1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161
|
(**************************************************************************)
(* *)
(* The Why platform for program certification *)
(* Copyright (C) 2002-2008 *)
(* Romain BARDOU *)
(* Jean-Franois COUCHOT *)
(* Mehdi DOGGUY *)
(* Jean-Christophe FILLITRE *)
(* Thierry HUBERT *)
(* Claude MARCH *)
(* Yannick MOY *)
(* Christine PAULIN *)
(* Yann RGIS-GIANAS *)
(* Nicolas ROUSSET *)
(* Xavier URBAIN *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU General Public *)
(* License version 2, as published by the Free Software Foundation. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(* See the GNU General Public License version 2 for more details *)
(* (enclosed in the file GPL). *)
(* *)
(**************************************************************************)
(* $Id: jc_annot_inference.ml,v 1.124 2008/04/10 16:05:55 moy Exp $ *)
open Pp
open Format
open Jc_constructors
open Jc_ast
open Jc_env
open Jc_envset
open Jc_fenv
open Jc_options
open Jc_pervasives
open Jc_iterators
open Jc_region
open Jc_separation
open Apron
open Coeff
open Interval
open Lincons1
module TermTable =
Hashtbl.Make(struct type t = term
let equal = raw_term_equal
let hash = Hashtbl.hash end)
module TermSet =
struct
include Set.Make(struct type t = term
let compare = raw_term_compare end)
let of_list tls = List.fold_left (fun acc t -> add t acc) empty tls
end
module TermMap =
Map.Make(struct type t = term
let compare = raw_term_compare end)
(*
usage: jessie -ai <box,oct,pol,wp,boxwp,octwp,polwp>
ai behaviour with other jessie options:
-v prints inferred annotations
-d prints debug info
*)
(* Variables used in the interprocedural analysis *)
let inspected_functions = ref []
let nb_conj_atoms_inferred = ref 0
let nb_nodes = ref 0
let nb_loop_inv = ref 0
let nb_fun_pre = ref 0
let nb_fun_post = ref 0
let nb_fun_excep_post = ref 0
(* Utility functions *)
let normalize_expr e =
let name_app (e : expr) = match e#node with
| JCEapp _ ->
if e#typ = Jc_pervasives.unit_type then e else
let name = tmp_var_name () in
let vi = Jc_pervasives.var e#typ name in
Expr.mklet
~loc:e#loc
~var:vi
~init:e
~body:(Expr.mkvar ~loc:e#loc ~var:vi ())
()
| _ -> e
in
map_expr
~after:(fun e -> match e#node with
| JCElet(_vi,e1,e2) ->
let elist =
Option_misc.fold (fun e1 l -> e1::l) e1 [name_app e2]
in
replace_sub_expr e elist
| _ ->
let elist = IExpr.subs e in
let elist = List.map name_app elist in
replace_sub_expr e elist
) e
(* return the struct_info of (assumed) pointer t *)
let struct_of_term t =
match t#typ with
| JCTpointer(st,_,_) ->
begin match st with
| JCtag st -> st
| JCvariant _ -> assert false (* TODO *)
| JCunion _ -> assert false (* TODO *)
end
| _ ->
if debug then printf "[struct_of_term] %a@." Jc_output.term t;
assert false
let rec nb_conj_atoms a = match a#node with
| JCAand al -> List.fold_left (fun acc a -> nb_conj_atoms a + acc) 0 al
| JCAtrue | JCAfalse | JCArelation _ | JCAapp _
| JCAimplies _ | JCAiff _ | JCAquantifier _ | JCAinstanceof _
| JCAbool_term _ | JCAif _ | JCAmutable _ | JCAtagequality _ | JCAmatch _
| JCAor _ | JCAnot _ | JCAold _ | JCAat _ -> 1
let rec conjuncts a = match a#node with
| JCAand al -> List.flatten(List.map conjuncts al)
| _ -> [a]
let rec disjuncts a = match a#node with
| JCAor al -> List.flatten(List.map disjuncts al)
| _ -> [a]
let rec without_disjunct a =
fold_assertion (fun acc a -> match a#node with
| JCAor _ -> false
| _ -> acc) true a
let normalize_term t =
map_term (fun t ->
let tnode = match t#node with
| JCToffset(off,t',st) as tnode ->
begin match t'#node with
| JCTshift(t1,t2) ->
let offt1 = new term_with ~node:(JCToffset(off,t1,st)) t in
JCTbinary(offt1,(`Bsub,`Integer),t2)
| _ -> tnode
end
| tnode -> tnode
in
new term_with ~node:tnode t) t
let normalize_assertion a =
let a = map_term_in_assertion normalize_term a in
map_assertion (fun a ->
let anode = match a#node with
| JCAand al ->
JCAand(List.flatten (List.map conjuncts al))
| JCAor al ->
JCAor(List.flatten (List.map disjuncts al))
| anode -> anode
in
new assertion_with ~node:anode a) a
let is_integral_type = function
| JCTnative ty ->
begin match ty with
| Tunit | Treal | Tboolean | Tstring -> false
| Tinteger -> true
end
| JCTenum _ -> true
| JCTpointer _ | JCTlogic _ | JCTnull | JCTany -> false
let equality_operator_for_type ty =
`Beq, operator_of_type ty
(*
let make_and al =
(* optimization *)
let al = List.filter (fun a -> not (is_true a)) al in
let anode = match al with
| [] -> JCAtrue
| [a] -> a#node
| a::tl -> JCAand al
in
new assertion anode
*)
let make_or al =
let anode = match al with
| [] -> JCAfalse
| [a] -> a#node
| al -> JCAor al
in
new assertion anode
let make_not a =
new assertion(JCAnot a)
let rec term_name =
let string_explode s =
let rec next acc i =
if i >= 0 then next (s.[i] :: acc) (i-1) else acc
in
next [] (String.length s - 1)
in
let string_implode ls =
let s = String.create (List.length ls) in
ignore (List.fold_left (fun i c -> s.[i] <- c; i + 1) 0 ls);
s
in
let filter_alphanumeric s =
let alphanum c =
String.contains "abcdefghijklmnopqrstuvwxyz" c
|| String.contains "ABCDEFGHIJKLMNOPQRSTUVWXYZ" c
|| String.contains "0123456789" c
|| c = '_'
in
string_implode (List.filter alphanum (string_explode s))
in
function t ->
match t#node with
| JCTconst c ->
begin match c with
| JCCinteger s -> filter_alphanumeric s
| JCCboolean b -> if b then "true" else "false"
| JCCvoid -> "void"
| JCCnull -> "null"
| JCCreal s -> filter_alphanumeric s
| JCCstring _ -> "string"
end
| JCTvar vi -> filter_alphanumeric vi.jc_var_info_final_name
| JCTbinary(t1,(bop,_),t2) ->
let bop_name = match bop with
| `Blt -> "inf"
| `Bgt -> "sup"
| `Ble -> "infeq"
| `Bge -> "supeq"
| `Beq -> "eq"
| `Bneq -> "neq"
| `Badd -> "plus"
| `Bsub -> "minus"
| `Bmul -> "times"
| `Bdiv -> "div"
| `Bmod -> "mod"
| `Bland -> "and"
| `Blor -> "or"
| `Bimplies -> "implies"
| `Biff -> "iff"
| `Bbw_and -> "bwand"
| `Bbw_or -> "bwor"
| `Bbw_xor -> "bwxor"
| `Bshift_left -> "shiftleft"
| `Blogical_shift_right -> "logicalshiftright"
| `Barith_shift_right -> "arithshiftright"
in
term_name t1 ^ "_" ^ bop_name ^ "_" ^ (term_name t2)
| JCTunary((uop,_),t1) ->
let uop_name = match uop with
| `Uminus -> "minus"
| `Unot -> "not"
| `Ubw_not -> "bwnot"
in
uop_name ^ "_" ^ (term_name t1)
| JCTshift (t1, t2) ->
term_name t1 ^ "_shift_" ^ (term_name t2)
| JCTderef (t1, lab, fi) ->
term_name t1 ^ "_field_" ^ fi.jc_field_info_final_name
| JCTapp app ->
let li = app.jc_app_fun and tl = app.jc_app_args in
li.jc_logic_info_name ^ "_of_" ^
List.fold_right(fun t acc ->
if acc = "" then term_name t
else term_name t ^ "_and_" ^ acc
) tl ""
| JCTold t ->
"old_" ^ (term_name t)
| JCTat(t,lab) ->
(term_name t) ^ "_at_"
| JCToffset(Offset_max,t,st) ->
"offset_max_" ^ (term_name t)
| JCToffset(Offset_min,t,st) ->
"offset_min_" ^ (term_name t)
| JCTinstanceof(t,_,st) ->
(term_name t) ^ "_instanceof_" ^ st.jc_struct_info_name
| JCTcast(t,_,st) ->
(term_name t) ^ "_cast_" ^ st.jc_struct_info_name
| JCTrange_cast(t,ei) ->
(term_name t) ^ "_cast_" ^ ei.jc_enum_info_name
| JCTreal_cast(t,rc) ->
(term_name t) ^ "_cast_" ^
(match rc with
| Integer_to_real -> "integer_to_real"
| Real_to_integer -> "real_to_integer")
| JCTif(t1,t2,t3) ->
"if_" ^ (term_name t1) ^ "_then_" ^ (term_name t2)
^ "_else_" ^ (term_name t3)
| JCTrange(Some t1,Some t2) ->
(term_name t1) ^ "_range_" ^ (term_name t2)
| JCTrange(Some t1,None) ->
(term_name t1) ^ "_range_none"
| JCTrange(None,Some t2) ->
"none_range_" ^ (term_name t2)
| JCTrange(None,None) ->
"none_range_none"
| JCTmatch _ -> assert false (* TODO *)
(* support of <new> (Nicolas) *)
let rec destruct_alloc t =
match t#node with
| JCTconst (JCCinteger str) -> None, Some t
| JCTvar vi -> Some vi, None
| JCTbinary (t1, (`Bsub,`Integer), t2) ->
begin
match destruct_alloc t1 with
| None, None ->
None, Some
(new term ~typ:integer_type
(JCTunary ((`Uminus,`Integer),
new term ~typ:integer_type
(JCTconst (JCCinteger "-1"))))
)
| Some vi, None ->
None, Some
(new term ~typ:integer_type
(JCTbinary (new term ~typ:integer_type (JCTvar vi),
(`Bsub,`Integer),
new term ~typ:integer_type (JCTconst (JCCinteger "-1"))))
)
| vio, Some offt ->
let t3 = JCTbinary (offt, (`Bsub,`Integer), t2) in
let offt = new term ~typ:integer_type t3 in
vio, Some offt
end
| _ -> assert false
(* Deconstruct a pointer term into a base pointer term and an integer offset.
*)
let rec destruct_pointer t =
match t#node with
| JCTconst JCCnull ->
(* If changing this, make sure [struct_of_term] is not called on
* a null term.
*)
None,None
| JCTvar _ | JCTderef _ ->
Some t,None
| JCTshift(t1,t2) ->
begin match destruct_pointer t1 with
| topt,None -> topt,Some t2
| topt,Some offt ->
let tnode = JCTbinary(offt,(`Badd,`Integer),t2) in
let offt = new term ~typ:integer_type tnode in
topt,Some offt
end
| JCTcast(t,_,_) | JCTrange_cast(t,_) | JCTreal_cast(t,_) ->
(* Pointer arithmetic in Jessie is not related to the size of
* the underlying type, like in C. This makes it possible to commute
* cast and arithmetic.
*)
destruct_pointer t
| JCTapp _ | JCTold _ | JCTat _ | JCTif _ | JCTrange _ | JCTmatch _ ->
(* Not supported yet. *)
assert false
| JCTconst _ | JCTbinary _
| JCTunary _ | JCToffset _ | JCTinstanceof _ ->
(* Not of a pointer type. *)
assert false
let rec term_depends_on_term t1 t2 =
raw_sub_term t2 t1 ||
match t2#node with
| JCTderef(t2', _, fi) ->
let t2' = select_option (fst(destruct_pointer t2')) t2' in
begin match t1#node with
(* TODO *)
(* | JCTapp app -> *)
(* let f = app.jc_app_fun and tls = app.jc_app_args in *)
(* List.fold_left2 (fun acc param arg -> acc || *)
(* term_depends_on_term arg t2' *)
(* && *)
(* VarSet.mem param *)
(* f.jc_logic_info_effects.jc_effect_through_params *)
(* ) false f.jc_logic_info_parameters tls *)
| JCTderef(t1', _, fj) ->
(fi.jc_field_info_tag = fj.jc_field_info_tag)
&& term_depends_on_term t1' t2'
| _ -> false
end
| _ -> false
(*****************************************************************************)
(* Types. *)
(*****************************************************************************)
(* Assertion to be checked at some program point. *)
type target_assertion = {
jc_target_expr : expr;
jc_target_location : Loc.position;
mutable jc_target_assertion : assertion;
mutable jc_target_regular_invariant : assertion;
mutable jc_target_propagated_invariant : assertion;
}
(* Abstract value made up of 2 parts:
* - regular abstract value
* - abstract value refined by previous assertions on the execution path
* Both are mutable in order to get in place widening.
*)
type 'a abstract_value = {
mutable jc_absval_regular : 'a Abstract1.t;
mutable jc_absval_propagated : 'a Abstract1.t;
}
(* Type of current invariant in abstract interpretation, made up of 3 parts:
* - abstract value at current program point
* - associative list of exceptions and abstract values obtained after throwing
* an exception of this type. It is mutable so that it can be changed in
* place.
* - abstract value after returning from the function. It is a reference so that
* it can be shared among all abstract invariants in a function.
*)
type 'a abstract_invariants = {
jc_absinv_normal : 'a abstract_value;
mutable jc_absinv_exceptional : (exception_info * 'a abstract_value) list;
jc_absinv_return : 'a abstract_value ref;
}
(* Parameters of an abstract interpretation. *)
type 'a abstract_interpreter = {
jc_absint_manager : 'a Manager.t;
jc_absint_function_environment : Environment.t;
jc_absint_function : fun_info;
jc_absint_widening_threshold : int;
jc_absint_loop_invariants : (int,'a abstract_invariants) Hashtbl.t;
jc_absint_loop_initial_invariants : (int,'a abstract_invariants) Hashtbl.t;
jc_absint_loop_iterations : (int,int) Hashtbl.t;
jc_absint_loop_entry_invs : (int, 'a abstract_invariants) Hashtbl.t;
jc_absint_target_assertions : target_assertion list;
}
(* Parameters of an interprocedural abstract interpretation. *)
type 'a interprocedural_ai = {
jc_interai_manager : 'a Manager.t;
jc_interai_function_preconditions : (int, 'a Abstract1.t) Hashtbl.t;
jc_interai_function_postconditions : (int, 'a Abstract1.t) Hashtbl.t;
jc_interai_function_exceptional : (int, (exception_info * 'a Abstract1.t) list) Hashtbl.t;
jc_interai_function_nb_iterations : (int, int) Hashtbl.t;
jc_interai_function_init_pre : (int, 'a Abstract1.t) Hashtbl.t;
jc_interai_function_abs : (int, 'a abstract_interpreter) Hashtbl.t;
}
(* Type of current postcondition in weakest precondition computation:
* - postcondition at current program point
* - associative list of exceptions and postconditions that should be satisfied
* when an exception of this type is caught
* - stack of sets of modified variables, each set except the first one
* corresponding to an enclosed loop
*)
type weakest_postconditions = {
jc_post_normal : assertion option;
jc_post_exceptional : (exception_info * assertion) list;
jc_post_inflexion_vars : VarSet.t ref;
jc_post_modified_vars : VarSet.t list;
}
type weakest_precondition_computation = {
jc_weakpre_loop_invariants : (int,assertion) Hashtbl.t;
}
(*****************************************************************************)
(* Debug. *)
(*****************************************************************************)
let print_abstract_value fmt absval =
fprintf fmt "@[<v 2>{regular: %a@\npropagated: %a@\n}@]"
Abstract1.print absval.jc_absval_regular
Abstract1.print absval.jc_absval_propagated
let print_abstract_invariants fmt invs =
fprintf fmt "@[<v 2>{@\nnormal: %a@\nexceptional: %a@\nreturn: %a@\n}@]"
print_abstract_value invs.jc_absinv_normal
(print_list comma (fun fmt (ei,absval) ->
fprintf fmt "(%s,%a)" ei.jc_exception_info_name
print_abstract_value absval))
invs.jc_absinv_exceptional
print_abstract_value !(invs.jc_absinv_return)
let print_modified_vars fmt posts =
fprintf fmt "modified vars: %a"
(print_list comma (fun fmt vi -> fprintf fmt "%s" vi.jc_var_info_name))
(VarSet.elements (List.hd posts.jc_post_modified_vars))
(*****************************************************************************)
(* Logging annotations inferred. *)
(*****************************************************************************)
let reg_annot ?id ?kind ?name ~loc ~anchor a =
let (f,l,b,e) =
try
let (f,l,b,e,_,_) = Hashtbl.find Jc_options.locs_table anchor in
(f,l,b,e)
with Not_found -> Loc.extract loc
in
let pos = Lexing.dummy_pos in
let pos = { pos with
Lexing.pos_fname = f;
Lexing.pos_lnum = l;
Lexing.pos_bol = 0; }
in
let loc =
{ pos with Lexing.pos_cnum = b; },
{ pos with Lexing.pos_cnum = e; }
in
Format.fprintf Format.str_formatter "%a" Jc_output.assertion a;
let formula = Format.flush_str_formatter () in
let lab = Output.reg_loc "G" ?id ?kind ?name ~formula loc in
new assertion_with ~name_label:lab a
(*****************************************************************************)
(* From expressions to terms and assertions. *)
(*****************************************************************************)
let rec p_term_of_expr e =
let node = match e#node with
| JCEconst c -> JCTconst c
| JCEvar vi -> JCTvar vi
| JCEbinary (e1, (op,opty), e2) ->
JCTbinary (p_term_of_expr e1, ((op :> bin_op),opty), p_term_of_expr e2)
| JCEunary (op, e) -> JCTunary (op, p_term_of_expr e)
| JCEshift (e1, e2) -> JCTshift (p_term_of_expr e1, p_term_of_expr e2)
| JCEderef (e, fi) -> JCTderef (p_term_of_expr e, LabelHere, fi)
| JCEinstanceof (e, si) -> JCTinstanceof (p_term_of_expr e, LabelHere, si)
| JCEcast (e, si) -> JCTcast (p_term_of_expr e, LabelHere, si)
| JCEif (e1, e2, e3) -> JCTif (p_term_of_expr e1, p_term_of_expr e2, p_term_of_expr e3)
| JCEoffset (ok, e, si) -> JCToffset (ok, p_term_of_expr e, si)
(* | JCEmatch (e, pel) ->
let ptl = List.map (fun (p, e) -> (p, p_term_of_expr e)) pel in
JCTmatch (p_term_of_expr e, ptl)*)
| JCErange_cast (e, ri) -> JCTrange_cast (p_term_of_expr e, ri)
| JCEreal_cast (e, rc) -> JCTreal_cast (p_term_of_expr e, rc)
| JCEalloc _ -> assert false
| JCEfree _ -> assert false
