1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
|
(**************************************************************************)
(* *)
(* The Why platform for program certification *)
(* Copyright (C) 2002-2008 *)
(* Romain BARDOU *)
(* Jean-Franois COUCHOT *)
(* Mehdi DOGGUY *)
(* Jean-Christophe FILLITRE *)
(* Thierry HUBERT *)
(* Claude MARCH *)
(* Yannick MOY *)
(* Christine PAULIN *)
(* Yann RGIS-GIANAS *)
(* Nicolas ROUSSET *)
(* Xavier URBAIN *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU General Public *)
(* License version 2, as published by the Free Software Foundation. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(* See the GNU General Public License version 2 for more details *)
(* (enclosed in the file GPL). *)
(* *)
(**************************************************************************)
open Java_env
open Java_tast
let rec term acc t =
match t.java_term_node with
| JTlit _ | JTvar _
| JTstatic_field_access _ -> acc
| JTapp (f,lt) -> f::(List.fold_left term acc lt)
| JTat(t,_) -> term acc t
| JTbin (t1,_,_,t2) -> term (term acc t1) t2
| JTun (_,_,t1) -> term acc t1
(*
| JTif(t1,t2,t3) -> term (term (term acc t1) t2) t3
*)
(*
| JTinstanceof(t,_)
| JTunary (_,t)
*)
| JTcast(_,t) -> term acc t
| JTarray_access (t1, t2) -> term (term acc t1) t2
| JTarray_range (t1, t2, t3) ->
Option_misc.fold_left term
(Option_misc.fold_left term (term acc t1) t2) t3
| JTarray_length t1
| JTfield_access (t1, _) -> term acc t1
let rec assertion acc p =
match p.java_assertion_node with
| JAtrue
| JAfalse -> acc
| JAat(a,lab) -> assertion acc a
| JAnot a -> assertion acc a
| JAbin_obj(t1,_,t2)
| JAbin(t1,_,_,t2) -> term (term acc t1) t2
| JAapp(f,lt) -> f::(List.fold_left term acc lt)
| JAand(p1,p2) | JAor(p1,p2)
| JAimpl (p1,p2) | JAiff(p1,p2) ->
assertion (assertion acc p1) p2
(*
| JAif(t1,p2,p3) ->
assertion (assertion (term acc t1) p2) p3
| JAnot p
| JAold p
*)
| JAquantifier (_,_,p) -> assertion acc p
| JAbool_expr t | JAinstanceof (t, _, _) -> term acc t
(*
let spec s =
begin
match s.requires with
| None -> []
| Some p ->
predicate p
end @
begin
match s.assigns with
| None -> []
| Some l -> List.fold_left (fun acc t -> (term t) @acc) [] l
end @
begin
match s.ensures with
| None -> []
| Some p -> predicate p
end @
begin
match s.decreases with
| None -> []
| Some (t,_) -> term t
end
*)
let rec expr acc e : 'a list =
match e.java_expr_node with
| JElit _
| JEvar _
| JEincr_local_var _
| JEstatic_field_access _ -> acc
| JEcall (e, mi, args) ->
List.fold_left expr (expr (MethodInfo mi::acc) e) args
| JEconstr_call (e, ci, args) ->
List.fold_left expr (expr (ConstructorInfo ci::acc) e) args
| JEstatic_call (mi, args) ->
List.fold_left expr (MethodInfo mi::acc) args
| JEnew_array(ty, dims) ->
List.fold_left expr acc dims
| JEnew_object(ci,args) ->
List.fold_left expr (ConstructorInfo ci::acc) args
| JEif(e1,e2,e3)
| JEassign_array (e1, e2, e3)
| JEassign_array_op (e1, e2, _, e3)->
expr (expr (expr acc e1) e2) e3
| JEassign_local_var_op (_, _, e)
| JEassign_local_var (_, e)
| JEassign_static_field ( _, e)
| JEassign_static_field_op ( _, _, e)
| JEarray_length e
| JEfield_access (e, _)
| JEincr_field (_,e,_)
| JEun (_, e) -> expr acc e
| JEassign_field (e1, _, e2)
| JEassign_field_op (e1, _, _, e2)
| JEarray_access (e1, e2)
| JEbin (e1, _, e2) | JEincr_array (_, e1, e2) ->
expr (expr acc e1) e2
| JEinstanceof(e,_)
| JEcast (_,e) -> expr acc e
let initialiser acc i =
match i with
| JIexpr e -> expr acc e
| _ -> assert false (* TODO *)
(*
let loop_annot acc la =
term (assertion acc la.java_loop_invariant) la.java_loop_variant
*)
let rec statement acc s : ('a list * 'b list) =
match s.java_statement_node with
| JSif(e, s1, s2) ->
let (a,b) = acc in
let b = expr b e in
statement (statement (a,b) s1) s2
| JSblock sl ->
List.fold_left statement acc sl
| JStry (s, catches, finally) ->
let acc = List.fold_left statement acc s in
let acc =
List.fold_left
(fun acc (_,s) -> List.fold_left statement acc s)
acc catches
in
Option_misc.fold
(fun b acc -> List.fold_left statement acc b) finally acc
| JSassert (_,t) -> let (a,b) = acc in (assertion a t,b)
| JSreturn_void
| JSbreak _ -> acc
| JSswitch (e, l)->
let (a,b) = acc in
let b = expr b e in
List.fold_left
(fun acc (cases,body) -> statements acc body)
(a,b) l
| JSthrow e
| JSreturn e
| JSexpr e -> let (a, b) = acc in (a, expr b e)
| JSfor (inits, cond, inv, dec, updates, body)->
let (a, b) = acc in
let b = List.fold_left expr
(List.fold_left expr (expr b cond) updates)
inits
in
let a = match dec with
| None -> a
| Some dec -> term (assertion a inv) dec
in
statement (a, b) body
