1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
(*
* The Why certification tool
* Copyright (C) 2002 Jean-Christophe FILLIATRE
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License version 2 for more details
* (enclosed in the file GPL).
*)
(* $Id: WhyPermut.v,v 1.15 2006-11-02 09:18:20 hubert Exp $ *)
Require Import WhyArrays.
Require Import Omega.
Set Implicit Arguments.
Unset Strict Implicit.
(****************************************************************************)
(* Exchange of two elements in an array *)
(* Definition and properties *)
(****************************************************************************)
(* Definition *)
Inductive exchange (A:Set) (t t':array A) (i j:Z) : Prop :=
exchange_c :
array_length t = array_length t' ->
(0 <= i < array_length t)%Z ->
(0 <= j < array_length t)%Z ->
access t i = access t' j ->
access t j = access t' i ->
(forall k:Z,
(0 <= k < array_length t)%Z ->
k <> i -> k <> j -> access t k = access t' k) ->
exchange t t' i j.
(* Properties about exchanges *)
Lemma exchange_1 :
forall (A:Set) (t:array A) (i j:Z),
(0 <= i < array_length t)%Z ->
(0 <= j < array_length t)%Z ->
access (update (update t i (access t j)) j (access t i)) i =
access t j.
Proof.
intros A t i j H_i H_j.
AccessStore j i H; WhyArrays; auto with datatypes.
Qed.
Hint Resolve exchange_1 : v62 datatypes.
Lemma exchange_proof :
forall (A:Set) (t:array A) (i j:Z),
(0 <= i < array_length t)%Z ->
(0 <= j < array_length t)%Z ->
exchange (update (update t i (access t j)) j (access t i)) t i j.
Proof.
intros A t i j H_i H_j.
apply exchange_c; WhyArrays; auto with datatypes.
intros k H_k not_k_i not_k_j.
cut (j <> k); auto with datatypes.
intro not_j_k.
AccessOther; auto with datatypes.
Qed.
Hint Resolve exchange_proof : v62 datatypes.
Lemma exchange_sym :
forall (A:Set) (t t':array A) (i j:Z),
exchange t t' i j -> exchange t' t i j.
Proof.
intros A t t' i j H1.
elim H1; intro eq; rewrite eq; clear H1; intros.
constructor 1; auto with datatypes.
intros.
rewrite (H3 k); auto with datatypes.
Qed.
Hint Resolve exchange_sym : v62 datatypes.
Lemma exchange_id :
forall (A:Set) (t t':array A) (i j:Z),
exchange t t' i j ->
i = j ->
forall k:Z, (0 <= k < array_length t)%Z -> access t k = access t' k.
Proof.
intros A t t' i j Hex Heq k Hk.
elim Hex.
clear Hex.
intros.
rewrite Heq in H2.
rewrite Heq in H3.
case (Z_eq_dec k j).
intro Heq'.
rewrite Heq'.
assumption.
intro Hnoteq.
apply (H4 k); auto with datatypes.
rewrite Heq.
assumption.
Qed.
Hint Resolve exchange_id : v62 datatypes.
Lemma exchange_length :
forall (A:Set) (t t':array A) (i j:Z),
exchange t t' i j -> array_length t = array_length t'.
Proof.
intros A t t' i j.
simple induction 1; auto.
Qed.
Hint Resolve exchange_length : v62 datatypes.
(****************************************************************************)
(* Permutations of elements in arrays *)
(* Definition and properties *)
(****************************************************************************)
(* We define as the smallest equivalence relation which contains
* transpositions i.e. exchange of two elements.
*)
Inductive permut (A:Set) : array A -> array A -> Prop :=
| exchange_is_permut :
forall (t t':array A) (i j:Z), exchange t t' i j -> permut t t'
| permut_refl : forall t:array A, permut t t
| permut_sym : forall t t':array A, permut t t' -> permut t' t
| permut_trans :
forall t t' t'':array A,
permut t t' -> permut t' t'' -> permut t t''.