| _ -> assert false
in
new term ~typ:e#typ ~region:e#region ~loc:e#loc node
let term_of_expr e =
let rec term e =
let tnode = match e#node with
| JCEconst c -> JCTconst c
| JCEvar vi -> JCTvar vi
| JCEbinary (e1, (bop,opty), e2) ->
JCTbinary (term e1, ((bop :> bin_op),opty), term e2)
| JCEunary (uop, e1) -> JCTunary (uop, term e1)
| JCEshift (e1, e2) -> JCTshift (term e1, term e2)
| JCEderef (e1, fi) -> JCTderef (term e1, LabelHere, fi)
| JCEinstanceof (e1, st) -> JCTinstanceof (term e1, LabelHere, st)
| JCEcast (e1, st) -> JCTcast (term e1, LabelHere, st)
| JCErange_cast(e1,_) | JCEreal_cast(e1,_) ->
(* range does not modify term value *)
(term e1)#node
| JCEif (e1, e2, e3) -> JCTif (term e1, term e2, term e3)
| JCEoffset (off, e1, st) -> JCToffset (off, term e1, st)
| JCEalloc (e, _) -> (* Note: \offset_max(t) = length(t) - 1 *)
JCTbinary (term e, (`Bsub,`Integer), new term ~typ:integer_type (JCTconst (JCCinteger "1")) )
| JCEfree _ -> failwith "Not a term"
| _ -> failwith "Not a term"
(* | JCEmatch (e, pel) -> *)
(* let ptl = List.map (fun (p, e) -> (p, term_of_expr e)) pel in *)
(* JCTmatch (term_of_expr e, ptl) *)
in
new term ~typ:e#typ ~region:e#region tnode
in
try Some (term e) with Failure _ -> None
let rec term_under_expr e =
match e#node with
| JCElet(_vi,_init,e) -> term_under_expr e
| JCEblock [] -> None
| JCEblock el -> term_under_expr (List.hd (List.rev el))
| _ -> term_of_expr e
let term_of_expr = term_under_expr
let rec asrt_of_expr e =
let anode = match e#node with
| JCEconst (JCCboolean true) -> JCAtrue
| JCEconst (JCCboolean false) -> JCAfalse
| JCEconst _ -> assert false
| JCEvar vi ->
begin match vi.jc_var_info_type with
| JCTnative Tboolean ->
let t = term_of_expr e in
begin match t with
| None -> assert false
| Some t -> JCAbool_term t
end
| _ -> assert false
end
| JCEbinary (e1,(#comparison_op,_ as bop), e2) ->
begin match term_of_expr e1, term_of_expr e2 with
| Some t1, Some t2 -> JCArelation (t1, bop, t2)
| _ -> JCAtrue
end
(* | JCEbinary (e1,(#logical_op,_ as bop), e2) -> *)
(* begin match bop with *)
(* | Bland -> JCAand [asrt_of_expr e1;asrt_of_expr e2] *)
(* | Blor -> JCAor [asrt_of_expr e1;asrt_of_expr e2] *)
(* | Bimplies -> JCAimplies(asrt_of_expr e1,asrt_of_expr e2) *)
(* | Biff -> JCAiff(asrt_of_expr e1,asrt_of_expr e2) *)
(* | _ -> assert false *)
(* end *)
| JCEbinary _ ->
assert false
(* | JCEunary(uop,e1) -> *)
(* if is_logical_unary_op uop then *)
(* match uop with *)
(* | Unot -> JCAnot(asrt_of_expr e1) *)
(* | _ -> assert false *)
(* else assert false *)
| JCEinstanceof(e1,st) ->
begin match term_of_expr e1 with
| Some t1 -> JCAinstanceof(t1,LabelHere,st)
| None -> JCAtrue
end
| JCEif (e1, e2, e3) ->
begin match term_of_expr e1 with
| Some t1 -> JCAif (t1, asrt_of_expr e2, asrt_of_expr e3)
| None -> JCAtrue
end
| JCEderef _ ->
begin match term_of_expr e with
| Some t -> JCAbool_term t
| None -> JCAtrue
end
| JCEcast _ | JCErange_cast _ | JCEreal_cast _ | JCEshift _
| JCEoffset _ | JCEalloc _ | JCEfree _ -> assert false
(* | JCEmatch (e, pel) -> assert false *)
(*
let ptl = List.map (fun (p, e) -> (p, term_of_expr e)) pel in
JCAmatch (term_of_expr e, ptl)
*)
| _ ->
failwith "Not an assertion"
in
new assertion anode
let raw_asrt_of_expr = asrt_of_expr
(*****************************************************************************)
(* Replacing variables in terms and assertions. *)
(*****************************************************************************)
let rec mem_term_in_assertion t a =
fold_term_in_assertion (fun acc t' -> acc || raw_term_equal t t') false a
let rec mem_any_term_in_assertion tset a =
fold_term_in_assertion (fun acc t -> acc || TermSet.mem t tset) false a
let rec replace_term_in_term ~source ~target t =
map_term (fun t -> if raw_term_equal source t then target else t) t
let rec replace_term_in_assertion srct targett a =
let term = replace_term_in_term ~source:srct ~target:targett in
let asrt = replace_term_in_assertion srct targett in
let anode = match a#node with
| JCArelation(t1,bop,t2) ->
JCArelation(term t1,bop,term t2)
| JCAnot a ->
JCAnot (asrt a)
| JCAand al ->
JCAand(List.map asrt al)
| JCAor al ->
JCAor(List.map asrt al)
| JCAimplies(a1,a2) ->
JCAimplies(asrt a1,asrt a2)
| JCAiff(a1,a2) ->
JCAiff(asrt a1,asrt a2)
| JCAapp app ->
JCAapp { app with jc_app_args = List.map term app.jc_app_args }
| JCAquantifier(qt,vi,a) ->
JCAquantifier(qt,vi,asrt a)
| JCAold a ->
JCAold(asrt a)
| JCAat(a,lab) ->
JCAat(asrt a,lab)
| JCAinstanceof(t,lab,st) ->
JCAinstanceof(term t,lab,st)
| JCAbool_term t ->
JCAbool_term(term t)
| JCAif(t,a1,a2) ->
JCAif(term t,asrt a1,asrt a2)
| JCAmutable(t,st,tag) ->
JCAmutable(term t,st,tag)
| JCAtrue | JCAfalse | JCAtagequality _ as anode -> anode
| JCAmatch _ -> assert false (* TODO *)
in
new assertion_with ~node:anode a
let rec replace_vi_in_assertion srcvi targett a =
let term = replace_term_in_term
~source:(new term ~typ:srcvi.jc_var_info_type (JCTvar srcvi))
~target:targett in
let asrt = replace_vi_in_assertion srcvi targett in
let anode = match a#node with
| JCArelation (t1, bop, t2) ->
JCArelation (term t1, bop, term t2)
| JCAnot a ->
JCAnot (asrt a)
| JCAand al ->
JCAand (List.map asrt al)
| JCAor al ->
JCAor (List.map asrt al)
| JCAimplies (a1, a2) ->
JCAimplies (asrt a1, asrt a2)
| JCAiff (a1, a2) ->
JCAiff (asrt a1, asrt a2)
| JCAapp app ->
JCAapp { app with jc_app_args = List.map term app.jc_app_args }
| JCAquantifier (qt, vi, a) ->
JCAquantifier (qt, vi, asrt a)
| JCAold a ->
JCAold (asrt a)
| JCAat(a,lab) ->
JCAat (asrt a,lab)
| JCAinstanceof (t, lab, st) ->
JCAinstanceof (term t, lab, st)
| JCAbool_term t ->
JCAbool_term (term t)
| JCAif (t, a1, a2) ->
JCAif (term t, asrt a1, asrt a2)
| JCAmutable (t, st, tag) ->
JCAmutable (term t, st, tag)
| JCAtrue | JCAfalse | JCAtagequality _ as anode -> anode
| JCAmatch _ -> assert false (* TODO *)
in
new assertion_with ~node:anode a
(* comparison by name (vs. comparison by tag in 'replace_term_in_term' ) *)
let rec switch_vis_in_term srcvi targetvi t =
let term = switch_vis_in_term srcvi targetvi in
let node = match t#node with
| JCTconst c -> JCTconst c
| JCTvar vi ->
if vi.jc_var_info_name = srcvi.jc_var_info_name then
JCTvar targetvi else JCTvar vi
| JCTshift (t1, t2) -> JCTshift (term t1, term t2)
| JCTderef (t, lab, fi) -> JCTderef (term t, lab, fi)
| JCTbinary (t1, bop, t2) -> JCTbinary (term t1, bop, term t2)
| JCTunary (op, t) -> JCTunary (op, term t)
| JCTapp app -> let tl = app.jc_app_args in
JCTapp { app with jc_app_args = List.map term tl; }
| JCTold t -> JCTold (term t)
| JCTat (t, lab) -> JCTat (term t, lab)
| JCToffset (ok, t, si) -> JCToffset (ok, term t, si)
| JCTinstanceof (t, lab, si) -> JCTinstanceof (term t, lab, si)
| JCTcast (t, lab, si) -> JCTcast (term t, lab, si)
| JCTrange_cast (t, si) -> JCTrange_cast (term t, si)
| JCTreal_cast (t, si) -> JCTreal_cast (term t, si)
| JCTif (t1, t2, t3) -> JCTif (term t1, term t2, term t3)
| JCTrange (to1, to2) -> JCTrange (Option_misc.map term to1, Option_misc.map term to2)
| JCTmatch _ -> assert false (* TODO *)
in
new term_with ~node t
let rec switch_vis_in_assertion srcvi targetvi a =
let term = switch_vis_in_term srcvi targetvi in
let asrt = switch_vis_in_assertion srcvi targetvi in
let anode = match a#node with
| JCArelation (t1, bop, t2) -> JCArelation (term t1, bop, term t2)
| JCAnot a -> JCAnot (asrt a)
| JCAand al -> JCAand (List.map asrt al)
| JCAor al -> JCAor (List.map asrt al)
| JCAimplies (a1, a2) -> JCAimplies (asrt a1, asrt a2)
| JCAiff (a1, a2) -> JCAiff (asrt a1, asrt a2)
| JCAapp app -> JCAapp { app with jc_app_args = List.map term app.jc_app_args }
| JCAquantifier (qt, vi, a) ->
assert (vi.jc_var_info_name <> srcvi.jc_var_info_name);
assert (vi.jc_var_info_name <> targetvi.jc_var_info_name);
JCAquantifier (qt, vi, asrt a)
| JCAold a -> JCAold (asrt a)
| JCAat (a, lab) -> JCAat (asrt a, lab)
| JCAinstanceof (t, lab, st) -> JCAinstanceof (term t, lab, st)
| JCAbool_term t -> JCAbool_term (term t)
| JCAif (t, a1, a2) -> JCAif (term t, asrt a1, asrt a2)
| JCAmutable (t, st, tag) -> JCAmutable (term t, st, tag)
| JCAtrue | JCAfalse | JCAtagequality _ as anode -> anode
| JCAmatch _ -> assert false (* TODO *)
in
new assertion_with ~node:anode a
(*****************************************************************************)
(* Abstract variables naming and creation. *)
(*****************************************************************************)
module Vai : sig
val has_variable : term -> bool
val has_offset_min_variable : term -> bool
val has_offset_max_variable : term -> bool
val variable : term -> Var.t
val offset_min_variable : term -> Var.t
val offset_max_variable : term -> Var.t
val all_variables : term -> Var.t list
val term : Var.t -> term
val variable_of_term : term -> Var.t
end = struct
let variable_table = TermTable.create 0
let offset_min_variable_table = TermTable.create 0
let offset_max_variable_table = TermTable.create 0
let term_table = Hashtbl.create 0
let has_variable t =
match t#typ with
| JCTnative ty ->
begin match ty with
| Tunit | Treal | Tstring -> false
| Tboolean | Tinteger -> true
end
| JCTenum _ -> true
| JCTpointer _ | JCTlogic _ | JCTnull | JCTany -> false
let has_offset_min_variable t =
match t#typ with
| JCTpointer _ -> true
| JCTnative _ | JCTenum _ | JCTlogic _ | JCTnull | JCTany -> false
let has_offset_max_variable = has_offset_min_variable
let variable t =
try
TermTable.find variable_table t
with Not_found ->
let va = Var.of_string (term_name t) in
TermTable.add variable_table t va;
Hashtbl.add term_table va t;
va
let offset_min_variable t =
try
TermTable.find offset_min_variable_table t
with Not_found ->
let va = Var.of_string ("__jc_offset_min_" ^ (term_name t)) in
TermTable.add offset_min_variable_table t va;
let st = struct_of_term t in
let tmin = new term ~typ:integer_type (JCToffset(Offset_min,t,st)) in
Hashtbl.add term_table va tmin;
va
let offset_max_variable t =
try
TermTable.find offset_max_variable_table t
with Not_found ->
let va = Var.of_string ("__jc_offset_max_" ^ (term_name t)) in
TermTable.add offset_max_variable_table t va;
let st = struct_of_term t in
let tmax = new term ~typ:integer_type (JCToffset(Offset_max,t,st)) in
Hashtbl.add term_table va tmax;
va
let all_variables t =
(if has_variable t then [variable t] else [])
@ (if has_offset_min_variable t then [offset_min_variable t] else [])
@ (if has_offset_max_variable t then [offset_max_variable t] else [])
let term va = Hashtbl.find term_table va
let variable_of_term t =
match t#node with
| JCToffset(Offset_min,t,_) ->
begin match t#node with
| JCTvar _ | JCTderef _ -> offset_min_variable t
| _ -> (*assert false*) offset_min_variable t
end
| JCToffset(Offset_max,t,_) ->
begin match t#node with
| JCTvar _ | JCTderef _ -> offset_max_variable t
| _ -> (*assert false*) offset_max_variable t
end
| _ -> variable t
end
(*****************************************************************************)
(* Conversions between assertions and DNF form. *)
(*****************************************************************************)
module Dnf = struct
type dnf = string list list
let false_ = []
let true_ = [[]]
let is_false = function [] -> true | _ -> false
let is_true = function [[]] -> true | _ -> false
let num_disjuncts (dnf : dnf) = List.length dnf
let is_singleton_disjunct dnf = num_disjuncts dnf = 1
let get_singleton_disjunct = function
| [[x]] -> x
| _ -> assert false
let make_singleton conj = [conj]
let rec make_and =
let pair_and dnf1 dnf2 =
if is_false dnf1 || is_false dnf2 then
false_
else
List.fold_left (fun acc conj1 ->
List.fold_left (fun acc conj2 ->
(conj1 @ conj2) :: acc
) acc dnf2
) [] dnf1
in
function
| [] -> true_
| dnf::r -> pair_and dnf (make_and r)
let make_or = List.concat
let print fmt dnf =
fprintf fmt "dnf : %a"
(fun fmt disj ->
fprintf fmt "[%a]" (print_list comma
(fun fmt conj -> fprintf fmt "[%a]"
(print_list comma (fun fmt s -> fprintf fmt "%s" s))
conj)) disj) dnf
let test mgr pre dnf =
if debug then printf "[Dnf.test] %a@." Abstract1.print pre;
if debug then printf "[Dnf.test] %a@." print dnf;
let env = Abstract1.env pre in
if is_false dnf then
(* Make [pre] be the bottom abstract value. *)
let bot = Abstract1.bottom mgr env in
Abstract1.meet_with mgr pre bot
else if is_true dnf then
()
else
let test_conj copy_pre conj =
let lincons =
try Parser.lincons1_of_lstring env conj
with Parser.Error msg -> printf "%s@." msg; assert false
in
Abstract1.meet_lincons_array_with mgr copy_pre lincons;
if debug then printf "[Dnf.test_conj] %a@." print [conj];
if debug then printf "[Dnf.test_conj] %a@." Abstract1.print copy_pre
in
(* Test each disjunct separately and then join them. *)
let copy_array =
Array.init (num_disjuncts dnf)
(fun i -> if i = 0 then pre else Abstract1.copy mgr pre)
in
let copy_list = Array.to_list copy_array in
List.iter2 test_conj copy_list dnf;
begin match copy_list with
| first::rest ->
assert (first == pre);
List.iter (fun absval -> Abstract1.join_with mgr pre absval) rest
| _ -> assert false
end
end
let assertion_of_dnf dnf =
let disjunct al =
let anode = match al with
| [] -> JCAtrue
| [a] -> a#node
| _ -> JCAand al
in
new assertion anode
in
let anode = match dnf with
| [] -> JCAfalse
| [[]] -> JCAtrue
| [al] -> (disjunct al)#node
| _ -> JCAor (List.map disjunct dnf)
in
new assertion anode
(*****************************************************************************)
(* Extracting linear expressions and constraints from AST expressions. *)
(*****************************************************************************)
let rec not_asrt a =
let anode = match a#node with
| JCAtrue -> JCAfalse
| JCAfalse -> JCAtrue
| JCArelation (t1, (bop,opty), t2) ->
begin match bop with
| `Blt -> JCArelation (t1, (`Bge,opty), t2)
| `Bgt -> JCArelation (t1, (`Ble,opty), t2)
| `Ble -> JCArelation (t1, (`Bgt,opty), t2)
| `Bge -> JCArelation (t1, (`Blt,opty), t2)
| `Beq -> JCArelation (t1, (`Bneq,opty), t2)
| `Bneq -> JCArelation (t1, (`Beq,opty), t2)
end
| JCAnot a ->
a#node
| JCAand _ | JCAor _ | JCAimplies _ | JCAiff _ | JCAapp _
| JCAquantifier _ | JCAold _ | JCAat _ | JCAinstanceof _ | JCAbool_term _
| JCAif _ | JCAmutable _ | JCAtagequality _ | JCAmatch _ ->
JCAnot a
in
new assertion_with ~node:anode a
let raw_not_asrt = not_asrt
let rec linearize t =
match t#node with
| JCTconst c ->
begin match c with
| JCCinteger s -> (TermMap.empty, int_of_string s)
| JCCboolean _ | JCCvoid | JCCnull | JCCreal _ | JCCstring _ ->
failwith "Not linear"
end
| JCTvar _ | JCTderef _ ->
(TermMap.add t 1 TermMap.empty, 0)
| JCTbinary (t1, (#arithmetic_op,opty as bop), t2) ->
let coeffs1, cst1 = linearize t1 in
let coeffs2, cst2 = linearize t2 in
begin match bop with
| `Badd,`Integer ->
let coeffs = TermMap.fold
(fun vt1 c1 acc ->
try
let c2 = TermMap.find vt1 coeffs2 in
TermMap.add vt1 (c1 + c2) acc
with Not_found -> TermMap.add vt1 c1 acc
) coeffs1 TermMap.empty
in
let coeffs = TermMap.fold
(fun vt2 c2 acc ->
if TermMap.mem vt2 coeffs then acc
else TermMap.add vt2 c2 acc
) coeffs2 coeffs
in
(coeffs, cst1 + cst2)
| `Bsub,`Integer ->
let coeffs = TermMap.fold
(fun vt1 c1 acc ->
try
let c2 = TermMap.find vt1 coeffs2 in
TermMap.add vt1 (c1 - c2) acc
with Not_found -> TermMap.add vt1 c1 acc
) coeffs1 TermMap.empty
in
let coeffs = TermMap.fold
(fun vt2 c2 acc ->
if TermMap.mem vt2 coeffs then acc
else TermMap.add vt2 (- c2) acc
) coeffs2 coeffs
in
(coeffs, cst1 - cst2)
| `Bmul,`Integer ->
begin match
TermMap.is_empty coeffs1, cst1,
TermMap.is_empty coeffs2, cst2 with
| true, _, true, _ -> (TermMap.empty, cst1 * cst2)
| true, cstmul, _, cstadd ->
let coeffs = TermMap.map (fun c -> c * cstmul) coeffs2 in
(coeffs, cstadd * cstmul)
| _, cstadd, true, cstmul ->
let coeffs = TermMap.map (fun c -> c * cstmul) coeffs1 in
(coeffs, cstadd * cstmul)
| _ ->
(* Consider non-linear term as abstract variable. *)
(TermMap.add t 1 TermMap.empty, 0)
end
| `Badd,_ | `Bsub,_ | `Bmul,_ | `Bdiv,_ | `Bmod,_ ->