| JSfor_decl (inits, cond, inv, dec, updates, body)->
let (a,b) = acc in
let b = List.fold_left
(fun acc (vi,i) -> Option_misc.fold_left initialiser acc i)
(List.fold_left expr (expr b cond) updates)
inits
in
let a = match dec with
| None -> a
| Some dec -> term (assertion a inv) dec
in
statement (a,b) body
| JSwhile (cond, inv, dec, body)->
let (a,b) = acc in
let b = expr b cond in
let a = match dec with
| None -> a
| Some dec -> term (assertion a inv) dec
in
statement (a,b) body
| JSvar_decl (vi, init, s)->
let (a,b)=acc in
statement (a,Option_misc.fold_left initialiser b init) s
| JSskip -> acc
and statements acc l = List.fold_left statement acc l
let compute_logic_calls f t =
let calls =
match t with
| Java_typing.JTerm t -> term [] t
| Java_typing.JAssertion a -> assertion [] a
| Java_typing.JReads r -> List.fold_left term [] r
in
f.java_logic_info_calls <- calls
let compute_calls f req body =
let (a, b) = List.fold_left statement ([], []) body in
f.method_info_calls <- b
let compute_constr_calls f req body =
let (a, b) = List.fold_left statement ([], []) body in
f.constr_info_calls <- b
module LogicCallGraph = struct
type t = (int, (java_logic_info * Java_typing.logic_body)) Hashtbl.t
module V = struct
type t = java_logic_info
let compare f1 f2 = Pervasives.compare f1.java_logic_info_tag f2.java_logic_info_tag
let hash f = f.java_logic_info_tag
let equal f1 f2 = f1 == f2
end
let iter_vertex iter =
Hashtbl.iter (fun _ (f,a) -> iter f)
let iter_succ iter _ f =
List.iter iter f.java_logic_info_calls
end
module LogicCallComponents = Graph.Components.Make(LogicCallGraph)
open Format
open Pp
type method_or_constructor_data =
| MethodData of Java_typing.method_table_info
| ConstructorData of Java_typing.constructor_table_info
let method_or_constructor_tag x =
match x with
| MethodInfo mi -> mi.method_info_tag
| ConstructorInfo ci -> ci.constr_info_tag
let method_or_constructor_info mt =
match mt with
| MethodData mti -> MethodInfo mti.Java_typing.mt_method_info
| ConstructorData cti -> ConstructorInfo cti.Java_typing.ct_constr_info
let print_method_or_constr fmt f =
match f with
| MethodInfo fi ->
fprintf fmt "%a.%s" Java_typing.print_type_name
fi.method_info_class_or_interface fi.method_info_name
| ConstructorInfo ci -> fprintf fmt "%s" ci.constr_info_trans_name
let method_or_constr_calls f =
match f with
| MethodInfo fi -> fi.method_info_calls
| ConstructorInfo ci -> ci.constr_info_calls
module CallGraph = struct
type t = (int, method_or_constructor_data) Hashtbl.t
module V = struct
type t = method_or_constructor_info
let compare f1 f2 =
Pervasives.compare
(method_or_constructor_tag f1) (method_or_constructor_tag f2)
let hash f = method_or_constructor_tag f
let equal f1 f2 = method_or_constructor_tag f1 == method_or_constructor_tag f2
end
let iter_vertex iter g =
Hashtbl.iter
(fun i mti ->
let f = method_or_constructor_info mti in
iter f) g
let iter_succ iter _ f =
List.iter iter
(match f with
| MethodInfo fi -> fi.method_info_calls
| ConstructorInfo ci -> ci.constr_info_calls)
end
module CallComponents = Graph.Components.Make(CallGraph)
let compute_logic_components ltable =
let tab_comp = LogicCallComponents.scc_array ltable in
Java_options.lprintf "***********************************\n";
Java_options.lprintf "Logic call graph: has %d components\n"
(Array.length tab_comp);
Java_options.lprintf "***********************************\n";
Array.iteri
(fun i l ->
Java_options.lprintf "Component %d:\n%a@." i
(print_list newline
(fun fmt f -> fprintf fmt " %s calls: %a\n" f.java_logic_info_name
(print_list comma
(fun fmt f -> fprintf fmt "%s" f.java_logic_info_name))
f.java_logic_info_calls))
l)
tab_comp;
tab_comp
let compute_components methods constrs =
let h = Hashtbl.create 97 in
Hashtbl.iter
(fun _ mti ->
Hashtbl.add h
mti.Java_typing.mt_method_info.method_info_tag (MethodData mti))
methods;
Hashtbl.iter
(fun _ cti ->
Hashtbl.add h
cti.Java_typing.ct_constr_info.constr_info_tag (ConstructorData cti))
constrs;
let n,comp = CallComponents.scc h in
let tab_comp = CallComponents.scc_array h in
Java_options.lprintf "******************************@\n";
Java_options.lprintf "Call graph: has %d components@\n" (Array.length tab_comp);
Java_options.lprintf "******************************@\n";
Array.iteri
(fun i l ->
Java_options.lprintf "Component %d:@\n%a@." i
(print_list newline
(fun fmt f -> fprintf fmt " - %a calls: %a@\n"
print_method_or_constr f
(print_list comma
(fun fmt f -> fprintf fmt "%a(%d)"
print_method_or_constr f (comp f)))
(method_or_constr_calls f)))
l)
tab_comp;
tab_comp
(*
Local Variables:
compile-command: "make -j -C .. bin/krakatoa.byte"
End:
*)
|