Hint Resolve exchange_is_permut permut_refl permut_sym permut_trans :
v62 datatypes.
Lemma permut_length :
forall t t':array Z, permut t t' -> array_length t = array_length t'.
Proof.
intros t t'; simple induction 1; auto; intros.
elim H0; auto.
omega.
Qed.
Hint Resolve permut_length : v62 datatypes.
(* We also define the permutation on a segment of an array, ,
* the other parts of the array being unchanged
*
* One again we define it as the smallest equivalence relation containing
* transpositions on the given segment.
*)
Inductive sub_permut (A:Set) (g d:Z) : array A -> array A -> Prop :=
| exchange_is_sub_permut :
forall (t t':array A) (i j:Z),
(g <= i <= d)%Z ->
(g <= j <= d)%Z -> exchange t t' i j -> sub_permut g d t t'
| sub_permut_refl : forall t:array A, sub_permut g d t t
| sub_permut_sym :
forall t t':array A, sub_permut g d t t' -> sub_permut g d t' t
| sub_permut_trans :
forall t t' t'':array A,
sub_permut g d t t' ->
sub_permut g d t' t'' -> sub_permut g d t t''.
Hint Resolve exchange_is_sub_permut sub_permut_refl sub_permut_sym
sub_permut_trans : v62 datatypes.
Lemma sub_permut_length :
forall (A:Set) (t t':array A) (g d:Z),
sub_permut g d t t' -> array_length t = array_length t'.
Proof.
intros t t' g d; simple induction 1; auto; intros.
elim H2; auto.
omega.
Qed.
Hint Resolve sub_permut_length : v62 datatypes.
Lemma sub_permut_function :
forall (A:Set) (t t':array A) (g d:Z),
sub_permut g d t t' ->
(0 <= g)%Z ->
(d < array_length t)%Z ->
forall i:Z,
(g <= i <= d)%Z ->
( exists j : Z, (g <= j <= d)%Z /\ access t i = access t' j) /\
( exists j : Z, (g <= j <= d)%Z /\ access t' i = access t j).
Proof.
intros A t t' g d.
simple induction 1; intros.
(* 1. exchange *)
elim H2; intros.
elim (Z_eq_dec i0 i); intros.
(* i0 = i *)
split; [ exists j | exists j ].
split; [ assumption | rewrite a; assumption ].
split; [ assumption | rewrite a; symmetry; assumption ].
(* i0 <> i *)
elim (Z_eq_dec i0 j); intros.
(* i0 = j *)
split; [ exists i | exists i ].
split; [ assumption | rewrite a; assumption ].
split; [ assumption | rewrite a; symmetry; assumption ].
(* i0 <> j *)
split; [ exists i0 | exists i0 ].
split; [ assumption | apply H11; omega ].
split; [ assumption | symmetry; apply H11; omega ].
(* 2. refl *)
split; [ exists i | exists i ].
split; [ assumption | trivial ].
split; [ assumption | trivial ].
(* 3. sym *)
rewrite <- (sub_permut_length H0) in H3.
elim (H1 H2 H3 i); auto.
(* 4. trans *)
split.
elim (H1 H4 H5 i).
intros.
elim H7; intros.
elim H9; intros.
rewrite (sub_permut_length H0) in H5.
elim (H3 H4 H5 x).
intros.
elim H12; intros.
elim H14; intros.
exists x0.
split; [ assumption | idtac ].
transitivity (access t'0 x); auto.
auto.
auto.
rewrite (sub_permut_length H0) in H5.
elim (H3 H4 H5 i).
intros.
elim H8; intros.
elim H9; intros.
rewrite <- (sub_permut_length H0) in H5.
elim (H1 H4 H5 x).
intros.
elim H13; intros.
elim H14; intros.
exists x0.
split; [ assumption | idtac ].
transitivity (access t'0 x); auto.
auto.
auto.