failwith "Not linear"
| _ -> assert false
end
| JCTbinary (t1, (#bitwise_op as bop,_), t2) ->
let coeffs1, cst1 = linearize t1 in
if coeffs1 = TermMap.empty && cst1 = 0 then
match bop with
| `Bbw_and | `Bshift_left | `Blogical_shift_right | `Barith_shift_right
-> TermMap.empty, 0
| `Bbw_or | `Bbw_xor -> linearize t2
| _ -> assert false (* should never happen *)
else
(* Consider non-linear term as abstract variable. *)
(TermMap.add t 1 TermMap.empty, 0)
| JCTbinary _ ->
failwith "Not linear"
| JCTunary(uop,t1) ->
let coeffs1,cst1 = linearize t1 in
begin match uop with
| `Uminus,`Integer ->
let coeffs = TermMap.map (fun c -> -c) coeffs1 in
(coeffs,- cst1)
| `Uminus,_ ->
failwith "Not integer"
| _ -> failwith "Not linear"
end
| JCToffset(_,vt,_) ->
begin match vt#node with
| JCTvar _ | JCTderef _ -> (TermMap.add t 1 TermMap.empty,0)
| _ -> (*assert false*) (TermMap.add t 1 TermMap.empty,0)
end
| JCTapp _ -> (TermMap.add t 1 TermMap.empty,0)
| JCTshift _ | JCTinstanceof _
| JCTmatch _
| JCTold _ | JCTat _ | JCTcast _ | JCTrange_cast _ | JCTreal_cast _
| JCTrange _ | JCTif _ ->
failwith "Not linear"
type zero_bounds = {
zlow : term;
zup : term;
zmulcst : int;
zconstrs : assertion list;
}
let rec zero_bounds_term t =
let auto_bounds t =
[ { zlow = t; zup = t; zmulcst = 1; zconstrs = []; }]
in
match t#node with
| JCTbinary (t1,(#arithmetic_op,_ as bop), t2) ->
begin match bop with
| `Badd,`Integer ->
let add_zb zb1 zb2 =
if zb1.zmulcst = zb2.zmulcst then
let lb = new term ~typ:integer_type (JCTbinary (zb1.zlow, (`Badd,`Integer), zb2.zlow)) in
let rb = new term ~typ:integer_type (JCTbinary (zb1.zup, (`Badd,`Integer), zb2.zup)) in
{ zlow = lb; zup = rb; zmulcst = zb1.zmulcst;
zconstrs = zb1.zconstrs @ zb2.zconstrs; }
else
let cst1 =
new term ~typ:integer_type (JCTconst(JCCinteger(string_of_int zb1.zmulcst))) in
let cst2 =
new term ~typ:integer_type (JCTconst(JCCinteger(string_of_int zb2.zmulcst))) in
let lb1 = new term ~typ:integer_type (JCTbinary(zb1.zlow,(`Bmul,`Integer),cst2)) in
let lb2 = new term ~typ:integer_type (JCTbinary(zb2.zlow,(`Bmul,`Integer),cst1)) in
let rb1 = new term ~typ:integer_type (JCTbinary(zb1.zup,(`Bmul,`Integer),cst2)) in
let rb2 = new term ~typ:integer_type (JCTbinary(zb2.zup,(`Bmul,`Integer),cst1)) in
let lb = new term ~typ:integer_type (JCTbinary(lb1,(`Badd,`Integer),lb2)) in
let rb = new term ~typ:integer_type (JCTbinary(rb1,(`Badd,`Integer),rb2)) in
{ zlow = lb; zup = rb; zmulcst = zb1.zmulcst * zb2.zmulcst;
zconstrs = zb1.zconstrs @ zb2.zconstrs; }
in
let zbs1 = zero_bounds_term t1 in
let zbs2 = zero_bounds_term t2 in
let zbs = List.map (fun zb1 -> List.map (add_zb zb1) zbs2) zbs1 in
List.flatten zbs
| `Bsub,`Integer ->
let t2 = new term ~typ:integer_type (JCTunary ((`Uminus,`Integer), t2)) in
let t = new term ~typ:integer_type (JCTbinary(t1, (`Badd,`Integer), t2)) in
zero_bounds_term t
| `Bmul,`Integer ->
(* TODO: refine when one operand is constant *)
auto_bounds t
| `Bdiv,`Integer ->
let div_zb t cst zb =
let cstt =
new term ~typ:integer_type (JCTconst(JCCinteger(string_of_int (cst-1)))) in
let zero = new term ~typ:integer_type (JCTconst(JCCinteger "0")) in
let zbpos = {
zlow = new term ~typ:integer_type (JCTbinary(zb.zlow,(`Bsub,`Integer),cstt));
zup = zb.zup;
zmulcst = zb.zmulcst * cst;
zconstrs =
new assertion(JCArelation(t,(`Bge,`Integer),zero)) :: zb.zconstrs;
} in
let zbneg = {
zlow = zb.zlow;
zup = new term ~typ:integer_type (JCTbinary(zb.zup,(`Badd,`Integer),cstt));
zmulcst = zb.zmulcst * cst;
zconstrs =
new assertion(JCArelation(t,(`Blt,`Integer),zero)) :: zb.zconstrs;
} in
[zbpos; zbneg]
in
begin match t2#node with
| JCTconst c ->
begin match c with
| JCCinteger s ->
let mulcst2 = int_of_string s in
let neg = mulcst2 < 0 in
let mulcst2 = abs mulcst2 in
let t1 =
if neg then new term ~typ:integer_type (JCTunary((`Uminus,`Integer),t1)) else t1
in
let zbs1 = zero_bounds_term t1 in
List.flatten (List.map (div_zb t1 mulcst2) zbs1)
| JCCboolean _ | JCCvoid | JCCnull | JCCreal _ | JCCstring _ ->
auto_bounds t
end
| _ -> auto_bounds t
end
| `Bmod,`Integer ->
auto_bounds t
| `Badd,_ | `Bsub,_ | `Bmul,_ | `Bdiv,_ ->
auto_bounds t
| _ -> assert false
end
| JCTbinary _ ->
auto_bounds t
| JCTunary (uop, t1) ->
begin match uop with
| `Uminus,`Integer ->
let minus_zb zb =
let lb1 = new term ~typ:integer_type (JCTunary ((`Uminus,`Integer), zb.zlow)) in
let rb1 = new term ~typ:integer_type (JCTunary ((`Uminus,`Integer), zb.zup)) in
{ zb with zlow = rb1; zup = lb1; }
in
let zbs = zero_bounds_term t1 in
List.map minus_zb zbs
| _ ->
auto_bounds t
end
| JCTconst _ | JCTvar _ | JCTderef _ | JCToffset _
| JCTapp _ | JCTshift _ | JCTinstanceof _
| JCTold _ | JCTat _ | JCTcast _ | JCTrange_cast _ | JCTreal_cast _
| JCTrange _ | JCTif _ | JCTmatch _ ->
auto_bounds t
let linstr_of_term env t =
let mkmulstr = function
| (va, 0) -> ""
| (va, c) -> string_of_int c ^ " * " ^ va
in
let rec mkaddstr = function
| [] -> ""
| [va,c] -> mkmulstr (va,c)
| (va,c) :: r ->
match mkmulstr (va,c), mkaddstr r with
| "","" -> ""
| s,"" | "",s -> s
| s1,s2 -> s1 ^ " + " ^ s2
in
try
let coeffs, cst = linearize t in
let env = TermMap.fold
(fun t _ env ->
let va = Vai.variable_of_term t in
if Environment.mem_var env va then env
else Environment.add env [|va|] [||]
) coeffs env
in
let coeffs =
TermMap.fold (fun t c acc ->
let va = Vai.variable_of_term t in (Var.to_string va,c)::acc
) coeffs []
in
Some (env, mkaddstr coeffs, cst)
with Failure _ -> None
type offset_kind = Offset_min_kind | Offset_max_kind
let offset_linstr_of_term env ok t =
match destruct_pointer t with
| None, _ -> None
| Some ptrt, offt ->
let st = struct_of_term ptrt in
let minmaxt = match ok with
| Offset_min_kind ->
new term ~typ:integer_type (JCToffset(Offset_min,ptrt,st))
| Offset_max_kind ->
new term ~typ:integer_type (JCToffset(Offset_max,ptrt,st))
in
let t = match offt with None -> minmaxt | Some offt ->
new term ~typ:integer_type (JCTbinary(minmaxt,(`Bsub,`Integer),offt))
in
linstr_of_term env t
let rec stronger_assertion a =
match a#node with
| JCArelation(t1,bop,t2) ->
let subt = new term ~typ:integer_type (JCTbinary (t1, (`Bsub,`Integer), t2)) in
let zbs = zero_bounds_term subt in
let zero = new term ~typ:integer_type (JCTconst (JCCinteger "0")) in
let dnf = match bop with
| (`Beq,`Integer) ->
List.map (fun zb ->
let lwcstr =
new assertion(JCArelation(zb.zlow,(`Beq,`Integer),zero)) in
let upcstr =
new assertion(JCArelation(zb.zup,(`Beq,`Integer),zero)) in
lwcstr :: upcstr :: zb.zconstrs
) zbs
| (`Bneq,`Integer) -> []
| (`Ble,`Integer) | (`Blt,`Integer) ->
List.map (fun zb ->
let lwcstr =
new assertion(JCArelation(zb.zup,bop,zero)) in
lwcstr :: zb.zconstrs
) zbs
| (`Bge,`Integer) | (`Bgt,`Integer) ->
List.map (fun zb ->
let upcstr =
new assertion(JCArelation(zb.zlow,(`Bge,`Integer),zero)) in
upcstr :: zb.zconstrs
) zbs
| _ -> assert false (* TODO *)
in assertion_of_dnf dnf
| _ -> a
(* Returns a dnf. *)
let rec linstr_of_assertion env a =
match a#node with
| JCAtrue -> env, Dnf.true_
| JCAfalse -> env, Dnf.false_
| JCArelation (t1, bop, t2) ->
let subt = new term ~typ:integer_type (JCTbinary (t1, (`Bsub,`Integer), t2)) in
begin match linstr_of_term env subt with
| Some (env, str, cst) ->
let cstr = string_of_int (- cst) in
(* Do not use < and > with APRON. Convert to equivalent non-strict. *)
let str = match bop with
| (`Blt,`Integer) -> [[str ^ " <= " ^ (string_of_int ((- cst) - 1))]]
| (`Bgt,`Integer) -> [[str ^ " >= " ^ (string_of_int ((- cst) + 1))]]
| (`Ble,`Integer) -> [[str ^ " <= " ^ cstr]]
| (`Bge,`Integer) -> [[str ^ " >= " ^ cstr]]
| (`Beq,`Integer) -> [[str ^ " = " ^ cstr]]
| (`Bneq,`Integer) ->
[[str ^ " <= " ^ (string_of_int ((- cst) - 1))];
[str ^ " >= " ^ (string_of_int ((- cst) + 1))]]
| (`Blt,_) | (`Bgt,_) | (`Ble,_) | (`Bge,_)
| (`Beq,_)
| (`Bneq,_) -> Dnf.true_
in
env, str
| None ->
let zbs = zero_bounds_term subt in
let zero = new term ~typ:integer_type (JCTconst(JCCinteger "0")) in
if List.length zbs <= 1 then
(* If [zero_bounds_term] found an integer division on which
to split, length of resulting list must be pair,
and thus >= 2. *)
env, Dnf.true_
else
let str_of_conjunct env conj =
List.fold_left (fun (env,strconj) a ->
let env,dnf = linstr_of_assertion env a in
if Dnf.is_false dnf then
assert false (* TODO *)
else if Dnf.is_true dnf then
env,strconj
else if Dnf.is_singleton_disjunct dnf then
env,Dnf.get_singleton_disjunct dnf :: strconj (* base case *)
else assert false (* TODO *)
) (env,[]) conj
in
let strdnf_of_dnf env adnf =
let env,strdnf =
List.fold_left (fun (env,strdnf) conj ->
let env,strconj = str_of_conjunct env conj in
match strconj with
| [] -> env, strdnf
| _ -> env, strconj :: strdnf
) (env,[]) adnf
in
let strdnf = match strdnf with
| [] -> Dnf.true_
| dnf -> dnf
in
env,strdnf
in
begin match bop with
| (`Beq,`Integer) ->
let adnf =
List.map (fun zb ->
let lwcstr =
new assertion(JCArelation(zb.zlow,(`Ble,`Integer),zero)) in
let upcstr =
new assertion(JCArelation(zb.zup,(`Bge,`Integer),zero)) in
lwcstr :: upcstr :: zb.zconstrs
) zbs
in strdnf_of_dnf env adnf
| (`Bneq,`Integer) -> env,Dnf.true_
| (`Ble,`Integer) | (`Blt,`Integer) ->
let adnf =
List.map (fun zb ->
let lwcstr =
new assertion(JCArelation(zb.zlow,bop,zero)) in
lwcstr :: zb.zconstrs
) zbs
in strdnf_of_dnf env adnf
| (`Bge,`Integer) | (`Bgt,`Integer) ->
let adnf =
List.map (fun zb ->
let upcstr =
new assertion(JCArelation(zb.zup,(`Bge,`Integer),zero)) in
upcstr :: zb.zconstrs
) zbs
in strdnf_of_dnf env adnf
| _ -> assert false (* TODO *)
end
end
| JCAnot a ->
let nota = not_asrt a in
begin match nota#node with
| JCAnot _ -> env, Dnf.true_
| _ -> linstr_of_assertion env nota
end
| JCAand _ | JCAor _ | JCAimplies _ | JCAiff _ | JCAapp _
| JCAquantifier _ | JCAold _ | JCAat _ | JCAinstanceof _ | JCAbool_term _
| JCAif _ | JCAmutable _ | JCAtagequality _ | JCAmatch _ -> env, Dnf.true_
let unique_linstr_of_assertion env a =
match snd (linstr_of_assertion env a) with
| [[str]] -> str
| _ -> assert false
let offset_min_linstr_of_assertion env a = env,[[]] (* TODO *)
let offset_max_linstr_of_assertion env a = env,[[]] (* TODO *)
let linstr_of_expr env e =
match term_of_expr e with
| None -> None
| Some t ->
match linstr_of_term env t with
| None -> None
| Some (env, "", cst) -> Some (env, string_of_int cst)
| Some (env, str, cst) -> Some (env, str ^ " + " ^ (string_of_int cst))
let offset_linstr_of_expr env ok e =
match e#node with
| JCEalloc _ ->
if ok = Offset_min_kind then Some (env, "0") else
(* Note: support of offset_max was skipped ? it seems to work well (Nicolas) *)
if ok = Offset_max_kind then
match term_of_expr e with
| None -> None
| Some t ->
match linstr_of_term env t with
| None -> None
| Some (env,"",cst) -> Some (env,string_of_int cst)
| Some (env,str,cst) -> Some (env,str ^ " + " ^ (string_of_int cst))
else None
| _ ->
match term_of_expr e with
| None -> None
| Some t ->
match offset_linstr_of_term env ok t with
| None -> None
| Some (env,"",cst) -> Some (env,string_of_int cst)
| Some (env,str,cst) -> Some (env,str ^ " + " ^ (string_of_int cst))
let is_null_term t =
match t#node with
| JCTconst (JCCinteger "0") -> true
| _ -> false
(*****************************************************************************)
(* Building assertions from inferred invariants. *)
(*****************************************************************************)
let mkterm linexpr =
let vars =
Array.to_list (fst (Environment.vars (Linexpr1.get_env linexpr)))
in
let rec add_term t va =
match Linexpr1.get_coeff linexpr va with
| Scalar s ->
let vt = match Scalar.to_string s with
| "0." | "0" -> None
| "1" -> Some (Vai.term va)
| "-1" ->
let tnode = JCTunary ((`Uminus,`Integer), Vai.term va) in
let t = new term ~typ:integer_type tnode in
Some t
| s ->
let ctnode = JCTconst (JCCinteger s) in
let ct = new term ~typ:integer_type ctnode in
let tnode = JCTbinary (ct, (`Bmul,`Integer), Vai.term va) in
let t = new term ~typ:integer_type tnode in
Some t
in
begin match t,vt with
| None,vt -> vt
| t,None -> t
| Some t,Some vt ->
let tnode = JCTbinary (t, (`Badd,`Integer), vt) in
let t = new term ~typ:integer_type tnode in
Some t
end
| Interval _ -> assert false
in
let cst = match Linexpr1.get_cst linexpr with
| Scalar s ->
begin match Scalar.to_string s with
| "0." | "0" -> None
| s ->
let ctnode = JCTconst (JCCinteger s) in
let ct = new term ~typ:integer_type ctnode in
Some ct
end
| Interval _ -> assert false
in
match List.fold_left add_term cst vars with
| None -> assert false
| Some t -> t
let mkassertion lincons =
let t1 = mkterm (Lincons1.get_linexpr1 lincons) in
let op,c2 = match Lincons1.get_typ lincons with
| EQ -> (`Beq,`Integer), JCCinteger "0"
| SUPEQ -> (`Bge,`Integer), JCCinteger "0"
| SUP -> (`Bgt,`Integer), JCCinteger "0"
| DISEQ -> (`Bneq,`Integer), JCCinteger "0"
| EQMOD scalar -> (* (`Bmod,`Integer), JCCinteger (Scalar.to_string scalar) *)
assert false
in
let t2 = new term ~typ:integer_type (JCTconst c2) in
new assertion (JCArelation(t1,op,t2))
let presentify a =
let rec linterms_of_term t =
let mkmulterm = function
| (t,0) -> None
| (t,1) -> Some t
| (t,-1) ->
Some(new term ~typ:integer_type (JCTunary((`Uminus,`Integer),t)))
| (t,c) ->
let c = new term ~typ:integer_type (JCTconst(JCCinteger(string_of_int c))) in
Some(new term ~typ:integer_type (JCTbinary(c,(`Bmul,`Integer),t)))
in
let rec mkaddterm = function
| [] -> None
| [t,c] -> mkmulterm (t,c)
| (t,c) :: r ->
match mkmulterm (t,c), mkaddterm r with
| None,None -> None
| Some t,None | None,Some t -> Some t
| Some t1,Some t2 -> Some(new term ~typ:integer_type (JCTbinary(t1,(`Badd,`Integer),t2)))
in
try
let coeffs,cst = linearize t in
let posl,negl =
TermMap.fold (fun t c (pl,nl) ->
if c > 0 then (t,c) :: pl, nl
else if c < 0 then pl, (t,-c) :: nl
else pl, nl
) coeffs ([],[])
in
let cstt = new term ~typ:integer_type (JCTconst(JCCinteger(string_of_int(abs cst)))) in
let post = match mkaddterm posl with
| None ->
if cst > 0 then cstt else new term ~typ:integer_type (JCTconst(JCCinteger "0"))
| Some t ->
if cst > 0 then new term ~typ:integer_type (JCTbinary(t,(`Badd,`Integer),cstt)) else t
in
let negt = match mkaddterm negl with
| None ->
if cst < 0 then cstt else new term ~typ:integer_type (JCTconst(JCCinteger "0"))
| Some t ->
if cst < 0 then new term ~typ:integer_type (JCTbinary(t,(`Badd,`Integer),cstt)) else t
in
Some (post,negt)
with Failure _ -> None
in
let rec linasrt_of_assertion a =
match a#node with
| JCArelation(t1,bop,t2) ->
let subt = new term ~typ:integer_type (JCTbinary(t1,(`Bsub,`Integer),t2)) in
begin match linterms_of_term subt with
| None -> a
| Some (post,negt) -> new assertion(JCArelation(post,bop,negt))
end
| JCAnot a ->
let nota = not_asrt a in
begin match nota#node with
| JCAnot _ -> a
| _ -> linasrt_of_assertion nota
end
| JCAtrue | JCAfalse | JCAand _ | JCAor _ | JCAimplies _ | JCAiff _
| JCAapp _ | JCAquantifier _ | JCAold _ | JCAat _ | JCAinstanceof _ | JCAbool_term _
| JCAif _ | JCAmutable _ | JCAtagequality _ | JCAmatch _ -> a
in
linasrt_of_assertion a
let mkinvariant mgr absval =
if Abstract1.is_top mgr absval = Manager.True then
new assertion JCAtrue
else if Abstract1.is_bottom mgr absval = Manager.True then
new assertion JCAfalse
else
let linconsarr = Abstract1.to_lincons_array mgr absval in
let rec mkrec acc i =
if i >= 0 then
mkrec (mkassertion (Lincons1.array_get linconsarr i) :: acc) (i-1)
else acc
in
let asserts = mkrec [] (Lincons1.array_length linconsarr - 1) in
make_and (List.map presentify asserts)
(*****************************************************************************)
(* Collecting assertions. *)
(*****************************************************************************)
let target_of_assertion s loc a =
{
jc_target_expr = s;
jc_target_location = loc;
jc_target_assertion = a;
jc_target_regular_invariant = new assertion JCAfalse;
jc_target_propagated_invariant = new assertion JCAfalse;
}
(* Collect safety assertions from the evaluation of expression [e].
