File: Partition.v

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (205 lines) | stat: -rw-r--r-- 5,157 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
(**************************************************************************)
(*                                                                        *)
(* Proof of the Quicksort Algorithm.                                      *)
(*                                                                        *)
(* Jean-Christophe Fillitre (LRI, Universit Paris Sud)                  *)
(* August 1998                                                            *)
(*                                                                        *)
(**************************************************************************)

Require Import Why.

Require Import Omega.

Set Implicit Arguments.
Unset Strict Implicit.


(* Here we define the property  which expresses that,
 * on the segment [g,d] of the array t, all elements on the left of p
 * are lesser or equal than t[p] and all elements on the right of p
 * are greater or equal than t[p].
 *
 * So we introduce the properties array_le and array_ge which express
 * that all elements of a segment [g,d] are <= (resp. >=) than a given value
 *)

Inductive array_le (t:array Z) (g d v:Z) : Prop :=
    array_le_cons :
      (forall i:Z, (g <= i <= d)%Z -> (access t i <= v)%Z) ->
      array_le t g d v.

Inductive array_ge (t:array Z) (g d v:Z) : Prop :=
    array_ge_cons :
      (forall i:Z, (g <= i <= d)%Z -> (v <= access t i)%Z) ->
      array_ge t g d v.

Inductive partition_p (t:array Z) (g d p:Z) : Prop :=
    piv :
      (g <= p)%Z ->
      (p <= d)%Z ->
      array_le t g (p - 1) (access t p) ->
      array_ge t (p + 1) d (access t p) -> partition_p t g d p.


(* Lemmas about array_le *)

Lemma array_le_empty :
 forall (t:array Z) (g d v:Z), (d < g)%Z -> array_le t g d v.
Proof.
intros t g d v H.
constructor.
 intros.
absurd (g <= d)%Z; omega.
Qed.

Lemma array_le_right_extension :
 forall (t:array Z) (g d v:Z),
   array_le t g d v ->
   (access t (d + 1) <= v)%Z -> array_le t g (d + 1) v.
Proof.
intros t g d v H_le Hv.
elim H_le; intros.
constructor.
 intros.
elim (Z_eq_dec i (d + 1)); intro.
rewrite a; assumption.
apply H; omega.
Qed.

Lemma array_le_exchange :
 forall (t t':array Z) (g d v x y:Z),
   (0 <= g)%Z ->
   (d < array_length t)%Z ->
   array_le t g d v ->
   (d < x <= y)%Z -> exchange t t' x y -> array_le t' g d v.
Proof.
intros t t' g d v x y Hg Hd Hle Hxy Hex.
elim Hle; intros.
 elim Hex; intros.
constructor.
 intros.
rewrite <- H5; try omega.
apply H; assumption.
Qed.

(* Lemmas about array_ge *)

Lemma array_ge_empty :
 forall (t:array Z) (g d v:Z), (d < g)%Z -> array_ge t g d v.
Proof.
intros t g d v H.
constructor.
 intros.
absurd (g <= d)%Z; omega.
Qed.

Lemma array_ge_left_extension :
 forall (t:array Z) (g d v:Z),
   array_ge t g d v ->
   (v <= access t (g - 1))%Z -> array_ge t (g - 1) d v.
Proof.
intros t g d v H_ge Hv.
elim H_ge; intros.
constructor.
 intros.
elim (Z_eq_dec i (g - 1)); intro.
rewrite a; assumption.
apply H; omega.
Qed.

Lemma array_ge_exchange :
 forall (t t':array Z) (g d v x y:Z),
   (0 <= g)%Z ->
   (d < array_length t)%Z ->
   array_ge t g d v ->
   (x <= y < g)%Z -> exchange t t' x y -> array_ge t' g d v.
Proof.
intros t t' g d v x y Hg Hd Hge Hxy Hex.
elim Hge; intros.
 elim Hex; intros.
constructor.
 intros.
rewrite <- H5; try omega.
apply H; assumption.
Qed.


(* Lemmas about partition_p and sub_permut *)

Lemma partition_p_permut_left :
 forall (t t':array Z) (g d p:Z),
   (0 <= g)%Z ->
   (g < d)%Z ->
   (d < array_length t)%Z ->
   (g <= p <= d)%Z ->
   partition_p t g d p ->
   sub_permut g (Zpred p) t t' -> partition_p t' g d p.
Proof.
intros t t' g d p hyp1 hyp2 hyp3 hyp4 piv_t perm.
elim piv_t; intros.
cut (Zpred p < array_length t)%Z; [ intro | unfold Zpred; omega ].
generalize (sub_permut_function perm hyp1 H3).
 intro.
constructor; try assumption.
(* array_le *)
constructor.
 intros.
rewrite <- (sub_permut_eq perm (i:=p)).
elim H1; intros.
elim (H4 i); try (unfold Zpred; omega).
 intros.
elim H8; intros.
elim H9; intros.
 rewrite H11.
apply H6; unfold Zpred in H10; omega.
unfold Zpred; omega.
(* array_ge *)
constructor.
 intros.
rewrite <- (sub_permut_eq perm (i:=p)).
rewrite <- (sub_permut_eq perm (i:=i)).
elim H2; intros.
apply H6; omega.
unfold Zpred; omega.
unfold Zpred; omega.
Qed.


Lemma partition_p_permut_right :
 forall (t t':array Z) (g d p:Z),
   (0 <= g)%Z ->
   (g < d)%Z ->
   (d < array_length t)%Z ->
   (g <= p <= d)%Z ->
   partition_p t g d p ->
   sub_permut (Zsucc p) d t t' -> partition_p t' g d p.
Proof.
intros t t' g d p hyp1 hyp2 hyp3 hyp4 piv_t perm.
elim piv_t; intros.
cut (0 <= Zsucc p)%Z; [ intro | unfold Zpred; omega ].
generalize (sub_permut_function perm H3 hyp3).
 intro.
constructor; try assumption.
(* array_le *)
constructor.
 intros.
rewrite <- (sub_permut_eq perm (i:=p)).
rewrite <- (sub_permut_eq perm (i:=i)).
elim H1; intros.
apply H6; omega.
unfold Zsucc; omega.
unfold Zsucc; omega.
(* array_ge *)
constructor.
 intros.
rewrite <- (sub_permut_eq perm (i:=p)).
elim H2; intros.
elim (H4 i); try (unfold Zsucc; omega).
 intros.
elim H8; intros.
elim H9; intros.
 rewrite H11.
apply H6; unfold Zsucc in H10; omega.
unfold Zsucc; omega.
Qed.