1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
|
(* This file was originally generated by why.
It can be modified; only the generated parts will be overwritten. *)
Require Import Why.
Require Import Omega.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_1 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
(0 <= 0 /\ 0 <= ((array_length t) - 1)) /\ (sorted_array t 0 (0 - 1)) /\
(permut t t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < 0 ->
(0 <= l /\ l < (array_length t) -> (access t k) <= (access t l))))).
Proof.
unfold sorted_array; intuition.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_2 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
((i + 1) <= (i + 1) /\ (i + 1) <= (array_length t0)) /\ (i <= i /\ i <
(array_length t0)) /\
(forall (k:Z), (i <= k /\ k < (i + 1) -> (access t0 i) <= (access t0 k))).
Proof.
intuition.
assert (h: k = i).
omega.
subst result k; omega.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_3 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_7: j < result0),
0 <= j /\ j < (array_length t0).
Proof.
intuition.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_4 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_7: j < result0),
forall (HW_8: 0 <= j /\ j < (array_length t0)),
forall (result1: Z),
forall (HW_9: result1 = (access t0 j)),
0 <= min /\ min < (array_length t0).
Proof.
intuition.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_5 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_7: j < result0),
forall (HW_8: 0 <= j /\ j < (array_length t0)),
forall (result1: Z),
forall (HW_9: result1 = (access t0 j)),
forall (HW_10: 0 <= min /\ min < (array_length t0)),
forall (result2: Z),
forall (HW_11: result2 = (access t0 min)),
forall (HW_12: result1 < result2),
forall (min0: Z),
forall (HW_13: min0 = j),
forall (j0: Z),
forall (HW_14: j0 = (j + 1)),
(((i + 1) <= j0 /\ j0 <= (array_length t0)) /\ (i <= min0 /\ min0 <
(array_length t0)) /\
(forall (k:Z), (i <= k /\ k < j0 -> (access t0 min0) <= (access t0 k)))) /\
(Zwf 0 ((array_length t0) - j0) ((array_length t0) - j)).
Proof.
intuition.
assert (h: (k < j) \/ k = j).
omega.
intuition.
apply Zle_trans with (access t0 min).
subst min0; omega.
auto with *.
subst min0 k; omega.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_6 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_7: j < result0),
forall (HW_8: 0 <= j /\ j < (array_length t0)),
forall (result1: Z),
forall (HW_9: result1 = (access t0 j)),
forall (HW_10: 0 <= min /\ min < (array_length t0)),
forall (result2: Z),
forall (HW_11: result2 = (access t0 min)),
forall (HW_15: result1 >= result2),
forall (j0: Z),
forall (HW_16: j0 = (j + 1)),
(((i + 1) <= j0 /\ j0 <= (array_length t0)) /\ (i <= min /\ min <
(array_length t0)) /\
(forall (k:Z), (i <= k /\ k < j0 -> (access t0 min) <= (access t0 k)))) /\
(Zwf 0 ((array_length t0) - j0) ((array_length t0) - j)).
Proof.
intuition.
assert (h: (k < j) \/ k = j).
omega.
intuition.
subst k; omega.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_7 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_17: j >= result0),
0 <= min /\ min < (array_length t0).
Proof.
intuition.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_8 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_17: j >= result0),
forall (HW_18: 0 <= min /\ min < (array_length t0)),
forall (result1: Z),
forall (HW_19: result1 = (access t0 min)),
0 <= i /\ i < (array_length t0).
Proof.
intuition.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_9 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_17: j >= result0),
forall (HW_18: 0 <= min /\ min < (array_length t0)),
forall (result1: Z),
forall (HW_19: result1 = (access t0 min)),
forall (HW_20: 0 <= i /\ i < (array_length t0)),
forall (result2: Z),
forall (HW_21: result2 = (access t0 i)),
forall (HW_22: 0 <= min /\ min < (array_length t0)),
forall (t1: (array Z)),
forall (HW_23: t1 = (update t0 min result2)),
0 <= i /\ i < (array_length t1).