* Currently, 3 kinds of assertions are collected, that check for:
* - memory safety
* - no integer overflows
* - no division by zero
*)
let collect_expr_targets e =
(* Collect memory safety assertions. *)
let collect_memory_access e1 fi =
match term_of_expr e1 with None -> [] | Some t1 ->
match destruct_pointer t1 with None,_ -> [] | Some ptrt,offopt ->
let offt = match offopt with
| None -> new term ~typ:integer_type (JCTconst(JCCinteger"0"))
| Some offt -> offt
in
let st = struct_of_term ptrt in
let mint = new term ~typ:integer_type (JCToffset(Offset_min,ptrt,st)) in
let maxt = new term ~typ:integer_type (JCToffset(Offset_max,ptrt,st)) in
let mina = new assertion(JCArelation(mint,(`Ble,`Integer),offt)) in
let maxa = new assertion(JCArelation(offt,(`Ble,`Integer),maxt)) in
let mina = stronger_assertion mina in
let maxa = stronger_assertion maxa in
[mina;maxa]
in
(* Collect absence of integer overflow assertions. *)
let collect_integer_overflow ei e1 =
match term_of_expr e1 with None -> [] | Some t1 ->
let mint = new term ~typ:integer_type
(JCTconst (JCCinteger (Num.string_of_num ei.jc_enum_info_min)))
in
let maxt = new term ~typ:integer_type
(JCTconst(JCCinteger (Num.string_of_num ei.jc_enum_info_max)))
in
let mina = new assertion (JCArelation (mint, (`Ble,`Integer), t1)) in
let maxa = new assertion (JCArelation (t1, (`Ble,`Integer), maxt)) in
let mina = stronger_assertion mina in
let maxa = stronger_assertion maxa in
[mina; maxa]
in
(* Collect absence of division by zero assertions. *)
let collect_zero_division e =
match term_of_expr e with None -> [] | Some t ->
let zero = new term ~typ:integer_type (JCTconst(JCCinteger "0")) in
[new assertion(JCArelation(t,(`Bneq,`Integer),zero))]
in
let collect e =
let asrts = match e#node with
| JCEderef(e1,fi) -> collect_memory_access e1 fi
| JCErange_cast(e1,ei) -> collect_integer_overflow ei e1
| JCEbinary(_,(`Bdiv,`Integer),e2) -> collect_zero_division e2
| JCEapp call ->
let fi = match call.jc_call_fun with JCfun f -> f | _ -> assert false in
let els = call.jc_call_args in
let _,_,fs,_ =
Hashtbl.find Jc_typing.functions_table fi.jc_fun_info_tag
in
(* Collect preconditions of functions called. *)
let reqa = fs.jc_fun_requires in
let reqa =
List.fold_left2 (fun a param arg ->
match term_of_expr arg with None -> new assertion JCAtrue | Some targ ->
replace_term_in_assertion (new term_var param) targ a
) reqa fi.jc_fun_info_parameters els
in
let reqa = regionalize_assertion reqa call.jc_call_region_assoc in
conjuncts reqa
| JCEassert a when a#name_label = "hint" ->
(* Hints are not to be proved by abstract interpretation,
only added to help it. *)
[]
| JCEassert a ->
(* Consider separately each conjunct in a conjunction. *)
conjuncts a
| JCEassign_heap (e1, fi, _e2) ->
collect_memory_access e1 fi
| JCElet(_,None,_) | JCEblock _ | JCEif _ | JCEtry _ | JCEloop _
| JCEreturn_void | JCEreturn _ | JCEthrow _
| JCElet _ | JCEassign_var _
| JCEpack _ | JCEunpack _ | JCEshift _ | JCEmatch _ | JCEfree _
| JCEalloc _ | JCEoffset _ | JCEreal_cast _ | JCEinstanceof _
| JCEunary _ | JCEvar _ | JCEconst _ | JCEcast _ | JCEbinary _ ->
[]
in
let asrts = List.map normalize_assertion asrts in
List.map (target_of_assertion e e#loc) asrts
in
IExpr.fold_left (fun acc e -> collect e @ acc) [] e
let collect_expr_asserts e =
match term_of_expr e with None -> [] | Some _ ->
let targets = collect_expr_targets e in
List.map (fun target -> target.jc_target_assertion) targets
let rec collect_targets filter_asrt targets s =
let candidates = List.rev (collect_expr_targets s) in
List.filter (fun target -> filter_asrt target.jc_target_assertion) candidates
let pointer_terms_table = ref (Hashtbl.create 0)
let set_equivalent_terms t1 t2 =
let tl =
try
Hashtbl.find !pointer_terms_table t2#node
with Not_found -> []
in
let tl = List.filter (fun t -> t <> t1) tl in
Hashtbl.replace !pointer_terms_table t1#node (t2 :: tl)
(*****************************************************************************)
(* Performing abstract interpretation. *)
(*****************************************************************************)
let rec test_assertion mgr pre a =
let env = Abstract1.env pre in
let rec extract_environment_and_dnf env a =
match a#node with
| JCAtrue -> env,Dnf.true_
| JCAfalse -> env,Dnf.false_
| _ when is_constant_assertion a ->
(* 'constant' assertions (eg: 0 <= 1) do not have to be tested
(Nicolas) *)
env,Dnf.true_
| JCArelation (t1, (`Bneq,`Integer), t2) ->
let infa = new assertion (JCArelation(t1, (`Blt,`Integer), t2)) in
let supa = new assertion (JCArelation(t1, (`Bgt,`Integer), t2)) in
let env, dnf1 = extract_environment_and_dnf env infa in
let env, dnf2 = extract_environment_and_dnf env supa in
env, Dnf.make_or [dnf1; dnf2]
| JCArelation (t1, bop, t2) ->
if bop = (`Beq,`Pointer) then set_equivalent_terms t1 t2;
let env, be = linstr_of_assertion env a in
let env, bemin = offset_min_linstr_of_assertion env a in
let env, bemax = offset_max_linstr_of_assertion env a in
let dnf = Dnf.make_and [be; bemin; bemax] in
env, dnf
| JCAand al ->
List.fold_left (fun (env,dnf1) a ->
let env,dnf2 = extract_environment_and_dnf env a in
env,Dnf.make_and [dnf1;dnf2]
) (env,Dnf.true_) al
| JCAor al ->
List.fold_left (fun (env,dnf1) a ->
let env,dnf2 = extract_environment_and_dnf env a in
env,Dnf.make_or [dnf1;dnf2]
) (env,Dnf.false_) al
| JCAnot a ->
let nota = not_asrt a in
begin match nota#node with
| JCAnot _ -> env, Dnf.true_
| _ -> extract_environment_and_dnf env nota
end
| JCAapp app ->
let li = app.jc_app_fun in
if debug then printf "[test_assertion] %a@." Jc_output.assertion a;
if li.jc_logic_info_name = "full_separated" then env,Dnf.true_ else
let _, term_or_assertion =
try Hashtbl.find Jc_typing.logic_functions_table li.jc_logic_info_tag
with Not_found -> assert false
in
begin
match term_or_assertion with
| JCAssertion a ->
let a = List.fold_left2
(fun a vi t ->
replace_vi_in_assertion vi t a)
a li.jc_logic_info_parameters app.jc_app_args
in
extract_environment_and_dnf env a
| _ -> env, Dnf.true_
end
| JCAimplies _ | JCAiff _
| JCAquantifier _ | JCAold _ | JCAat _ | JCAinstanceof _ | JCAbool_term _
| JCAif _ | JCAmutable _ | JCAtagequality _ | JCAmatch _ -> env,Dnf.true_
in
let env, dnf = extract_environment_and_dnf env a in
Abstract1.change_environment_with mgr pre env false;
Dnf.test mgr pre dnf
let test_expr ~(neg:bool) mgr pre e =
try
let a = asrt_of_expr e in
let a = if neg then not_asrt a else a in
test_assertion mgr pre a
with Failure "Not an assertion" -> ()
(* Assigns expression [e] to abstract variable [va] in abstract value [pre]. *)
let assign_variable mgr pre va e =
let env0 = Abstract1.env pre in
let env =
if Environment.mem_var env0 va then env0
else Environment.add env0 [|va|] [||]
in
match linstr_of_expr env e with
| Some (env, str) ->
if debug then printf "[assign_variable] str %s@." str;
(* Assignment can be treated precisely. *)
let lin =
try Parser.linexpr1_of_string env str
with Parser.Error msg -> printf "%s@." msg; assert false
in
Abstract1.change_environment_with mgr pre env false;
Abstract1.assign_linexpr_with mgr pre va lin None
| None ->
if debug then printf "[assign_variable] no str@.";
(* Try over-approximate treatment of assignment. *)
if Environment.mem_var env0 va then
Abstract1.forget_array_with mgr pre [|va|] false;
match term_of_expr e with
| Some te ->
(* Assignment treated as an equality test. *)
let t = Vai.term va in
let a = new assertion(JCArelation(t,(`Beq,`Integer),te)) in
test_assertion mgr pre a
| None ->
(* Assignment treated as a forget operation. *)
()
let assign_offset_variable mgr pre va ok e =
let env0 = Abstract1.env pre in
let env =
if Environment.mem_var env0 va then env0
else Environment.add env0 [|va|] [||]
in
let forget_vars = [] in
let forget_vars = Array.of_list forget_vars in
Abstract1.forget_array_with mgr pre forget_vars false;
match offset_linstr_of_expr env ok e with
| Some(env,str) ->
(* Assignment can be treated precisely. *)
let lin =
try Parser.linexpr1_of_string env str
with Parser.Error msg -> printf "%s@." msg; assert false
in
Abstract1.change_environment_with mgr pre env false;
Abstract1.assign_linexpr_with mgr pre va lin None
| None ->
(* Assignment treated as a forget operation. *)
if Environment.mem_var env0 va then
Abstract1.forget_array_with mgr pre [|va|] false
let assign_expr mgr pre t e =
(* Choice: terms that depend on the term assigned to are removed from
the abstract value -before- treating the assignment. *)
let env = Abstract1.env pre in
let integer_vars = Array.to_list (fst (Environment.vars env)) in
let forget_vars = List.filter
(fun va' ->
let t' = Vai.term va' in
(not (raw_term_equal t t')) && term_depends_on_term t' t
) integer_vars
in
let forget_vars = Array.of_list forget_vars in
Abstract1.forget_array_with mgr pre forget_vars false;
(* Propagate knowledge on abstract variables on the rhs of the assignment
to equivalent abstract variables on the lhs. *)
begin match term_of_expr e with
| None -> ()
| Some te ->
let constr_vars = List.filter
(fun va ->
not (Abstract1.is_variable_unconstrained mgr pre va = Manager.True)
) integer_vars
in
List.iter
(fun va' ->
let t' = Vai.term va' in
if raw_strict_sub_term te t' then
let lhst =
replace_term_in_term ~source:te ~target:t t'
in
let a = new assertion (JCArelation (lhst, (`Beq,`Integer), t')) in
test_assertion mgr pre a
) constr_vars
end;
(* special case: t1 : pointer = t2 : pointer *)
begin
try
let t1 = t in
let t2 = p_term_of_expr e in
match t1#typ, t2#typ with
| JCTpointer _, JCTpointer _ ->
set_equivalent_terms t1 t2
| _ -> ()
with _ -> ()
end;
(* Assign abstract variables. *)
if Vai.has_variable t then
assign_variable mgr pre (Vai.variable t) e;
if Vai.has_offset_min_variable t then
begin
let va = Vai.offset_min_variable t in
assign_offset_variable mgr pre va Offset_min_kind e
end;
if Vai.has_offset_max_variable t then
begin
let va = Vai.offset_max_variable t in
assign_offset_variable mgr pre va Offset_max_kind e
end
let assign_heap mgr pre r fi =
if debug then
printf "[assign_heap]%a@." Region.print r;
if !Jc_options.separation_sem = SepRegions then
assert (not (is_dummy_region r));
let env = Abstract1.env pre in
let integer_vars = Array.to_list (fst (Environment.vars env)) in
let forget_vars = List.filter
(fun va ->
let t = Vai.term va in
let is_deref_field t = match t#node with
| JCTderef(_,_,fi') -> FieldOrd.equal fi fi'
| _ -> false
in
let rec has_memory acc t =
if acc ||
(is_deref_field t &&
(not (!Jc_options.separation_sem = SepRegions)
|| Region.equal t#region r)) then
(* cont = *)false,(* acc = *)true
else
match t#node with
| JCToffset(_,t',_) -> false,has_sub_memory acc t'
| _ -> true,acc
and has_sub_memory acc t =
fold_sub_term fold_rec_term has_memory acc t
in
let res = fold_rec_term has_memory false t in
if debug then
printf "[assign_heap]%a:%b@." Var.print va res;
res
) integer_vars
in
let forget_vars = Array.of_list forget_vars in
Abstract1.forget_array_with mgr pre forget_vars false
let meet mgr val1 val2 =
let env = Environment.lce (Abstract1.env val1) (Abstract1.env val2) in
Abstract1.change_environment_with mgr val1 env false;
Abstract1.change_environment_with mgr val2 env false;
Abstract1.meet_with mgr val1 val2
let join mgr val1 val2 =
let env = Environment.lce (Abstract1.env val1) (Abstract1.env val2) in
Abstract1.change_environment_with mgr val1 env false;
Abstract1.change_environment_with mgr val2 env false;
Abstract1.join_with mgr val1 val2
let join_abstract_value mgr pair1 pair2 =
join mgr pair1.jc_absval_regular pair2.jc_absval_regular;
join mgr pair1.jc_absval_propagated pair2.jc_absval_propagated
let join_invariants mgr invs1 invs2 =
if Jc_options.debug then
printf "@[<v 2>[join]@\n%a@\nand@\n%a@]@."
print_abstract_invariants invs1 print_abstract_invariants invs2;
let join_exclists postexcl1 postexcl2 =
let join1 =
List.fold_right
(fun (ei, post1) acc ->
try
let post2 = List.assoc ei postexcl2 in
join_abstract_value mgr post1 post2;
(ei, post1) :: acc
with Not_found -> (ei, post1) :: acc
) postexcl1 []
in
List.fold_right
(fun (ei, post2) acc ->
if List.mem_assoc ei join1 then acc
else (ei, post2) :: acc
) postexcl2 join1
in
assert (invs1.jc_absinv_return == invs2.jc_absinv_return);
join_abstract_value mgr invs1.jc_absinv_normal invs2.jc_absinv_normal;
invs1.jc_absinv_exceptional <-
join_exclists invs1.jc_absinv_exceptional invs2.jc_absinv_exceptional
(* Returns the widened value as there is no destructive version of [widening]
* in [Abstract1]. *)
let widening mgr val1 val2 =
let env = Environment.lce (Abstract1.env val1) (Abstract1.env val2) in
Abstract1.change_environment_with mgr val1 env false;
Abstract1.change_environment_with mgr val2 env false;
(* Join before widening so that arguments are in increasing order. *)
Abstract1.join_with mgr val2 val1;
(* Perform widening between values in increasing order. *)
Abstract1.widening mgr val1 val2
let widening_abstract_value mgr pair1 pair2 =
pair1.jc_absval_regular <-
widening mgr pair1.jc_absval_regular pair2.jc_absval_regular;
pair1.jc_absval_propagated <-
widening mgr pair1.jc_absval_propagated pair2.jc_absval_propagated
let widen_invariants mgr invs1 invs2 =
if Jc_options.debug then
printf "@[<v 2>[widening]@\n%a@\nand@\n%a@]@."
