | Ntypedecl _ | Ndecl (_,_,None) | Ntype _ -> ()
| Ndecl (_, v, Some i) ->
c_initializer v.var_type v.var_why_type i
(* | Nfundef (sp, _, f, st) ->
spec f.type_why_fun sp;
statement f.type_why_fun st;
if f.args_zones = [] then f.args_zones <- collect_zones f.args f.type_why_fun
*)
let c_fun_poly fun_name (_, _, f, _,_) =
if f.args_zones = [] then
begin
let l = collect_zones f.args f.type_why_fun in
Coptions.lprintf "Why polymorphic zones for function %s:@." f.fun_name;
List.iter
(fun z -> Coptions.lprintf "%s " z.name) l;
Coptions.lprintf "@.";
f.args_zones <- l
end
let c_fun_separation fun_name (sp, _, f, st,_) =
spec f.type_why_fun sp;
begin
match st with
| None -> ()
| Some st -> statement f.type_why_fun st
end
let file p =
List.iter (fun d -> global_decl d.node) p
let funct l =
List.iter
(fun f ->
let fu = try find_c_fun f.fun_name with Not_found -> assert false in
c_fun_separation f.fun_name fu;
c_fun_poly f.fun_name fu)
l
(* Hashtbl.iter c_fun_poly Cenv.c_functions;
Hashtbl.iter c_fun_separation Cenv.c_functions;
*)
(*
Local Variables:
compile-command: "make -j -C .. bin/caduceus.byte"
End:
*)
|