File: WhyArraysFMap.v

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (212 lines) | stat: -rw-r--r-- 6,355 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
(*
 * The Why certification tool
 * Copyright (C) 2002 Jean-Christophe FILLIATRE
 * 
 * This software is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation.
 * 
 * This software is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
 * 
 * See the GNU General Public License version 2 for more details
 * (enclosed in the file GPL).
 *)

(* $Id: WhyArraysFMap.v,v 1.2 2008/04/15 15:02:37 regisgia Exp $ *)

(**************************************)
(* Functional arrays, for use in Why. *)
(**************************************)

(* 
 * The type (array N T) is the type of arrays ranging from 0 to N-1 
 * which elements are of type T.
 *
 * Arrays are created with new, accessed with access and modified with update. 
 *
 * Operations of accessing and storing are not guarded, but axioms are.
 * So these arrays can be viewed as arrays where accessing and storing
 * out of the bounds has no effect.
 *)


Require Export WhyInt.

Set Implicit Arguments.
Unset Strict Implicit.

Require Import Coq.FSets.FMapPositive.
Import FMapPositive.PositiveMap.
Require Import Coq.FSets.FMapFacts. 
Module F := Coq.FSets.FMapFacts.Facts (FMapPositive.PositiveMap).
Import F.  

(* The type of arrays 

   Arrays are implemented using functional maps of the standard library. *)

Record raw_array (T:Set) : Type := mk_raw_array { 
  default: T;
  carrier: FMapPositive.PositiveMap.t T
}.

Definition array (T:Set) := prod Z (raw_array T).

(* Array length *)

Definition array_length (T:Set) (t:array T) : Z := let (n, _) := t in n.
Definition array_length_ := array_length.


(* Functions to create, access and modify arrays *)

Definition raw_new (T:Set) (x:T) : raw_array T := mk_raw_array x (empty T).

Definition new (T:Set) (n:Z) (a:T) : array T := (n, raw_new a).

Definition set_carrier T x c := mk_raw_array (T:=T) (default x) c.
Hint Unfold set_carrier.

Definition raw_access (T:Set) (x:raw_array T) (n:Z) : T := 
  match n with
    | Z0 => 
      match PositiveMap.find xH (carrier x) with
        | Some v => v
        | None => default x
      end
    | Zpos n => 
      match PositiveMap.find (Psucc n) (carrier x) with
        | Some v => v
        | None => default x
      end
    | _ => default x
  end.

Definition access (T:Set) (t:array T) (i:Z) : T :=
  let (_, r) := t in raw_access r i.
Hint Unfold access.

Definition raw_update : forall T:Set, raw_array T -> Z -> T -> raw_array T :=
 fun T x n v => 
   match n with
     | Z0 => set_carrier (T:=T) x (add xH v (carrier x))
     | Zpos k => set_carrier (T:=T) x (add (Psucc k) v (carrier x))
     | _ => x
   end.

Definition update (T:Set) (t:array T) (i:Z) (v:T) : array T :=
  (array_length t, let (_, r) := t in raw_update r i v).
Hint Unfold update.

Definition elements (T:Set) (x:array T) := elements (carrier (snd x)).

Require Import List.

Definition from_list (T:Set) (default: T) (l: list T) := 
  let n := List.length l in
  let a := new (Z_of_nat n) default in
    snd (List.fold_left (fun (accu : (Z * array T)) => fun x => 
      let (i, a) := accu in 
        ((i + 1)%Z, update a i x)) l (0%Z, a)).

(* Update does not change length *)

Lemma array_length_update :
 forall (T:Set) (t:array T) (i:Z) (v:T),
   array_length (update t i v) = array_length t.
Proof. trivial. Qed.

(* Properties *)

Lemma new_def : forall (T:Set) (n:Z) (v0:T) (i:Z), 
(0 <= i < n)%Z ->
access (new n v0) i = v0.
Proof.
  intros T n v0 i H;
  destruct i; [|simpl; rewrite (gempty T)|]; auto.
Qed.

Lemma update_def_0 : 
  forall (T:Set) (t:array T) (v:T) (i:Z), 
  default (snd (update t i v)) = default (snd t).
Proof.
  intros T u v i. case_eq u; destruct i; auto.
Qed.

Opaque find add.

Lemma update_def_1 :
  forall (T:Set) (t:array T) (v:T) (i:Z),
    (0 <= i < array_length t)%Z -> access (update t i v) i = v.
Proof.
  intros T a v i H.
  destruct i; simpl; case_eq a; intros z r Ha;
  simpl;
  [ rewrite (find_1 (A:=T) (x:=xH) (e:=v) (m := (add xH v (carrier r))))
  | rewrite 
    (find_1 (A:=T) (x:=Psucc p) (e := v) (m := (add (Psucc p) v (carrier r))))
  | assert False; intuition
  ]; auto; red; apply add_1; unfold E.eq; auto.
Qed.

Lemma aux_find: forall T (t:t T) (i j: positive) (v: T), 
  i <> j -> PositiveMap.find i t = PositiveMap.find i (add j v t).
Proof.
  intros T a i j v Hdiff.
  generalize (find_mapsto_iff a i).
  generalize (find_mapsto_iff (add j v a) i).
  intros H1 H2.
  destruct (PositiveMap.find i a) as [ u | ]; [
    generalize (add_neq_mapsto_iff a (x:=j) (y:=i) v u)
  | destruct (PositiveMap.find i (add j v a)) as [ u | ]; 
    [ generalize (add_neq_mapsto_iff a (x:=j) (y:=i) v u) | ]
  ]; intuition; firstorder.
Qed.

Lemma update_def_2 :
  forall (T:Set) (t:array T) (v:T) (i j:Z),
    (0 <= i < array_length t)%Z ->
    (0 <= j < array_length t)%Z ->
    i <> j -> access (update t i v) j = access t j.
Proof.
  intros T a v i j Hi Hj diff; 
  generalize Psucc_not_one; intros;
  destruct i; destruct j; destruct Hi; destruct Hj; 
  case_eq a; intros z r eq_a; simpl; (congruence; auto with zarith) || idtac;
  [ rewrite <- (aux_find (carrier r) v (i := Psucc p) (j := xH))
  | rewrite -> (aux_find (carrier r) v (i := xH) (j := Psucc p))
  | rewrite -> (aux_find (carrier r) v (i := Psucc p0) (j := Psucc p)) ];
  trivial; (congruence || idtac); assert (p <> p0); [ congruence |
  intro He; generalize (Psucc_inj _ _ He); congruence
  ].
Qed.
  
Hint Resolve new_def update_def_1 update_def_2 : datatypes v62.

(* A tactic to simplify access in arrays *)

Ltac WhyArrays :=
  repeat rewrite update_def_1; repeat rewrite array_length_update.

Ltac AccessStore i j H :=
  elim (Z_eq_dec i j);
   [ intro H; rewrite H; rewrite update_def_1; WhyArrays
   | intro H; rewrite update_def_2; [ idtac | idtac | idtac | exact H ] ].

Ltac AccessSame := rewrite update_def_1; WhyArrays; try omega.

Ltac AccessOther := rewrite update_def_2; WhyArrays; try omega.

Ltac ArraySubst t := subst t; simpl; WhyArrays; try omega.

(* Syntax and pretty-print for arrays *)

(* <Warning> : Grammar is replaced by Notation *)

(***
Syntax constr level 0 :
  array_access
    [ << (access ($VAR $t) $c) >> ] -> [  $t  $c:L  ].
***)