print_abstract_invariants invs1 print_abstract_invariants invs2;
let widen_exclists postexcl1 postexcl2 =
let widen1 = List.fold_right (fun (ei,post1) acc ->
try
let post2 = List.assoc ei postexcl2 in
widening_abstract_value mgr post1 post2;
(ei, post1) :: acc
with Not_found -> (ei,post1) :: acc
) postexcl1 []
in
List.fold_right (fun (ei,post2) acc ->
if List.mem_assoc ei widen1 then acc
else (ei, post2) :: acc
) postexcl2 widen1
in
assert (invs1.jc_absinv_return == invs2.jc_absinv_return);
widening_abstract_value mgr invs1.jc_absinv_normal invs2.jc_absinv_normal;
invs1.jc_absinv_exceptional <-
widen_exclists invs1.jc_absinv_exceptional invs2.jc_absinv_exceptional
let empty mgr val1 =
let bot = Abstract1.bottom mgr (Abstract1.env val1) in
Abstract1.meet_with mgr val1 bot
let empty_abstract_value mgr pair1 =
empty mgr pair1.jc_absval_regular;
empty mgr pair1.jc_absval_propagated
let is_eq mgr val1 val2 =
let env = Environment.lce (Abstract1.env val1) (Abstract1.env val2) in
Abstract1.change_environment_with mgr val1 env false;
Abstract1.change_environment_with mgr val2 env false;
Abstract1.is_eq mgr val1 val2 = Manager.True
let eq_abstract_value mgr absval1 absval2 =
is_eq mgr absval1.jc_absval_regular absval2.jc_absval_regular
&& is_eq mgr absval1.jc_absval_propagated absval2.jc_absval_propagated
let eq_invariants mgr invs1 invs2 =
let eq_exclists postexcl1 postexcl2 =
List.length postexcl1 = List.length postexcl2 &&
List.fold_right (fun (ei,post1) acc ->
acc &&
try
let post2 = List.assoc ei postexcl2 in
eq_abstract_value mgr post1 post2
with Not_found -> false
) postexcl1 true
in
assert (invs1.jc_absinv_return == invs2.jc_absinv_return);
eq_abstract_value mgr invs1.jc_absinv_normal invs2.jc_absinv_normal
&& eq_exclists invs1.jc_absinv_exceptional invs2.jc_absinv_exceptional
let copy_abstract_value mgr absval =
{
jc_absval_regular = Abstract1.copy mgr absval.jc_absval_regular;
jc_absval_propagated = Abstract1.copy mgr absval.jc_absval_propagated;
}
let copy_invariants mgr invs = {
jc_absinv_normal = copy_abstract_value mgr invs.jc_absinv_normal;
jc_absinv_exceptional =
List.map (fun (ei,post) -> (ei,copy_abstract_value mgr post))
invs.jc_absinv_exceptional;
jc_absinv_return = invs.jc_absinv_return;
}
let forget mgr val1 vls =
let vls = List.filter (Environment.mem_var (Abstract1.env val1)) vls in
let varr = Array.of_list vls in
Abstract1.forget_array_with mgr val1 varr false
let forget_abstract_value mgr absval vls =
forget mgr absval.jc_absval_regular vls;
forget mgr absval.jc_absval_propagated vls
let forget_invariants mgr invs vls =
forget_abstract_value mgr invs.jc_absinv_normal vls;
List.iter (fun (ei,post) -> forget_abstract_value mgr post vls)
invs.jc_absinv_exceptional
let bottom_abstract_value mgr env =
{
jc_absval_regular = Abstract1.bottom mgr env;
jc_absval_propagated = Abstract1.bottom mgr env;
}
let top_abstract_value mgr env =
{
jc_absval_regular = Abstract1.top mgr env;
jc_absval_propagated = Abstract1.top mgr env;
}
let keep_extern mgr fi post =
let integer_vars =
Array.to_list (fst (Environment.vars (Abstract1.env post)))
in
let to_duplicate t =
fold_term
(fun (acc1, acc2) t -> try
let tl = Hashtbl.find !pointer_terms_table t#node in
t :: acc1, tl :: acc2
with Not_found -> acc1, acc2)
([], []) t
in
let integer_vars, strl =
List.fold_left
(fun (acc1, acc2) va ->
try
let t = Vai.term va in
let tl1, tl2 = to_duplicate t in
let tl = List.fold_left2
(fun acc t1 tl ->
if t1 == t then acc else
(List.map (fun t2 -> replace_term_in_term t1 t2 t) tl) @ acc)
[] tl1 tl2
in
let vars = List.map Vai.variable tl in
let vars = List.filter (fun va -> not (List.mem va acc1)) vars in
let vars = List.fold_left
(fun acc va -> if (List.mem va acc) then acc else va :: acc)
[] vars
in
let strl = List.map
(fun v -> (Var.to_string v) ^ "=" ^ (Var.to_string va))
vars
in
vars @ acc1, strl @ acc2
with Not_found -> acc1, acc2)
(integer_vars, []) integer_vars
in
let env = try Environment.make (Array.of_list integer_vars) [||]
with Failure msg -> printf "%s@." msg; assert false in
Abstract1.change_environment_with mgr post env false;
let lincons = Parser.lincons1_of_lstring env strl in
meet mgr post (Abstract1.of_lincons_array mgr env lincons);
let term_has_local_var t =
fold_term
(fun acc t -> match t#node with
| JCTvar vi ->
acc || (not vi.jc_var_info_static &&
not (vi == fi.jc_fun_info_result) &&
not (List.mem vi fi.jc_fun_info_parameters))
| _ -> acc
) false t
in
let extern_vars =
List.filter (fun va ->
let t = Vai.term va in not (term_has_local_var t)
) integer_vars
in
let extern_vars = Array.of_list extern_vars in
let extern_env = Environment.make extern_vars [||] in
Abstract1.change_environment_with mgr post extern_env false;
post
let rec ai_inter_function_call mgr iai abs pre fi loc fs sl el =
let formal_vars =
List.fold_left2
(fun (acc) vi e ->
let t = new term_var vi in
let acc = if Vai.has_variable t then
let va = Vai.variable t in
assign_variable mgr pre va e;
va :: acc else acc in
let acc = if Vai.has_offset_min_variable t then
let va = Vai.offset_min_variable t in
assign_offset_variable mgr pre va Offset_min_kind e;
va :: acc else acc in
let acc = if Vai.has_offset_max_variable t then
let va = Vai.offset_max_variable t in
assign_offset_variable mgr pre va Offset_max_kind e;
va :: acc else acc in
acc)
[] fi.jc_fun_info_parameters el
in
let formal_vars = List.filter (fun v -> not (Environment.mem_var (Abstract1.env pre) v)) formal_vars in
let formal_vars = Array.of_list formal_vars in
let env = try Environment.add (Abstract1.env pre) formal_vars [||] with _ -> assert false in
let pre = keep_extern mgr fi pre in
let pre = try Abstract1.change_environment mgr pre env false with _ -> assert false in
let function_pre =
try Hashtbl.find iai.jc_interai_function_preconditions fi.jc_fun_info_tag
with Not_found -> Abstract1.bottom mgr (Abstract1.env pre)
in
begin
let old_pre = Abstract1.copy mgr function_pre in
let function_pre, fixpoint_reached =
if fi.jc_fun_info_is_recursive then
let num =
try Hashtbl.find iai.jc_interai_function_nb_iterations fi.jc_fun_info_tag
with Not_found -> 0
in
Hashtbl.replace iai.jc_interai_function_nb_iterations fi.jc_fun_info_tag
(num + 1);
if num < abs.jc_absint_widening_threshold then
begin
join mgr function_pre pre;
if num = 0 then
Hashtbl.replace iai.jc_interai_function_init_pre
fi.jc_fun_info_tag function_pre;
function_pre, false
end
else
begin
let copy_pre = Abstract1.copy mgr pre in
let function_pre = widening mgr function_pre copy_pre in
if is_eq mgr old_pre function_pre then
begin
let init_pre =
Hashtbl.find iai.jc_interai_function_init_pre fi.jc_fun_info_tag in
join mgr function_pre init_pre;
(* Hashtbl.replace iai.jc_interai_function_preconditions fi.jc_fun_info_tag function_pre;*)
function_pre, true
end
else
function_pre, false
end
else
begin
join mgr function_pre pre;
function_pre, false;
end
in
let pre_has_changed = not (is_eq mgr old_pre function_pre) in
if pre_has_changed then
Hashtbl.replace iai.jc_interai_function_preconditions fi.jc_fun_info_tag function_pre;
let inspected = List.mem fi.jc_fun_info_tag !inspected_functions in
if not inspected || pre_has_changed then
ai_function mgr (Some iai) [] (fi, loc, fs, sl);
end
and find_target_assertions targets s =
List.fold_left
(fun acc target ->
if target.jc_target_expr == s then target::acc else acc
) [] targets
(* External function to call to perform abstract interpretation [abs]
* on expr [s], starting from invariants [curinvs].
* It sets the initial value of invariants before treating a loop.
*)
and ai_expr iaio abs curinvs s =
let mgr = abs.jc_absint_manager in
let loop_initial_invariants = abs.jc_absint_loop_initial_invariants in
let loop_invariants = abs.jc_absint_loop_invariants in
let loop_iterations = abs.jc_absint_loop_iterations in
if debug then
printf "[ai_expr] %a on %a@." print_abstract_invariants curinvs
Jc_output.expr s;
match s#node with
| JCEloop (la, ls) ->
(* Reinitialize the loop iteration count and the loop invariant.
* Comment those lines to gain in scaling, at the cost of less precision.
*)
Hashtbl.replace loop_iterations la.jc_loop_tag 0;
Hashtbl.remove loop_invariants la.jc_loop_tag;
(* Set the initial value of invariants when entering the loop from
* the outside.
*)
Hashtbl.replace
loop_initial_invariants la.jc_loop_tag (copy_invariants mgr curinvs);
intern_ai_expr iaio abs curinvs s
| _ -> intern_ai_expr iaio abs curinvs s
(* Internal function called when computing a fixpoint for a loop. It does not
* modify the initial value of invariants for the loop considered, so that
* narrowing is possible.
*)
and intern_ai_expr iaio abs curinvs s =
let mgr = abs.jc_absint_manager in
(* Define common shortcuts. *)
let normal = curinvs.jc_absinv_normal in
let pre = normal.jc_absval_regular in
let prop = normal.jc_absval_propagated in
let postexcl = curinvs.jc_absinv_exceptional in
let postret = curinvs.jc_absinv_return in
(* Record invariant at assertion points. *)
let targets = find_target_assertions abs.jc_absint_target_assertions s in
List.iter
(fun target ->
target.jc_target_regular_invariant <- mkinvariant mgr pre;
target.jc_target_propagated_invariant <- mkinvariant mgr prop
) targets;
(* Apply appropriate transition function. *)
begin match s#node with
| JCElet (vi, None, s) ->
ai_expr iaio abs curinvs s
| JCElet (vi, Some e, s) when Expr.is_app e ->
ai_call iaio abs curinvs (Some vi) e;
ai_expr iaio abs curinvs s
| JCElet (vi, Some e, s) ->
ai_expr iaio abs curinvs e;
assign_expr mgr pre (new term_var vi) e;
ai_expr iaio abs curinvs s;
(* To keep information on variable [vi], declaration should be turned
into assignment before analysis. *)
forget_invariants mgr curinvs (Vai.all_variables (new term_var vi))
| JCEassign_var (vi, e) ->
ai_expr iaio abs curinvs e;
assign_expr mgr pre (new term_var vi) e; (* TODO : le probleme est la (l est supprim de l'env)*)
| JCEassign_heap (e1, fi, e2) ->
ai_expr iaio abs curinvs e1;
ai_expr iaio abs curinvs e2;
assign_heap mgr pre e1#region fi;
begin match term_of_expr e1 with
| None -> () (* TODO *)
| Some t1 ->
let dereft = new term ~typ:fi.jc_field_info_type (JCTderef(t1,LabelHere,fi)) in
assign_expr mgr pre dereft e2
end
| JCEassert a ->
test_assertion mgr pre a
| JCEblock sl ->
List.iter (ai_expr iaio abs curinvs) sl
| JCEmatch _ -> assert false (* TODO *)
| JCEif (e, ts, fs) ->
ai_expr iaio abs curinvs e;
let asrts = collect_expr_asserts e in
List.iter (test_assertion mgr prop) asrts;
let copyinvs = copy_invariants mgr curinvs in
(* Treat "then" branch. *)
test_expr ~neg:false mgr pre e;
ai_expr iaio abs curinvs ts;
(* Treat "else" branch. *)
let copy_pre = copyinvs.jc_absinv_normal.jc_absval_regular in
test_expr ~neg:true mgr copy_pre e;
ai_expr iaio abs copyinvs fs;
(* Join both branches. *)
join_invariants mgr curinvs copyinvs;
| JCEreturn_void ->
join_abstract_value mgr !postret normal;
empty_abstract_value mgr normal
| JCEreturn (t, e) ->
ai_expr iaio abs curinvs e;
let asrts = collect_expr_asserts e in
List.iter (test_assertion mgr prop) asrts;
let result_vi = abs.jc_absint_function.jc_fun_info_result in
let result_vit = new term_var result_vi in
assign_expr mgr pre result_vit e;
join_abstract_value mgr !postret normal;
empty_abstract_value mgr normal;
| JCEthrow (ei, eopt) ->
begin match eopt with
| None -> ()
| Some e ->
ai_expr iaio abs curinvs e;
let asrts = collect_expr_asserts e in
List.iter (test_assertion mgr prop) asrts
end;
(* TODO: add thrown value as abstract variable. *)
begin
try join_abstract_value mgr normal (List.assoc ei postexcl)
with Not_found -> ()
end;
let copy_normal = copy_abstract_value mgr normal in
let postexcl = (ei, copy_normal) :: (List.remove_assoc ei postexcl) in
curinvs.jc_absinv_exceptional <- postexcl;
empty_abstract_value mgr normal;
| JCEpack _ | JCEunpack _ ->
()
| JCEtry(s,hl,fs) ->
ai_expr iaio abs curinvs s;
let postexcl = curinvs.jc_absinv_exceptional in
(* Filter out exceptions present in [hl]. *)
let curpostexcl =
List.filter (fun (ei,_) ->
not (List.exists (fun (ej,_,_) ->
ei.jc_exception_info_tag = ej.jc_exception_info_tag) hl)) postexcl
in
curinvs.jc_absinv_exceptional <- curpostexcl;
(* Consider each handler in turn. *)
List.iter
(fun (ei,_,s) ->
try
let postexc = List.assoc ei postexcl in
let excinvs = {
jc_absinv_normal = postexc;
jc_absinv_exceptional = [];
jc_absinv_return = postret;
} in
ai_expr iaio abs excinvs s;
join_invariants mgr curinvs excinvs;
with Not_found -> ()
) hl;
(* BAD: ai_expr abs curinvs fs *)
begin match fs#node with
| JCEblock [] -> ()
| JCEconst JCCvoid -> ()
| JCEblock [s] when s#node = JCEblock []
|| s#node = JCEconst JCCvoid -> ()
| _ -> assert false (* TODO: apply finally stmt to all paths. *)
end
| JCEloop (la, ls) ->
let loop_invariants = abs.jc_absint_loop_invariants in
let loop_initial_invariants = abs.jc_absint_loop_initial_invariants in
let loop_iterations = abs.jc_absint_loop_iterations in
let num =
try Hashtbl.find loop_iterations la.jc_loop_tag
with Not_found -> 0
in
Hashtbl.replace loop_iterations la.jc_loop_tag (num + 1);
if num < abs.jc_absint_widening_threshold then
let nextinvs = copy_invariants mgr curinvs in
(* Perform one step of propagation through the loop body. *)
ai_expr iaio abs nextinvs ls;
join_invariants mgr curinvs nextinvs;
(* Perform fixpoint computation on the loop. *)
intern_ai_expr iaio abs curinvs s
else
begin try
let loopinvs = Hashtbl.find loop_invariants la.jc_loop_tag in
let wideninvs = copy_invariants mgr loopinvs in
widen_invariants mgr wideninvs curinvs;
if eq_invariants mgr loopinvs wideninvs then
begin
(* Fixpoint reached through widening. Perform narrowing now. *)
let initinvs =
Hashtbl.find loop_initial_invariants la.jc_loop_tag in
wideninvs.jc_absinv_exceptional <- [];
(* TODO: be more precise on return too. *)
ai_expr iaio abs wideninvs ls;
join_invariants mgr wideninvs initinvs;
Hashtbl.replace
loop_invariants la.jc_loop_tag (copy_invariants mgr wideninvs);
wideninvs.jc_absinv_exceptional <- initinvs.jc_absinv_exceptional;
(* TODO: be more precise on return too. *)
ai_expr iaio abs wideninvs ls;
(* This is an infinite loop, whose only exit is through return or
throwing exceptions. *)
empty_abstract_value mgr normal;
curinvs.jc_absinv_exceptional <- wideninvs.jc_absinv_exceptional;
end
else
begin
Hashtbl.replace
loop_invariants la.jc_loop_tag (copy_invariants mgr wideninvs);
(* Perform one step of propagation through the loop body. *)
ai_expr iaio abs wideninvs ls;
(* Perform fixpoint computation on the loop. *)
intern_ai_expr iaio abs wideninvs s;
(* Propagate changes to [curinvs]. *)
empty_abstract_value mgr normal;
join_abstract_value mgr normal wideninvs.jc_absinv_normal;
curinvs.jc_absinv_exceptional <- wideninvs.jc_absinv_exceptional
end
with Not_found ->
Hashtbl.replace
loop_invariants la.jc_loop_tag (copy_invariants mgr curinvs);
(* Perform one step of propagation through the loop body. *)
ai_expr iaio abs curinvs ls;
(* Perform fixpoint computation on the loop. *)
intern_ai_expr iaio abs curinvs s
end
| JCEapp call ->
ai_call iaio abs curinvs None s
| JCEshift _ | JCEfree _ | JCEalloc _ | JCEoffset _ | JCEreal_cast _
| JCErange_cast _ | JCEcast _ | JCEinstanceof _ | JCEunary _
| JCEbinary _ | JCEderef _ | JCEvar _ | JCEconst _ ->
let elist = IExpr.subs s in
List.iter (ai_expr iaio abs curinvs) elist
(* TODO *)
end;
(* let normal = curinvs.jc_absinv_normal in *)
(* let prop = normal.jc_absval_propagated in *)
(* let asrts = collect_expr_asserts s in *)
(* List.iter (test_assertion mgr prop) asrts *)
()
and ai_call iaio abs curinvs vio e =
let mgr = abs.jc_absint_manager in
(* Define common shortcuts. *)
let normal = curinvs.jc_absinv_normal in
let pre = normal.jc_absval_regular in
let call = match e#node with JCEapp call -> call | _ -> assert false in
let fi = match call.jc_call_fun with JCfun f -> f | _ -> assert false in
let el = call.jc_call_args in
List.iter (ai_expr iaio abs curinvs) el;
let _, loc, fs, slo =
Hashtbl.find Jc_typing.functions_table fi.jc_fun_info_tag
in
begin match slo with
| None -> ()
| Some sl ->
if Jc_options.interprocedural then
match iaio with
| None -> () (* intraprocedural analysis only *)
| Some iai ->
let copy_pre = Abstract1.copy mgr pre in
ai_inter_function_call mgr iai abs copy_pre fi loc fs sl el;
end;
(* add postcondition of [fi] to pre *)
let normal_behavior =
List.fold_left
(fun acc (_, _, b) ->
(* TODO : handle 'assumes' clauses correctly *)
if b.jc_behavior_throws = None && b.jc_behavior_assumes = None then
make_and [b.jc_behavior_ensures; acc] else acc)
true_assertion
fs.jc_fun_behavior
in
let normal_behavior =
match iaio with
| None -> normal_behavior
| Some iai ->
let inferred_post =
try
Hashtbl.find iai.jc_interai_function_postconditions fi.jc_fun_info_tag
with Not_found -> Abstract1.top mgr (Abstract1.env pre)
in
make_and [normal_behavior; (mkinvariant mgr inferred_post)]
in
let normal_behavior =
match vio with
| None -> normal_behavior
| Some vi ->
let result_vi = fi.jc_fun_info_result in
let normal_behavior =
switch_vis_in_assertion result_vi vi normal_behavior
in
(* add [fi] result type spec *)
let cstrs = Jc_typing.type_range_of_term
vi.jc_var_info_type (new term_var vi)
in
make_and [normal_behavior; cstrs];
in
(* replace formal by actual parameters in [fi] post *)
let normal_behavior =
List.fold_left2
(fun a e vi ->
let t = term_under_expr e in
match t with
| None ->
Format.printf "no term for expr %a@." Jc_output.expr e;
assert false
| Some t -> replace_vi_in_assertion vi t a)
normal_behavior el fi.jc_fun_info_parameters
in
let exceptional_behaviors =
List.fold_left
(fun acc (_, _, b) ->
(* TODO : handle 'assumes' clauses correctly *)
match b.jc_behavior_throws with
| None -> acc
| Some ei ->
if b.jc_behavior_assumes = None then
(ei, b.jc_behavior_ensures) :: acc else acc)
[] fs.jc_fun_behavior
in
let exceptional_behaviors =
List.map
(fun (ei, a) ->
ei, List.fold_left2
(fun a e vi ->
let t = term_of_expr e in
match t with
| None -> assert false
| Some t -> replace_vi_in_assertion vi t a)
a el fi.jc_fun_info_parameters)
exceptional_behaviors
in
let postexcl =
List.map
(fun (ei, a) ->
let copy_normal = copy_abstract_value mgr normal in
let copy_pre = copy_normal.jc_absval_regular in
test_assertion mgr copy_pre normal_behavior;
ei, copy_normal)
exceptional_behaviors
in
curinvs.jc_absinv_exceptional <- postexcl;
if (is_purely_exceptional_fun fs) then
empty_abstract_value mgr normal
else
begin
let fi_writes = fi.jc_fun_info_effects.jc_writes.jc_effect_globals in
let vars_writes =
VarSet.fold
(fun vi acc -> Vai.all_variables (new term_var vi) @ acc)
fi_writes []
in
Abstract1.forget_array_with mgr pre (Array.of_list vars_writes) false;
test_assertion mgr pre normal_behavior
(* To keep information on variable [vi], declaration should be turned
* into assignment before analysis.
