1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
|
(*
* The Why certification tool
* Copyright (C) 2002 Jean-Christophe FILLIATRE
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License version 2 for more details
* (enclosed in the file GPL).
*)
(* $Id: WhyReal.v,v 1.2 2006-11-02 09:18:20 hubert Exp $ *)
Require Why.
Require Export Rbase.
Open Local Scope R_scope.
Parameter R_lt_ge_bool :
forall x y:R, { b:bool | if b then x < y else x >= y }.
Parameter R_le_gt_bool :
forall x y:R, { b:bool | if b then x <= y else x > y }.
Parameter R_gt_le_bool :
forall x y:R, { b:bool | if b then x > y else x <= y }.
Parameter R_ge_lt_bool :
forall x y:R, { b:bool | if b then x >= y else x < y }.
Parameter R_eq_bool :
forall x y:R, { b:bool | if b then x = y else x <> y }.
Parameter R_noteq_bool :
forall x y:R, { b:bool | if b then x <> y else x = y }.
(* no validation for programs using floats
Parameter why_any_float : (_: unit)(sig_1 R [result: R](True)).
*)
(* rounding toward zero (to conform to ANSI C) *)
Parameter int_of_real : R -> Z.
Axiom int_of_real_pos :
forall r, r >= 0 -> IZR (int_of_real r) <= r < IZR (int_of_real r + 1).
Axiom int_of_real_neg :
forall r, r <= 0 -> IZR (int_of_real r - 1) < r <= IZR (int_of_real r).
|