Qed.
(* To express that some parts of arrays are equal we introduce the
* property which says that a segment is the same on two
* arrays.
*)
Definition array_id (A:Set) (t t':array A) (g d:Z) :=
forall i:Z, (g <= i <= d)%Z -> access t i = access t' i.
(* array_id is an equivalence relation *)
Lemma array_id_refl :
forall (A:Set) (t:array A) (g d:Z), array_id t t g d.
Proof.
unfold array_id.
auto with datatypes.
Qed.
Hint Resolve array_id_refl : v62 datatypes.
Lemma array_id_sym :
forall (A:Set) (t t':array A) (g d:Z),
array_id t t' g d -> array_id t' t g d.
Proof.
unfold array_id.
intros.
symmetry; auto with datatypes.
Qed.
Hint Resolve array_id_sym : v62 datatypes.
Lemma array_id_trans :
forall (A:Set) (t t' t'':array A) (g d:Z),
array_id t t' g d -> array_id t' t'' g d -> array_id t t'' g d.
Proof.
unfold array_id.
intros.
apply trans_eq with (y := access t' i); auto with datatypes.
Qed.
Hint Resolve array_id_trans : v62 datatypes.
(* Outside the segment [g,d] the elements are equal *)
Lemma sub_permut_id :
forall (A:Set) (t t':array A) (g d:Z),
sub_permut g d t t' ->
array_id t t' 0 (g - 1) /\
array_id t t' (d + 1) (array_length t - 1).
Proof.
intros A t t' g d.
simple induction 1; intros.
elim H2; intros.
unfold array_id; split; intros.
apply H8; omega.
apply H8; omega.
auto with datatypes.
rewrite <- (sub_permut_length H0).
decompose [and] H1; auto with datatypes.
intuition.
apply array_id_trans with t'0; auto with datatypes.
apply array_id_trans with t'0; auto with datatypes.
rewrite (sub_permut_length H0); auto.
Qed.
Hint Resolve sub_permut_id .
Lemma sub_permut_eq :
forall (A:Set) (t t':array A) (g d:Z),
sub_permut g d t t' ->
forall i:Z,
(0 <= i < g)%Z \/ (d < i < array_length t)%Z ->
access t i = access t' i.
Proof.
intros A t t' g d Htt' i Hi.
elim (sub_permut_id Htt').
unfold array_id.
intros.
elim Hi; [ intro; apply H; omega | intro; apply H0; omega ].
Qed.
(* sub_permut is a particular case of permutation *)
Lemma sub_permut_is_permut :
forall (A:Set) (t t':array A) (g d:Z),
sub_permut g d t t' -> permut t t'.
Proof.
intros A t t' g d.
simple induction 1; intros; eauto with datatypes.
Qed.
Hint Resolve sub_permut_is_permut .
(* If we have a sub-permutation on an empty segment, then we have a
* sub-permutation on any segment.
*)
Lemma sub_permut_void :
forall (A:Set) (t t':array A) (g g' d d':Z),
(d < g)%Z -> sub_permut g d t t' -> sub_permut g' d' t t'.
Proof.
intros A t t' g g' d d' Hdg.
simple induction 1; intros.
absurd (g <= d)%Z; omega.
auto with datatypes.
auto with datatypes.
eauto with datatypes.
Qed.
(* A sub-permutation on a segment may be extended to any segment that
* contains the first one.
*)
Lemma sub_permut_extension :
forall (A:Set) (t t':array A) (g g' d d':Z),
(g' <= g)%Z ->
(d <= d')%Z -> sub_permut g d t t' -> sub_permut g' d' t t'.
Proof.
intros A t t' g g' d d' Hgg' Hdd'.
simple induction 1; intros.
apply exchange_is_sub_permut with (i := i) (j := j);
[ omega | omega | assumption ].
auto with datatypes.
auto with datatypes.
eauto with datatypes.
Qed.
|