*)
(* match vio with None -> () | Some vi -> *)
(* forget_invariants mgr curinvs (Vai.all_variables (new term_var vi)) *)
end
and record_ai_invariants abs s =
let mgr = abs.jc_absint_manager in
match s#node with
| JCElet(_,_,s) ->
record_ai_invariants abs s
| JCEblock sl ->
List.iter (record_ai_invariants abs) sl
| JCEmatch _ -> assert false (* TODO *)
| JCEif(_,ts,fs) ->
record_ai_invariants abs ts;
record_ai_invariants abs fs
| JCEtry(s,hl,fs) ->
record_ai_invariants abs s;
List.iter (fun (_,_,s) -> record_ai_invariants abs s) hl;
record_ai_invariants abs fs
| JCEloop (la, ls) ->
let loop_invariants = abs.jc_absint_loop_invariants in
begin try
let loopinvs = Hashtbl.find loop_invariants la.jc_loop_tag in
let loopinv = loopinvs.jc_absinv_normal.jc_absval_regular in
(* Abstract1.minimize mgr loopinv; NOT IMPLEMENTED IN APRON*)
if Abstract1.is_top mgr loopinv = Manager.True then ()
else if Abstract1.is_bottom mgr loopinv = Manager.True then
la.jc_loop_invariant <- new assertion JCAfalse
else
let a = mkinvariant mgr loopinv in
nb_conj_atoms_inferred := !nb_conj_atoms_inferred + nb_conj_atoms a;
incr nb_loop_inv;
if Jc_options.verbose then
printf
"%a@[<v 2>Inferring loop invariant@\n%a@]@."
Loc.report_position s#loc
Jc_output.assertion a;
let a =
reg_annot ~loc:s#loc ~anchor:s#name_label a
in
if Jc_options.trust_ai then la.jc_free_loop_invariant <- a else
la.jc_loop_invariant <- make_and [la.jc_loop_invariant; a];
record_ai_invariants abs ls
with Not_found -> () end
| JCEassign_var _ | JCEassign_heap _ | JCEassert _
| JCEreturn_void | JCEreturn _ | JCEthrow _ | JCEpack _ | JCEunpack _
| JCEapp _ -> ()
| JCEshift _ | JCEfree _ | JCEalloc _ | JCEoffset _ | JCEreal_cast _
| JCErange_cast _ | JCEcast _ | JCEinstanceof _ | JCEunary _
| JCEbinary _ | JCEderef _ | JCEvar _ | JCEconst _ ->
() (* TODO *)
and ai_function mgr iaio targets (fi, loc, fs, sl) =
try
let env = Environment.make [||] [||] in
(* Add global variables as abstract variables in [env]. *)
let globvars =
Hashtbl.fold (fun _ (vi, _) acc -> Vai.all_variables (new term_var vi) @ acc)
Jc_typing.variables_table []
in
let env = Environment.add env (Array.of_list globvars) [||] in
(* Add \result as abstract variable in [env] if any. *)
let vi_result = fi.jc_fun_info_result in
let return_type = vi_result.jc_var_info_type in
let env =
if return_type <> JCTnative Tunit then
let result = Vai.all_variables (new term_var vi_result) in
Environment.add env (Array.of_list result) [||]
else env in
(* Add parameters as abstract variables in [env]. *)
let params =
List.fold_left
(fun acc vi -> Vai.all_variables (new term_var vi) @ acc)
[] fi.jc_fun_info_parameters
in
let env = Environment.add env (Array.of_list params) [||] in
let abs = {
jc_absint_manager = mgr;
jc_absint_function_environment = env;
jc_absint_function = fi;
jc_absint_widening_threshold = 1;
jc_absint_loop_invariants = Hashtbl.create 0;
jc_absint_loop_initial_invariants = Hashtbl.create 0;
jc_absint_loop_iterations = Hashtbl.create 0;
jc_absint_loop_entry_invs = Hashtbl.create 0;
jc_absint_target_assertions = targets;
} in
(* Add parameters specs to the function (free) precondition *)
let cstrs =
List.fold_left
(fun acc vi -> Jc_typing.type_range_of_term
vi.jc_var_info_type (new term_var vi) :: acc)
[] fi.jc_fun_info_parameters
in
fs.jc_fun_free_requires <-
make_and (fs.jc_fun_requires :: fs.jc_fun_free_requires :: cstrs);
(* Take the function precondition as init pre *)
let initpre = top_abstract_value mgr env in
test_assertion mgr initpre.jc_absval_regular fs.jc_fun_free_requires;
(* Add the currently inferred pre for [fi] in pre *)
(match iaio with
| None -> ()
| Some iai ->
let inferred_pre =
try Hashtbl.find iai.jc_interai_function_preconditions fi.jc_fun_info_tag
with Not_found -> Abstract1.top mgr env (* for main function *) in
meet mgr initpre.jc_absval_regular inferred_pre);
pointer_terms_table := Hashtbl.create 0;
(* Annotation inference on the function body. *)
let invs = {
jc_absinv_normal = initpre;
jc_absinv_exceptional = [];
jc_absinv_return = ref (bottom_abstract_value mgr env);
} in
(ai_expr iaio abs invs) sl;
(match iaio with
| None -> (record_ai_invariants abs) sl
| Some iai ->
Hashtbl.replace iai.jc_interai_function_abs fi.jc_fun_info_tag abs);
List.iter
(fun target ->
if Jc_options.verbose then
printf
"%a@[<v 2>Inferring assert invariant@\n%a@]@."
Loc.report_position target.jc_target_location
Jc_output.assertion target.jc_target_regular_invariant
) targets;
let initpre = top_abstract_value mgr env in
test_assertion mgr initpre.jc_absval_regular fs.jc_fun_free_requires;
(match iaio with
| None -> ()
| Some iai -> (* Interprocedural analysis *)
inspected_functions := fi.jc_fun_info_tag :: !inspected_functions;
incr nb_nodes;
(* Take the currently inferred pre for [fi] if any *)
try
let inferred_pre =
Hashtbl.find iai.jc_interai_function_preconditions fi.jc_fun_info_tag
in
initpre.jc_absval_regular <- Abstract1.copy mgr inferred_pre
with Not_found -> ());
pointer_terms_table := Hashtbl.create 0;
(* Annotation inference on the function body. *)
let invs = {
jc_absinv_normal = initpre;
jc_absinv_exceptional = [];
jc_absinv_return = ref (bottom_abstract_value mgr env);
} in
ai_expr iaio abs invs sl;
(match iaio with
| None -> record_ai_invariants abs sl
| Some iai ->
Hashtbl.replace iai.jc_interai_function_abs fi.jc_fun_info_tag abs);
List.iter
(fun target ->
if Jc_options.verbose then
printf
"%a@[<v 2>Inferring assert invariant@\n%a@]@."
Loc.report_position target.jc_target_location
Jc_output.assertion target.jc_target_regular_invariant
) targets;
(* Require isolation of parameters written through. *)
(* let write_params = *)
(* fi.jc_fun_info_effects.jc_writes.jc_effect_through_params *)
(* in *)
(* let read_params = *)
(* fi.jc_fun_info_effects.jc_reads.jc_effect_through_params *)
(* in *)
(* let read_params = VarSet.diff read_params write_params in *)
(* let write_params = VarSet.fold (fun v acc -> v::acc) write_params [] in *)
(* let read_params = VarSet.fold (fun v acc -> v::acc) read_params [] in *)
(* let rec write_sep_pred acc = function *)
(* | v::r -> *)
(* List.fold_left (fun acc v2 -> *)
(* new assertion(JCAapp( *)
(* full_separated,[new term_var v;new term_var v2])) *)
(* :: acc *)
(* ) acc (r @ read_params) *)
(* | [] -> acc *)
(* in *)
(* let sep_preds = write_sep_pred [] write_params in *)
(* fs.jc_fun_requires <- make_and(fs.jc_fun_requires :: sep_preds); *)
(* Update the return postcondition for procedure with no last return. *)
if return_type = JCTnative Tunit then
join_abstract_value mgr !(invs.jc_absinv_return) invs.jc_absinv_normal;
(* record the inferred postcondition *)
match iaio with
| None -> ()
| Some iai ->
let old_post =
try
Hashtbl.find iai.jc_interai_function_postconditions fi.jc_fun_info_tag
with Not_found -> Abstract1.top mgr env
in
let returnabs = keep_extern mgr fi !(invs.jc_absinv_return).jc_absval_regular in
if not (is_eq mgr old_post returnabs) then
Hashtbl.replace iai.jc_interai_function_postconditions fi.jc_fun_info_tag returnabs;
let old_excep =
try
Hashtbl.find iai.jc_interai_function_exceptional fi.jc_fun_info_tag
with Not_found -> []
in
let excabsl =
List.fold_left
(fun acc (exc, va) -> (exc, va.jc_absval_regular) :: acc)
[] invs.jc_absinv_exceptional
in
let excabsl = List.map (fun (exc, va) -> exc, keep_extern mgr fi va) excabsl in
if (List.length old_excep = List.length excabsl) then
let annot_inferred =
List.fold_left2
(fun acc (ei1, va1) (ei2, va2) ->
if ei1.jc_exception_info_tag <> ei2.jc_exception_info_tag ||
not (is_eq mgr va1 va2) then true else acc) false old_excep excabsl
in
if annot_inferred then
Hashtbl.replace iai.jc_interai_function_exceptional fi.jc_fun_info_tag excabsl;
with Manager.Error exc ->
Manager.print_exclog std_formatter exc;
printf "@.";
exit 1
(*****************************************************************************)
(* From terms and assertions to ATP formulas and the opposite way. *)
(*****************************************************************************)
module Vwp : sig
val variable : term -> string
val offset_min_variable : term -> struct_info -> string
val offset_max_variable : term -> struct_info -> string
val term : string -> term
end = struct
let variable_table = Hashtbl.create 0
let offset_min_variable_table = Hashtbl.create 0
let offset_max_variable_table = Hashtbl.create 0
let term_table = Hashtbl.create 0
let variable t =
let s = term_name t in
begin try
let t2 = Hashtbl.find variable_table s in
(* printf "s = %s t = %a t2 = %a@." s Jc_output.term t Jc_output.term t2; *)
assert (raw_term_compare t t2 = 0)
with Not_found ->
Hashtbl.add variable_table s t;
Hashtbl.add term_table s t
end;
s
let offset_min_variable t st =
let s = "__jc_offset_min_" ^ (term_name t) in
begin try
let t2 = Hashtbl.find offset_min_variable_table s in
assert (raw_term_compare t t2 = 0)
with Not_found ->
Hashtbl.add offset_min_variable_table s t;
let tmin = new term ~typ:integer_type (JCToffset(Offset_min,t,st)) in
Hashtbl.add term_table s tmin
end;
s
let offset_max_variable t st =
let s = "__jc_offset_max_" ^ (term_name t) in
begin try
let t2 = Hashtbl.find offset_max_variable_table s in
if debug then printf "%a,%a@." Jc_output.term t Jc_output.term t2;
assert (raw_term_compare t t2 = 0)
with Not_found ->
Hashtbl.add offset_max_variable_table s t;
let tmax = new term ~typ:integer_type (JCToffset(Offset_max,t,st)) in
Hashtbl.add term_table s tmax
end;
s
let term s = Hashtbl.find term_table s
end
let is_neq_binop = function
| (`Bneq,`Integer) | (`Bneq,_) -> true
| _ -> false
let atp_relation_of_binop = function
| (`Blt,`Integer) | (`Blt,_) -> "<"
| (`Bgt,`Integer) | (`Bgt,_) -> ">"
| (`Ble,`Integer) | (`Ble,_) -> "<="
| (`Bge,`Integer) | (`Bge,_) -> ">="
| (`Beq,`Integer) | (`Beq,_) -> "="
| (`Bneq,`Integer) | (`Bneq,_) ->
assert false (* Should be treated as "not (t1 eq t2)". *)
| _ -> assert false
let atp_arithmetic_of_binop = function
| (`Badd,`Integer) | (`Badd,_) -> "+"
| (`Bsub,`Integer) | (`Bsub,_) -> "-"
| (`Bmul,`Integer) | (`Bmul,_) -> "*"
| _ -> failwith "Atp alien"
let rec free_variables t =
fold_term
(fun acc t -> match t#node with
| JCTvar vi ->
VarSet.add vi acc
| _ -> acc
) VarSet.empty t
let rec atp_of_term t =
(* if debug then printf "[atp_of_term] %a@." Jc_output.term t; *)
let is_constant_term t =
match t#node with JCTconst _ -> true | _ -> false
in
match t#node with
| JCTconst c ->
begin match c with
| JCCinteger s ->
Atp.Fn(s,[])
| JCCnull ->
Atp.Var (Vwp.variable t)
| JCCboolean _ | JCCvoid | JCCreal _ | JCCstring _ ->
assert false
end
| JCTbinary(t1,((`Badd,`Integer) | (`Bsub,`Integer) as bop),t2) ->
Atp.Fn(atp_arithmetic_of_binop bop, List.map atp_of_term [t1;t2])
| JCTbinary(t1,((`Bmul,`Integer) as bop),t2)
when (is_constant_term t1 || is_constant_term t2) ->
Atp.Fn(atp_arithmetic_of_binop bop, List.map atp_of_term [t1;t2])
| JCTbinary(t1,((`Bdiv,`Integer) as bop),t2) when (is_constant_term t2) ->
Atp.Fn(atp_arithmetic_of_binop bop, List.map atp_of_term [t1;t2])
| JCTbinary(t1,bop,t2) ->
Atp.Var (Vwp.variable t)
| JCTunary(uop,t1) ->
Atp.Fn(Jc_output.unary_op uop, [atp_of_term t1])
| JCToffset(Offset_min,t,st) ->
Atp.Var (Vwp.offset_min_variable t st)
| JCToffset(Offset_max,t,st) ->
Atp.Var (Vwp.offset_max_variable t st)
| JCTvar _ | JCTderef _ | JCTapp _ ->
Atp.Var (Vwp.variable t)
| JCTshift _ | JCTold _ | JCTat _ | JCTmatch _
| JCTinstanceof _ | JCTcast _ | JCTrange_cast _ | JCTreal_cast _
| JCTif _ | JCTrange _ ->
failwith "Atp alien"
(* assert false*)
let rec term_of_atp tm =
match tm with
| Atp.Var s ->
Vwp.term s
| Atp.Fn("+",[tm1;tm2]) ->
let tnode = JCTbinary(term_of_atp tm1,(`Badd,`Integer),term_of_atp tm2) in
new term ~typ:integer_type tnode
| Atp.Fn("-",[tm1;tm2]) ->
let tnode = JCTbinary(term_of_atp tm1,(`Bsub,`Integer),term_of_atp tm2) in
new term ~typ:integer_type tnode
| Atp.Fn("*",[tm1;tm2]) ->
let tnode = JCTbinary(term_of_atp tm1,(`Bmul,`Integer),term_of_atp tm2) in
new term ~typ:integer_type tnode
| Atp.Fn("/",[tm1;tm2]) ->
let tnode = JCTbinary(term_of_atp tm1,(`Bdiv,`Integer),term_of_atp tm2) in
new term ~typ:integer_type tnode
| Atp.Fn("-",[tm1]) ->
let tnode = JCTunary((`Uminus,`Integer),term_of_atp tm1) in
new term ~typ:integer_type tnode
| Atp.Fn(s,[]) ->
let tnode = JCTconst (JCCinteger s) in
new term ~typ:integer_type tnode
| tm ->
printf "Unexpected ATP term %a@." (fun fmt tm -> Atp.printert tm) tm;
assert false
let rec atp_of_asrt a =
(* if debug then printf "[atp_of_asrt] %a@." Jc_output.assertion a; *)
try begin match a#node with
| JCAtrue ->
Atp.True
| JCAfalse ->
Atp.False
| JCArelation(t1,bop,t2) ->
if is_neq_binop bop then
Atp.Not(Atp.Atom(Atp.R("=",List.map atp_of_term [t1;t2])))
else
Atp.Atom(Atp.R(atp_relation_of_binop bop,List.map atp_of_term [t1;t2]))
| JCAand al ->
let rec mkand = function
| [] -> Atp.True
| [a] -> atp_of_asrt a
| a :: al -> Atp.And (atp_of_asrt a, mkand al)
in
mkand al
| JCAor al ->
let rec mkor = function
| [] -> Atp.False
| [a] -> atp_of_asrt a
| a :: al -> Atp.Or (atp_of_asrt a, mkor al)
in
mkor al
| JCAimplies(a1,a2) ->
Atp.Imp(atp_of_asrt a1,atp_of_asrt a2)
| JCAiff(a1,a2) ->
Atp.And
(Atp.Imp(atp_of_asrt a1,atp_of_asrt a2),
Atp.Imp(atp_of_asrt a2,atp_of_asrt a1))
| JCAnot a ->
Atp.Not(atp_of_asrt a)
| JCAquantifier(q,vi,a) ->
let f = atp_of_asrt a in
let fvars = Atp.fv f in
let varsets = List.map (fun v -> free_variables (Vwp.term v)) fvars in
let vars = List.fold_left2
(fun acc va vs ->
if VarSet.mem vi vs then StringSet.add va acc else acc)
(StringSet.singleton vi.jc_var_info_name) fvars varsets
in
let vars = StringSet.elements vars in
let rec quant f = function
| [] -> f
| v::r ->
match q with
| Forall -> quant (Atp.Forall(v,f)) r
| Exists -> quant (Atp.Exists(v,f)) r
in
quant f vars
| JCAapp _ | JCAold _ | JCAat _ | JCAinstanceof _ | JCAbool_term _
| JCAif _ | JCAmutable _ | JCAtagequality _ | JCAmatch _ ->
failwith "Atp alien"
end with Failure "Atp alien" ->
(* If alien appears in negative position, say in left-hand side of
* implication, then we must assume conservatively it may be true, so that
* the consequence of the implication must hold. Conversely, if alien
* appears in positive form, assuming it to be true allows to keep the
* other part of a conjunction. It should not be part of a positive
* disjunction. TODO
*)
Atp.True
let atp_of_asrt a =
if Jc_options.debug then
printf "@[<v 2>[atp_of_asrt]@\n%a@]@." Jc_output.assertion a;
atp_of_asrt a
let rec asrt_of_atp fm =
let anode = match fm with
| Atp.False ->
JCAfalse
| Atp.True ->
JCAtrue
| Atp.Atom(Atp.R("=",[tm1;tm2])) ->
JCArelation(term_of_atp tm1,(`Beq,`Integer),term_of_atp tm2)
| Atp.Atom(Atp.R("<",[tm1;tm2])) ->
JCArelation(term_of_atp tm1,(`Blt,`Integer),term_of_atp tm2)
| Atp.Atom(Atp.R(">",[tm1;tm2])) ->
JCArelation(term_of_atp tm1,(`Bgt,`Integer),term_of_atp tm2)
| Atp.Atom(Atp.R("<=",[tm1;tm2])) ->
JCArelation(term_of_atp tm1,(`Ble,`Integer),term_of_atp tm2)
| Atp.Atom(Atp.R(">=",[tm1;tm2])) ->
JCArelation(term_of_atp tm1,(`Bge,`Integer),term_of_atp tm2)
| Atp.Atom _ ->
printf "Unexpected ATP atom %a@." (fun fmt fm -> Atp.printer fm) fm;
assert false
| Atp.Not fm ->
JCAnot (asrt_of_atp fm)
| Atp.And(fm1,fm2) ->
JCAand [asrt_of_atp fm1;asrt_of_atp fm2]
| Atp.Or(fm1,fm2) ->
JCAor [asrt_of_atp fm1;asrt_of_atp fm2]
| Atp.Imp(fm1,fm2) ->
JCAimplies(asrt_of_atp fm1,asrt_of_atp fm2)
| Atp.Iff(fm1,fm2) ->
JCAiff(asrt_of_atp fm1,asrt_of_atp fm2)
| Atp.Forall _ | Atp.Exists _ ->
JCAtrue
in
new assertion anode
let asrt_of_atp fm =
if Jc_options.debug then
printf "@[<v 2>[asrt_of_atp]@\n%a@]@." (fun fmt fm -> Atp.printer fm) fm;
asrt_of_atp fm
(*****************************************************************************)
(* Computing weakest preconditions. *)
(*****************************************************************************)
let is_function_level posts =
List.length posts.jc_post_modified_vars = 1
let add_modified_var posts v =
let vars = match posts.jc_post_modified_vars with
| vs :: r -> VarSet.add v vs :: r
| [] -> assert false
in
{ posts with jc_post_modified_vars = vars; }
let add_modified_vars posts vs =
let vars = match posts.jc_post_modified_vars with
| vs2 :: r -> VarSet.union vs vs2 :: r
| [] -> assert false
in
{ posts with jc_post_modified_vars = vars; }
let add_inflexion_var posts v =
posts.jc_post_inflexion_vars :=
VarSet.add v !(posts.jc_post_inflexion_vars)
let remove_modified_var posts v =
let vars = match posts.jc_post_modified_vars with
| vs :: r -> VarSet.remove v vs :: r
| [] -> assert false
in
{ posts with jc_post_modified_vars = vars; }
let push_modified_vars posts =
let vars = posts.jc_post_modified_vars in
{ posts with jc_post_modified_vars = VarSet.empty :: vars; }
let pop_modified_vars posts =
let vs,vars = match posts.jc_post_modified_vars with
| vs :: r -> vs,r
| [] -> assert false
in
vs,{ posts with jc_post_modified_vars = vars; }
let tautology a =
let qf = Atp.generalize (atp_of_asrt a) in
if Jc_options.debug then
printf "@[<v 2>Before quantifier elimination@\n%a@]@."