Proof.
intuition.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_10 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_4: i < (result - 1)),
forall (j: Z),
forall (min: Z),
forall (HW_5: ((i + 1) <= j /\ j <= (array_length t0)) /\ (i <= min /\
min < (array_length t0)) /\
(forall (k:Z),
(i <= k /\ k < j -> (access t0 min) <= (access t0 k)))),
forall (result0: Z),
forall (HW_6: result0 = (array_length t0)),
forall (HW_17: j >= result0),
forall (HW_18: 0 <= min /\ min < (array_length t0)),
forall (result1: Z),
forall (HW_19: result1 = (access t0 min)),
forall (HW_20: 0 <= i /\ i < (array_length t0)),
forall (result2: Z),
forall (HW_21: result2 = (access t0 i)),
forall (HW_22: 0 <= min /\ min < (array_length t0)),
forall (t1: (array Z)),
forall (HW_23: t1 = (update t0 min result2)),
forall (HW_24: 0 <= i /\ i < (array_length t1)),
forall (t2: (array Z)),
forall (HW_25: t2 = (update t1 i result1)),
forall (i0: Z),
forall (HW_26: i0 = (i + 1)),
((0 <= i0 /\ i0 <= ((array_length t2) - 1)) /\
(sorted_array t2 0 (i0 - 1)) /\ (permut t2 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i0 ->
(i0 <= l /\ l < (array_length t2) -> (access t2 k) <= (access t2 l)))))) /\
(Zwf 0 ((array_length t2) - i0) ((array_length t0) - i)).
Proof.
intuition.
ArraySubst t1.
Save.
(* Why obligation from file "", line 0, characters 0-0: *)
(*Why goal*) Lemma selection_po_11 :
forall (t: (array Z)),
forall (HW_1: (array_length t) >= 1),
forall (i: Z),
forall (t0: (array Z)),
forall (HW_2: (0 <= i /\ i <= ((array_length t0) - 1)) /\
(sorted_array t0 0 (i - 1)) /\ (permut t0 t) /\
(forall (k:Z),
(forall (l:Z),
(0 <= k /\ k < i ->
(i <= l /\ l < (array_length t0) -> (access t0 k) <=
(access t0 l)))))),
forall (result: Z),
forall (HW_3: result = (array_length t0)),
forall (HW_27: i >= (result - 1)),
(sorted_array t0 0 ((array_length t0) - 1)) /\ (permut t0 t).
Proof.
intuition.
ArraySubst t2.
ArraySubst t1.
assert (h: i = 0%Z \/ (0 < i)).
omega.
intuition.
replace (i0 - 1)%Z with 0%Z.
unfold sorted_array; intros; omega.
omega.
replace (i0 - 1)%Z with (i - 1 + 1)%Z.
apply right_extension.
omega.
ArraySubst t2.
ArraySubst t1.
apply sorted_array_id with t0.
assumption.
unfold array_id; intros.
subst t2; do 2 AccessOther.
replace (i - 1 + 1)%Z with i.
subst t2 t1; do 2 AccessOther.
subst result1.
auto with *.
omega.
omega.
apply permut_trans with t0.
subst t2; subst t1; subst result1 result2.
apply exchange_is_permut with min i; auto with *.
assumption.
assert (h: k = i \/ (k < i)).
omega.
intuition.
subst k.
subst t2.
AccessSame.
AccessOther.
subst t1.
assert (h: l = min \/ min <> l).
omega.
intuition.
subst l; AccessSame.
subst result1 result2; auto with *.
assert (h: l < array_length (update (update t0 min result2) i result1)).
assumption.
do 2 rewrite array_length_update in h.
AccessOther.
subst.
auto with *.
ArraySubst t1.
assert (h: i < array_length (update t0 min result2)). assumption.
rewrite array_length_update in h.
assert (h': l < array_length (update (update t0 min result2) i result1)). assumption.
do 2 rewrite array_length_update in h'.
omega.
subst.
AccessOther.
AccessOther.
AccessOther.
assert (h: l < array_length (update (update t0 min (access t0 i)) i (access t0 min))). assumption.
do 2 rewrite array_length_update in h.
assert (l = min \/ min <> l).
omega.
intuition.
subst l; AccessSame.
auto with *.
AccessOther.
auto with *.
assert (h: l < array_length (update (update t0 min (access t0 i)) i (access t0 min))). assumption.
do 2 rewrite array_length_update in h.
omega.
subst t2 t1; simpl; unfold Zwf; omega.
Save.
Proof.
intuition.
assert (i=0 \/ 0<i). omega. intuition.
unfold sorted_array; intros; omega.
replace (array_length t0 - 1)%Z with (i - 1 + 1)%Z.
apply right_extension; try omega.
assumption.
auto with *.
omega.
Qed.
(*Why*) Parameter selection_valid :
forall (_: unit), forall (t: (array Z)), forall (_: (array_length t) >= 1),
(sig_2 (array Z) unit
(fun (t0: (array Z)) (result: unit) =>
((sorted_array t0 0 ((array_length t0) - 1)) /\ (permut t0 t)))).
|