(fun fmt fm -> Atp.printer fm) qf;
let dnf = Atp.dnf qf in
if Jc_options.debug then
printf "@[<v 2>After dnf@\n%a@]@."
(fun fmt fm -> Atp.printer fm) dnf;
if debug then printf "[before integer_qelim]@.";
let qe = Atp.fourier_qelim qf in
if debug then printf "[after integer_qelim]@.";
let qe = asrt_of_atp qe in
match qe#node with
| JCAtrue -> true
| _ -> false
(* For scaling: Dnf(make_and(a,b)) + emptiness test by Apron on each disjunct *)
let contradictory =
let mgr = Polka.manager_alloc_strict () in
fun a b ->
(* tautology(make_not(make_and [a;b])) *)
if Jc_options.debug then
printf "@[<v 2>[contradictory]@\n%a@\n%a@]@."
Jc_output.assertion a Jc_output.assertion b;
let dnf = Atp.dnf(atp_of_asrt(make_and[a;b])) in
let vars = Atp.fv dnf in
let vars = List.map Vwp.term vars in
let vars = List.map Vai.variable_of_term vars in
let env = Environment.make (Array.of_list vars) [||] in
let disjuncts = Atp.disjuncts dnf in
let disjuncts = List.map Atp.conjuncts disjuncts in
let disjuncts = List.map (List.map asrt_of_atp) disjuncts in
assert(List.length disjuncts > 0);
let res = List.fold_left
(fun acc conjunct -> acc &&
try
let cstrs = List.map (linstr_of_assertion env) conjunct in
let cstrs = List.map snd cstrs in
let dnf = Dnf.make_and cstrs in
let absval = Abstract1.top mgr env in
Dnf.test mgr absval dnf;
Abstract1.is_bottom mgr absval = Manager.True
with Parser.Error _ | Failure _ -> false
) true disjuncts
in
if debug then
printf "@[<v 2>[contradictory] %b@]@." res;
res
let simplify =
(* a _ = if Jc_options.debug then *)
(* printf "@[<v 2>[simplify]@\n%a@]@." Jc_output.assertion a; *)
(* a *)
let mgr = Polka.manager_alloc_strict () in
fun inita inva ->
if Jc_options.debug then
printf "@[<v 2>[simplify]@\n%a@]@." Jc_output.assertion inita;
let simpla = if tautology inita then new assertion JCAtrue else
let dnf = Atp.dnf (atp_of_asrt inita) in
let vars = Atp.fv dnf in
let vars = List.map Vwp.term vars in
let vars = List.map Vai.variable_of_term vars in
let env = Environment.make (Array.of_list vars) [||] in
let disjuncts = Atp.disjuncts dnf in
let disjuncts = List.map Atp.conjuncts disjuncts in
let disjuncts = List.map (List.map asrt_of_atp) disjuncts in
let disjuncts =
List.filter (fun conjunct ->
not(contradictory (make_and conjunct) inva)
) disjuncts
in
let abstract_disjuncts,other_disjuncts =
List.fold_right (fun conjunct (abstractl,otherl) ->
try
if Jc_options.debug then
printf "asrt conjunct : %a@."
(Pp.print_list (fun fmt () -> printf " /\\ ")
Jc_output.assertion)
conjunct;
let absval = Abstract1.top mgr env in
(* Overapproximate conjunct. *)
let cstrs = List.map (linstr_of_assertion env) conjunct in
let cstrs = List.map snd cstrs in
let dnf = Dnf.make_and cstrs in
(* if Jc_options.debug then *)
(* printf "linstr conjunct : %a@." *)
(* (Pp.print_list (fun fmt () -> printf " /\\ ") *)
(* (fun fmt s -> print_string s)) *)
(* cstrs; *)
Dnf.test mgr absval dnf;
if Jc_options.debug then
printf "abstract conjunct : %a@." Abstract1.print absval;
if (Abstract1.is_top mgr absval = Manager.True) then
failwith "Incorrect overapproximation";
if Abstract1.is_bottom mgr absval = Manager.True then
abstractl, otherl
else
absval :: abstractl, otherl
with Parser.Error _ | Failure _ ->
abstractl, make_and (List.map presentify conjunct) :: otherl
) disjuncts ([],[])
in
let abstract_disjuncts =
List.fold_right (fun absval acc ->
let acc = List.filter
(fun av -> not (Abstract1.is_leq mgr av absval = Manager.True)) acc
in
if List.exists
(fun av -> Abstract1.is_leq mgr absval av = Manager.True) acc then acc
else absval :: acc
) abstract_disjuncts []
in
List.iter (Abstract1.minimize mgr) abstract_disjuncts;
let abstract_disjuncts = List.map (mkinvariant mgr) abstract_disjuncts in
let disjuncts = abstract_disjuncts @ other_disjuncts in
make_or disjuncts
in
if debug then
printf "@[<v 2>[simplify] initial:@\n%a@]@." Jc_output.assertion inita;
if debug then
printf "@[<v 2>[simplify] w.r.t. invariant:@\n%a@]@."
Jc_output.assertion inva;
if debug then
printf "@[<v 2>[simplify] final:@\n%a@]@." Jc_output.assertion simpla;
simpla
let quantif_eliminate qf finv =
if Jc_options.debug then
printf "@[<v 2>Raw precondition@\n%a@]@." Jc_output.assertion qf;
let qf = atp_of_asrt qf in
if Jc_options.debug then
printf "@[<v 2>Before quantifier elimination@\n%a@]@."
(fun fmt fm -> Atp.printer fm) qf;
let qf = Atp.pnf qf in
match qf with
| Atp.Forall _ | Atp.Exists _ ->
let qe = Atp.fourier_qelim qf in
if Jc_options.debug then
printf "@[<v 2>After quantifier elimination@\n%a@]@."
(fun fmt fm -> Atp.printer fm) qe;
begin match qe with
| Atp.Not nqe ->
let qe = (Atp.dnf nqe) in
if Jc_options.debug then
printf "@[<v 2>After negative disjunctive normal form@\n%a@]@."
(fun fmt fm -> Atp.printer fm) qe;
let res = simplify (asrt_of_atp qe) (new assertion JCAtrue) in
let finv = asrt_of_atp (Atp.dnf (atp_of_asrt finv)) in
simplify (make_not res) finv
| _ ->
let qe = (Atp.dnf qe) in
if Jc_options.debug then
printf "@[<v 2>After disjunctive normal form@\n%a@]@."
(fun fmt fm -> Atp.printer fm) qe;
let finv = asrt_of_atp (Atp.dnf (atp_of_asrt finv)) in
simplify (asrt_of_atp qe) finv
end
| q ->
let finv = asrt_of_atp (Atp.dnf (atp_of_asrt finv)) in
simplify (asrt_of_atp q) finv
let initialize_target curposts target =
let collect_free_vars =
fold_term_and_assertion
(fun acc t -> match t#node with
| JCTvar vi -> VarSet.add vi acc
| _ -> acc)
(fun acc a -> match a#node with
| JCAquantifier(_,vi,a) -> VarSet.remove vi acc
| _ -> acc)
VarSet.empty
in
let collect_sub_terms =
fold_term_in_assertion (fun acc t -> match t#node with
| JCTvar _ | JCTbinary(_,((`Badd,`Integer) | (`Bsub,`Integer)),_)
| JCTunary((`Uminus,`Integer),_) -> acc
| _ -> TermSet.add t acc
) TermSet.empty
in
let vs1 = collect_free_vars target.jc_target_regular_invariant in
let vs2 = collect_free_vars target.jc_target_assertion in
let vs = VarSet.union vs1 vs2 in
let ts1 = collect_sub_terms target.jc_target_regular_invariant in
let ts2 = collect_sub_terms target.jc_target_assertion in
let ts = TermSet.union ts1 ts2 in
VarSet.fold (fun vi a ->
let vit = new term_var vi in
let copyvi = copyvar vi in
add_inflexion_var curposts copyvi;
let t1 = new term_var copyvi in
target.jc_target_regular_invariant <-
replace_term_in_assertion vit t1 target.jc_target_regular_invariant;
target.jc_target_assertion <-
replace_term_in_assertion vit t1 target.jc_target_assertion;
let bop = equality_operator_for_type vi.jc_var_info_type in
let eq = new assertion (JCArelation(t1,bop,vit)) in
let eqs =
TermSet.fold (fun t acc ->
if raw_strict_sub_term vit t then
let t2 = replace_term_in_term ~source:vit ~target:t1 t in
if is_integral_type t#typ then
let bop = equality_operator_for_type t#typ in
let eq = new assertion(JCArelation(t2,bop,t)) in
eq::acc
else acc
else acc
) ts [eq]
in
make_and(a::eqs)
) vs (new assertion JCAtrue)
let finalize_target ~is_function_level ~loc ~anchor curposts target inva =
if Jc_options.debug then
printf "@[<v 2>[finalize_target]@\n%a@]@." Jc_output.assertion inva;
let annot_name =
if is_function_level then "precondition" else "loop invariant"
in
let vs,curposts = pop_modified_vars curposts in
let vs = VarSet.union vs !(curposts.jc_post_inflexion_vars) in
if is_function_level then assert(curposts.jc_post_modified_vars = []);
match curposts.jc_post_normal with None -> None | Some wpa ->
(* [wpa] is the formula obtained by weakest precondition from some
* formula at the assertion point.
*)
(* [patha] is the path formula. It characterizes the states from which
* it is possible to reach the assertion point.
*)
let patha = make_and[wpa;target.jc_target_regular_invariant] in
(* [impla] is the implication formula, that guarantees the assertion holds
* when the assertion point is reached.
*)
let impla = new assertion(JCAimplies(patha,target.jc_target_assertion)) in
(* [quanta] is the quantified formula. It quantifies [impla] over the
* variables modified.
*)
let quanta =
VarSet.fold (fun vi a -> new assertion (JCAquantifier(Forall,vi,a))) vs impla
in
(* [elima] is the quantifier free version of [quanta].
*)
let elima = quantif_eliminate quanta inva in
if contradictory elima patha then
begin
if Jc_options.verbose then
printf "%a@[<v 2>No inferred %s@."
Loc.report_position target.jc_target_location annot_name;
None
end
else
begin
if Jc_options.verbose then
printf "%a@[<v 2>Inferring %s@\n%a@]@."
Loc.report_position target.jc_target_location
annot_name Jc_output.assertion elima;
let elima = reg_annot ~loc ~anchor elima in
Some elima
end
let rec wp_expr weakpre =
let var_of_term = Hashtbl.create 0 in
(* Terms should be raw only. *)
let unique_var_for_term t ty =
try Hashtbl.find var_of_term t
with Not_found ->
let vi = Jc_pervasives.var ty (term_name t) in
Hashtbl.add var_of_term t vi;
vi
in
fun target s curposts ->
if debug then
printf "[wp_expr] %a@." Loc.report_position s#loc;
let curposts = match s#node with
| JCElet(vi,eo,s) ->
let curposts = wp_expr weakpre target s curposts in
let post =
match curposts.jc_post_normal with None -> None | Some a ->
let a =
match eo with None -> a | Some e ->
match term_of_expr e with None -> a | Some t2 ->
if vi.jc_var_info_type = boolean_type then
(* TODO: take boolean variables into account. *)
a
else
let t1 = new term_var vi in
if !Jc_options.annotation_sem = AnnotWeakPre
|| (!Jc_options.annotation_sem = AnnotStrongPre
&& mem_term_in_assertion t1 a)
then
let bop =
equality_operator_for_type vi.jc_var_info_type in
let eq = new assertion (JCArelation(t1,bop,t2)) in
(* new assertion (JCAimplies(eq,a)) *)
make_and [eq;a]
else a
in
(* Some (new assertion (JCAquantifier(Forall,vi,a))) *)
Some a
in
let curposts = add_modified_var curposts vi in
{ curposts with jc_post_normal = post; }
| JCEassign_var(vi,e) ->
if debug then
printf "[assignment]%s@." vi.jc_var_info_name;
let vit = new term_var vi in
let copyvi = copyvar vi in
let t1 = new term_var copyvi in
let post = match curposts.jc_post_normal with
| None -> None
| Some a ->
if !Jc_options.annotation_sem = AnnotWeakPre
|| (!Jc_options.annotation_sem = AnnotStrongPre
&& mem_term_in_assertion vit a)
then
let a = replace_term_in_assertion vit t1 a in
match term_of_expr e with
| None -> Some a
| Some t2 ->
if vi.jc_var_info_type = boolean_type then
(* TODO: take boolean variables into account. *)
Some a
else
let bop = equality_operator_for_type vi.jc_var_info_type in
let eq = new assertion (JCArelation(t1,bop,t2)) in
(* Some (new assertion (JCAimplies(eq,a))) *)
Some(make_and [eq;a])
else Some a
in
add_inflexion_var curposts copyvi;
let curposts =
if is_function_level curposts then curposts
else
(* Also add regular variable, for other branches in loop. *)
add_modified_var curposts vi
in
{ curposts with jc_post_normal = post; }
| JCEassign_heap(e1,fi,e2) ->
begin match term_of_expr e1 with
| None -> curposts (* TODO *) | Some t1 ->
let dereft = new term ~typ:fi.jc_field_info_type (JCTderef(t1,LabelHere,fi)) in
let vi = unique_var_for_term dereft fi.jc_field_info_type in
let copyvi = copyvar vi in
let t1 = new term_var copyvi in
let post = match curposts.jc_post_normal with
| None -> None
| Some a ->
if !Jc_options.annotation_sem = AnnotWeakPre
|| (!Jc_options.annotation_sem = AnnotStrongPre
&& mem_term_in_assertion dereft a)
then
let a =
replace_term_in_assertion dereft t1 a
in
match term_of_expr e2 with
| None -> Some a
| Some t2 ->
let bop =
equality_operator_for_type fi.jc_field_info_type in
let eq = new assertion (JCArelation(t1,bop,t2)) in
(* Some (new assertion (JCAimplies(eq,a))) *)
Some(make_and [eq;a])
else Some a
in
add_inflexion_var curposts copyvi;
let curposts =
if is_function_level curposts then curposts
else
(* Also add regular variable, for other branches in loop. *)
add_modified_var curposts vi
in
{ curposts with jc_post_normal = post; }
end
| JCEassert a when a#name_label = "hint" ->
(* Hints are not to be used in wp computation,
only added to help it. *)
curposts
| JCEassert a1 ->
let f = atp_of_asrt a1 in
let fvars = Atp.fv f in
let varsets = List.map Vwp.term fvars in
let varsets = TermSet.of_list varsets in
let post = match curposts.jc_post_normal with
| None -> None
(* | Some a -> Some (new assertion (JCAimplies(a1,a))) *)
| Some a ->
if !Jc_options.annotation_sem = AnnotWeakPre
|| (!Jc_options.annotation_sem = AnnotStrongPre
&& mem_any_term_in_assertion varsets a)
then
Some (make_and [a1;a])
else Some a
in
{ curposts with jc_post_normal = post; }
| JCEblock sl ->
List.fold_right (wp_expr weakpre target) sl curposts
| JCEmatch _ -> assert false (* TODO *)
| JCEif(e,ts,fs) ->
let tposts = wp_expr weakpre target ts curposts in
if debug then
printf "[true branch]%a@." print_modified_vars tposts;
let ta = raw_asrt_of_expr e in
let f = atp_of_asrt ta in
let fvars = Atp.fv f in
let varsets = List.map Vwp.term fvars in
let varsets = TermSet.of_list varsets in
let tpost = match tposts.jc_post_normal with
| None -> None
| Some a ->
let ta = raw_asrt_of_expr e in
(* Some (new assertion (JCAimplies(ta,a))) *)
if !Jc_options.annotation_sem = AnnotWeakPre
|| (!Jc_options.annotation_sem = AnnotStrongPre
&& mem_any_term_in_assertion varsets a)
then
Some(make_and [ta;a])
else Some a
in
let fposts = wp_expr weakpre target fs curposts in
if debug then
printf "[false branch]%a@." print_modified_vars fposts;
let fpost = match fposts.jc_post_normal with
| None -> None
| Some a ->
let fa = raw_not_asrt (raw_asrt_of_expr e) in
(* Some (new assertion (JCAimplies(fa,a))) *)
if !Jc_options.annotation_sem = AnnotWeakPre
|| (!Jc_options.annotation_sem = AnnotStrongPre
&& mem_any_term_in_assertion varsets a)
then
Some(make_and [fa;a])
else Some a
in
let post = match tpost,fpost with
| None,opta | opta,None -> opta
(* | Some ta,Some fa -> Some (make_and [ta;fa]) *)
(* TODO: add loc variable v with ta and not v with fa
to correctly implement wp *)
| Some ta,Some fa -> Some (make_or [ta;fa])
in
let tvs,_ = pop_modified_vars tposts in
let fvs,_ = pop_modified_vars fposts in
let vs = VarSet.union tvs fvs in
let curposts = add_modified_vars curposts vs in
{ curposts with jc_post_normal = post; }
| JCEreturn_void | JCEreturn _ ->
{ curposts with jc_post_normal = None; }
| JCEthrow(ei,_) -> (* TODO: link with value caught *)
let post =
try Some (List.assoc ei curposts.jc_post_exceptional)
with Not_found -> None
in
{ curposts with jc_post_normal = post; }
| JCEpack _ | JCEunpack _ ->
curposts
| JCEtry(s,hl,fs) ->
begin match fs#node with
| JCEblock [] -> ()
| _ -> () (* assert false (\* TODO: apply finally stmt to all paths. *\) *)
end;
let handlpostexcl,handlvs =
List.fold_left
(fun (curpostexcl,curvs) (ei,vio,s) ->
let excposts = wp_expr weakpre target s curposts in
let curpostexcl = match excposts.jc_post_normal with
| None -> curpostexcl
| Some a -> (ei,a) :: curpostexcl
in
let excvs,_ = pop_modified_vars excposts in
let curvs = VarSet.union curvs excvs in
(curpostexcl,curvs)
) ([],VarSet.empty) hl
in
let curpostexcl =
List.filter (fun (ei,_) ->
not (List.exists (fun (ej,_,_) ->
ei.jc_exception_info_tag = ej.jc_exception_info_tag) hl)
) curposts.jc_post_exceptional
in
let curpostexcl = handlpostexcl @ curpostexcl in
let tmpposts = { curposts with jc_post_exceptional = curpostexcl; } in
let bodyposts = wp_expr weakpre target s tmpposts in
let bodyvs,_ = pop_modified_vars bodyposts in
let vs = VarSet.union handlvs bodyvs in
let curposts = add_modified_vars curposts vs in
{ curposts with jc_post_normal = bodyposts.jc_post_normal; }
| JCEloop(la,ls) ->
let curposts = { curposts with jc_post_normal = None; } in
let loopposts = push_modified_vars curposts in
let loopposts = wp_expr weakpre target ls loopposts in
let post =
match finalize_target
~is_function_level:false ~loc:s#loc ~anchor:s#name_label
loopposts target la.jc_loop_invariant
with None -> None | Some infera ->
target.jc_target_regular_invariant <- la.jc_loop_invariant;
target.jc_target_assertion <- infera;
begin try
let a = Hashtbl.find weakpre.jc_weakpre_loop_invariants
la.jc_loop_tag
in
Hashtbl.replace weakpre.jc_weakpre_loop_invariants
la.jc_loop_tag (make_and [a; infera])
with Not_found ->
Hashtbl.add weakpre.jc_weakpre_loop_invariants
la.jc_loop_tag infera
end;
let inita = initialize_target loopposts target in
Some inita
in
{ curposts with jc_post_normal = post; }
(* | JCEapp call -> *)
(* let curposts = wp_expr weakpre target s curposts in *)
(* let vit = new term_var vi in *)
(* let copyvi = copyvar vi in *)
(* let t1 = new term_var copyvi in *)
(* let post = match curposts.jc_post_normal with *)
(* | None -> None *)
(* | Some a -> Some(replace_term_in_assertion vit t1 a) *)
(* in *)
(* add_inflexion_var curposts copyvi; *)
(* let curposts = *)
(* if is_function_level curposts then curposts *)
(* else *)
(* (\* Also add regular variable, for other branches in loop. *\) *)
(* add_modified_var curposts vi *)
(* in *)
(* { curposts with jc_post_normal = post; } *)
| JCEapp call ->
let curposts = wp_expr weakpre target s curposts in
curposts
| _ -> assert false (* TODO *)
in
if s == target.jc_target_expr then
(* let a = new assertion(JCAimplies(target.jc_target_regular_invariant, *)
(* target.jc_target_assertion)) in *)
let inita = initialize_target curposts target in
assert (curposts.jc_post_normal = None);
{ curposts with jc_post_normal = Some inita; }
else curposts
let rec record_wp_invariants weakpre s =
match s#node with
| JCElet(_,_,s) ->
record_wp_invariants weakpre s
| JCEblock sl ->
List.iter (record_wp_invariants weakpre) sl
| JCEmatch _ -> assert false (* TODO *)
| JCEif(_,ts,fs) ->
record_wp_invariants weakpre ts;
record_wp_invariants weakpre fs
| JCEtry(s,hl,fs) ->
record_wp_invariants weakpre s;
List.iter (fun (_,_,s) -> record_wp_invariants weakpre s) hl;
record_wp_invariants weakpre fs
| JCEloop(la,ls) ->
let loop_invariants = weakpre.jc_weakpre_loop_invariants in
begin try
let loopinvs = Hashtbl.find loop_invariants la.jc_loop_tag in
la.jc_loop_invariant <- make_and [la.jc_loop_invariant; loopinvs]
with Not_found -> () end
| JCEassign_var _ | JCEassign_heap _ | JCEassert _
| JCEreturn_void | JCEreturn _ | JCEthrow _ | JCEpack _ | JCEunpack _
| JCEapp _ ->
()
| _ -> assert false (* TODO *)
let wp_function targets (fi,loc,fs,sl) =
if debug then printf "[wp_function]@.";
let weakpre = {
jc_weakpre_loop_invariants = Hashtbl.create 0;
} in
let init_req = fs.jc_fun_requires in
List.iter (fun target ->
let initposts = {
jc_post_normal = None;
jc_post_exceptional = [];
jc_post_modified_vars = [];
jc_post_inflexion_vars = ref VarSet.empty;
} in
let initposts = push_modified_vars initposts in
let posts = wp_expr weakpre target sl initposts in
(* let init_req = fs.jc_fun_requires in *)
match finalize_target ~is_function_level:true ~loc ~anchor:fi.jc_fun_info_name
posts target init_req
with None -> () | Some infera ->
fs.jc_fun_requires <- make_and [fs.jc_fun_requires;infera]
) targets;
record_wp_invariants weakpre sl
(*****************************************************************************)
(* Augmenting loop invariants. *)
(*****************************************************************************)
let collect_immediate_targets targets s = []
(* Special version of [fold_expr] different from the one
* in [Jc_iterators] in that fpost is called after the body expr
* of the try block.
*)
(* let rec fold_expr fpre fpost acc s = *)
(* let acc = fpre acc s in *)
(* let acc = match s#node with *)
(* | JCElet(_,_,s) -> *)
(* fold_expr fpre fpost acc s *)
(* | JCEblock sl -> *)
(* List.fold_left (fold_expr fpre fpost) acc sl *)
(* | JCEmatch _ -> assert false (\* TODO *\) *)
(* | JCEif(_,ts,fs) -> *)
(* let acc = fold_expr fpre fpost acc ts in *)
(* fold_expr fpre fpost acc fs *)
(* | JCEtry(s,hl,fs) -> *)
(* let acc = fold_expr fpre fpost acc s in *)
(* let acc = fpost acc s in *)
(* let acc = *)
(* List.fold_left (fun acc (_,_,s) -> *)
(* fold_expr fpre fpost acc s *)
(* ) acc hl *)
(* in *)
(* fold_expr fpre fpost acc fs *)
(* | JCEloop(_,ls) -> *)
(* fold_expr fpre fpost acc ls *)
(* | JCEreturn _ | JCEthrow _ | JCEassert _ | JCEassign_var _ | JCEapp _ *)
(* | JCEassign_heap _ | JCEpack _ | JCEunpack _ | JCEreturn_void -> *)
(* acc *)
(* | _ -> assert false (\* TODO *\) *)
(* in *)
(* fpost acc s *)
(* in *)
(* let in_select_zone = ref false in *)
(* let select_pre acc s = *)
(* match s#node with *)
(* | JCEassert a -> *)
(* if debug then printf "[select_pre] consider target@."; *)
(* if debug then printf "[select_pre] in zone ? %b@." !in_select_zone; *)
(* if !in_select_zone then *)
(* let target = target_of_assertion s s#loc a in *)
(* if debug then printf "[select_pre] adding in_zone target@."; *)
(* target::acc *)
(* else acc *)
(* | JCEloop _ -> *)
(* if debug then printf "[select_pre] in_zone true@."; *)
(* in_select_zone := true; acc *)
(* | JCElet _ | JCEblock _ | JCEassign_var _ *)
(* | JCEassign_heap _ | JCEpack _ | JCEunpack _ | JCEtry _ -> *)
(* (\* Allowed with [JCEtry] thanks to patched [fold_expr]. *\) *)
(* acc *)
(* | JCEapp _ | JCEif _ | JCEreturn _ | JCEthrow _ *)
(* | JCEreturn_void -> *)
(* if debug then printf "[select_pre] in_zone false@."; *)
(* in_select_zone := false; acc *)
(* | _ -> assert false (\* TODO *\) *)
(* in *)
(* let select_post acc s = *)
(* match s#node with *)
(* | JCEloop _ -> *)
(* if debug then printf "[select_post] in_zone false@."; *)
(* in_select_zone := false; acc *)
(* | _ -> acc *)
(* in *)
(* fold_expr select_pre select_post targets s *)
let rec backprop_expr target s curpost =
if debug then
printf "[backprop_expr] %a@." Loc.report_position s#loc;
let curpost = match s#node with
| JCElet(vi,eo,s) ->
let curpost = backprop_expr target s curpost in
begin match curpost with None -> None | Some a ->
match eo with None -> Some a | Some e ->
match term_of_expr e with None -> Some a | Some t2 ->
let t1 = new term_var vi in
Some(replace_term_in_assertion t1 t2 a)
end
| JCEassign_var(vi,e) ->
begin match curpost with None -> None | Some a ->
match term_of_expr e with None -> Some a | Some t2 ->
let t1 = new term_var vi in
Some(replace_term_in_assertion t1 t2 a)
end
| JCEassign_heap _ | JCEassert _ | JCEpack _ | JCEunpack _ ->
curpost
| JCEblock sl ->
List.fold_right (backprop_expr target) sl curpost
| JCEreturn_void | JCEreturn _ | JCEthrow _ ->
assert (curpost = None); curpost
| JCEtry(s,hl,fs) ->
assert (curpost = None);
let curpost = backprop_expr target fs None in
assert (curpost = None);
List.iter (fun (_,_,s) ->
let curpost = backprop_expr target s None in
assert (curpost = None);
) hl;
backprop_expr target s None
| JCEloop(la,ls) ->
let curpost = backprop_expr target ls curpost in
begin
match curpost with None -> () | Some propa ->
if not (contradictory propa la.jc_loop_invariant) then
begin
if Jc_options.verbose then
printf
"%a@[<v 2>Back-propagating loop invariant@\n%a@]@."
Loc.report_position s#loc
Jc_output.assertion propa;
la.jc_loop_invariant <- make_and [propa;la.jc_loop_invariant]
end
end;
None
(* | JCEcall(_,_,s) -> *)
(* assert (curpost = None); *)
(* let curpost = backprop_expr target s None in *)
(* assert (curpost = None); curpost *)
| JCEif(_,ts,fs) ->
assert (curpost = None);
let curpost = backprop_expr target ts None in
assert (curpost = None);
let curpost = backprop_expr target fs None in
assert (curpost = None); None
| _ -> assert false (* TODO *)
in
if s == target.jc_target_expr then
begin
assert (curpost = None);
Some target.jc_target_assertion
end
else curpost
let backprop_function targets (fi,fs,sl) =
if debug then printf "[backprop_function]@.";
List.iter (fun target ->
ignore(backprop_expr target sl None)
) targets
(*****************************************************************************)
(* Main function. *)
(*****************************************************************************)
let code_function = function
| fi,loc,fs,None -> ()
| fi,loc,fs,Some sl ->
let wp_filter canda =
(* Only propagate candidate assertions for targets if Atp can make
* sense of them.
*)
(* TODO : make sure ident on common logic formulas. *)
(* raw_assertion_equal canda (asrt_of_atp(atp_of_asrt canda)) *)
true
in
begin match !Jc_options.annotation_sem with
| AnnotNone -> ()
| AnnotInvariants | AnnotWeakPre | AnnotStrongPre ->
(* let targets = collect_immediate_targets [] sl in *)
(* backprop_function targets (fi,fs,sl); *)
let targets = collect_targets wp_filter [] sl in
begin match !Jc_options.ai_domain with
| AbsNone ->
()
| AbsBox ->
let mgr = Box.manager_alloc () in
ai_function mgr None targets (fi,loc,fs,sl)
| AbsOct ->
let mgr = Oct.manager_alloc () in
ai_function mgr None targets (fi,loc,fs,sl)
| AbsPol ->
let mgr = Polka.manager_alloc_strict () in
ai_function mgr None targets (fi,loc,fs,sl)
end;
begin match !Jc_options.annotation_sem with
| AnnotNone -> assert false
| AnnotInvariants -> ()
| AnnotWeakPre | AnnotStrongPre ->
let targets =
List.fold_right (fun target acc ->
target.jc_target_regular_invariant <-
simplify target.jc_target_regular_invariant (new assertion JCAtrue);
(* Build the most precise invariant known at the current
* assertion point: it is the conjunction of the regular
* invariant (from forward abstract interpretation) and
* the propagated invariant (from propagated assertions).
*)
let inv =
make_and [target.jc_target_regular_invariant;
target.jc_target_propagated_invariant]
in
(* Check whether the target assertion is a consequence of
* the most precise invariant.
*)
let impl =
new assertion(JCAimplies(inv,target.jc_target_assertion))
in
if tautology impl then
begin
if debug then
printf "%a[code_function] proof of %a discharged@."
Loc.report_position target.jc_target_location
Jc_output.assertion target.jc_target_assertion;
acc
end
else
begin
if debug then
printf "%a[code_function] precondition needed for %a@."
Loc.report_position target.jc_target_location
Jc_output.assertion target.jc_target_assertion;
(* Adding target to the list. *)
target :: acc
end
) targets []
in
wp_function targets (fi,loc,fs,sl)
end
end
(*****************************************************************************)
(* Interprocedural analysis. *)
(*****************************************************************************)
let rec record_ai_inter_annotations mgr iai fi loc fs sl =
let env = Environment.make [||] [||] in
inspected_functions := fi.jc_fun_info_tag :: !inspected_functions;
(* record inferred precondition for [fi] *)
let pre =
try
Hashtbl.find iai.jc_interai_function_preconditions fi.jc_fun_info_tag
with Not_found -> Abstract1.top mgr env
in
let a = mkinvariant mgr pre in
let a = reg_annot ~loc ~anchor:fi.jc_fun_info_name a in
nb_conj_atoms_inferred := !nb_conj_atoms_inferred + nb_conj_atoms a;
incr nb_fun_pre;
if Jc_options.verbose then
printf
"@[<v 2>Inferring precondition for function %s@\n%a@]@."
fi.jc_fun_info_name Jc_output.assertion a;
fs.jc_fun_free_requires <- make_and [fs.jc_fun_free_requires; a];
(* record loop invariants for [fi] *)
let abs =
try
Hashtbl.find iai.jc_interai_function_abs fi.jc_fun_info_tag
with Not_found -> assert false
in
record_ai_invariants abs sl;
(* record inferred postconditions for [fi] *)
let post =
try
Hashtbl.find iai.jc_interai_function_postconditions fi.jc_fun_info_tag
with Not_found -> Abstract1.top mgr env
in
let returna = mkinvariant mgr post in
let vi_result = fi.jc_fun_info_result in
let post = make_and
[returna; Jc_typing.type_range_of_term vi_result.jc_var_info_type
(new term_var vi_result)]
in
let normal_behavior = { default_behavior with jc_behavior_ensures = post } in
let exceptional =
try
Hashtbl.find iai.jc_interai_function_exceptional fi.jc_fun_info_tag
with Not_found -> []
in
let excl, excabsl =
List.fold_left
(fun (acc1, acc2) (exc, va) -> (exc :: acc1, va :: acc2))
([], []) exceptional in
let excabsl = List.map (fun va -> keep_extern mgr fi va) excabsl in
let excabsl = List.map
(fun va -> if Abstract1.is_bottom mgr va = Manager.True then
Abstract1.top mgr env else va) excabsl in
let excal = List.map (mkinvariant mgr) excabsl in
let post = reg_annot ~loc ~anchor:fi.jc_fun_info_name post in
nb_conj_atoms_inferred := !nb_conj_atoms_inferred + nb_conj_atoms post;
incr nb_fun_post;
let excal = List.map (reg_annot ~loc ~anchor:fi.jc_fun_info_name) excal in
let exc_behaviors =
List.map2
(fun exc va ->
(Loc.dummy_position, "inferred",
{ default_behavior with
jc_behavior_throws = Some exc;
jc_behavior_ensures = va }))
excl excal
in
if Jc_options.verbose then
begin
printf
"@[<v 2>Inferring postcondition for function %s@\n%a@]@."
fi.jc_fun_info_name
Jc_output.assertion post;
List.iter2
(fun exc exca ->
nb_conj_atoms_inferred := !nb_conj_atoms_inferred + nb_conj_atoms exca;
incr nb_fun_excep_post;
printf
"@[<v 2>Inferring exceptional postcondition (for exception %s) for function %s@\n%a@]@."
exc.jc_exception_info_name
fi.jc_fun_info_name
Jc_output.assertion exca) excl excal;
end;
begin
if is_purely_exceptional_fun fs then () else
fs.jc_fun_behavior <-
(Loc.dummy_position,"inferred", normal_behavior) :: fs.jc_fun_behavior
end;
fs.jc_fun_behavior <- exc_behaviors @ fs.jc_fun_behavior;
(* iterate on the call graph *)
List.iter
(fun fi ->
let fi, _, fs, slo =
try
Hashtbl.find Jc_typing.functions_table fi.jc_fun_info_tag
with Not_found -> assert false (* should never happen *)
in
match slo with
| None -> ()
| Some b ->
if not (List.mem fi.jc_fun_info_tag !inspected_functions) then
record_ai_inter_annotations mgr iai fi loc fs b)
fi.jc_fun_info_calls
let ai_interprocedural mgr (fi, loc, fs, sl) =
let iai = {
jc_interai_manager = mgr;
jc_interai_function_preconditions = Hashtbl.create 0;
jc_interai_function_postconditions = Hashtbl.create 0;
jc_interai_function_exceptional = Hashtbl.create 0;
jc_interai_function_nb_iterations = Hashtbl.create 0;
jc_interai_function_init_pre = Hashtbl.create 0;
jc_interai_function_abs = Hashtbl.create 0;
} in
let time = Unix.gettimeofday () in
ai_function mgr (Some iai) [] (fi, loc, fs, sl);
inspected_functions := [];
record_ai_inter_annotations mgr iai fi loc fs sl;
let time = Unix.gettimeofday () -. time in
if Jc_options.verbose then
printf "Interprocedural analysis stats: \
@. %d function preconditions inferred \
@. %d function postconditions inferred \
@. %d function exceptional postconditions inferred \
@. %d loop invariants inferred \
@. %d conjonction atoms inferred \
@. %d nodes \
@. %f seconds@."
!nb_fun_pre !nb_fun_post !nb_fun_excep_post !nb_loop_inv
!nb_conj_atoms_inferred !nb_nodes time
let main_function = function
| fi, loc, fs, None -> ()
| fi, loc, fs, Some sl ->
begin match !Jc_options.ai_domain with
| AbsBox ->
let mgr = Box.manager_alloc () in
ai_interprocedural mgr (fi, loc, fs, sl)
| AbsOct ->
let mgr = Oct.manager_alloc () in
ai_interprocedural mgr (fi, loc, fs, sl)
| AbsPol ->
let mgr = Polka.manager_alloc_strict () in
ai_interprocedural mgr (fi, loc, fs, sl)
| AbsNone -> assert false
end
let rec is_recursive_rec fi fil =
List.exists
(fun fi' ->
inspected_functions := fi'.jc_fun_info_tag :: !inspected_functions;
fi.jc_fun_info_tag = fi'.jc_fun_info_tag ||
(not (List.mem fi'.jc_fun_info_tag !inspected_functions) &&
is_recursive_rec fi fi'.jc_fun_info_calls))
fil
let is_recursive fi =
inspected_functions := [];
let r = is_recursive_rec fi fi.jc_fun_info_calls in
inspected_functions := [];
r
(*
Local Variables:
compile-command: "LC_ALL=C make -C .. bin/jessie.byte"
End:
*)
|