1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
(*
* The Why certification tool
* Copyright (C) 2002 Jean-Christophe FILLIATRE
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*
* See the GNU General Public License version 2 for more details
* (enclosed in the file GPL).
*)
(* Library about sorted (sub-)arrays / Nicolas Magaud, July 1998 *)
(* $Id: WhySorted.v,v 1.12 2006-12-08 11:53:54 filliatr Exp $ *)
Require Export WhyArrays.
Require Import WhyPermut.
Require Import ZArithRing.
Require Import Omega.
Set Implicit Arguments.
Unset Strict Implicit.
(* Definition *)
Definition sorted_array (A:array Z) (deb fin:Z) :=
(deb <= fin)%Z ->
forall x:Z,
(x >= deb)%Z -> (x < fin)%Z -> (access A x <= access A (x + 1))%Z.
(* Elements of a sorted sub-array are in increasing order *)
(* one element and the next one *)
Lemma sorted_elements_1 :
forall (A:array Z) (n m:Z),
sorted_array A n m ->
forall k:Z,
(k >= n)%Z ->
forall i:Z,
(0 <= i)%Z ->
(k + i <= m)%Z -> (access A k <= access A (k + i))%Z.
Proof.
intros A n m H_sorted k H_k i H_i.
pattern i.
apply natlike_ind.
intro.
replace (k + 0)%Z with k; omega.
(*** Ring `k+0` => BUG ***)
intros.
apply Zle_trans with (m := access A (k + x)).
apply H0; omega.
unfold Zsucc.
replace (k + (x + 1))%Z with (k + x + 1)%Z.
unfold sorted_array in H_sorted.
apply H_sorted; omega.
omega.
assumption.
Qed.
(* one element and any of the following *)
Lemma sorted_elements :
forall (A:array Z) (n m k l:Z),
sorted_array A n m ->
(k >= n)%Z ->
(l < array_length A)%Z ->
(k <= l)%Z -> (l <= m)%Z -> (access A k <= access A l)%Z.
Proof.
intros.
replace l with (k + (l - k))%Z.
apply sorted_elements_1 with (n := n) (m := m);
[ assumption | omega | omega | omega ].
omega.
Qed.
Hint Resolve sorted_elements : datatypes v62.
(* A sub-array of a sorted array is sorted *)
Lemma sub_sorted_array :
forall (A:array Z) (deb fin i j:Z),
sorted_array A deb fin ->
(i >= deb)%Z -> (j <= fin)%Z -> (i <= j)%Z -> sorted_array A i j.
Proof.
unfold sorted_array.
intros.
apply H; omega.
Qed.
Hint Resolve sub_sorted_array : datatypes v62.
(* Extension on the left of the property of being sorted *)
Lemma left_extension :
forall (A:array Z) (i j:Z),
(i > 0)%Z ->
(j < array_length A)%Z ->
sorted_array A i j ->
(access A (i - 1) <= access A i)%Z -> sorted_array A (i - 1) j.
Proof.
intros; unfold sorted_array; intros.
elim (Z_ge_lt_dec x i).
(* (`x >= i`) + (`x < i`) *)
intro Hcut.
apply H1; omega.
intro Hcut.
replace x with (i - 1)%Z.
replace (i - 1 + 1)%Z with i; [ assumption | omega ].
omega.
Qed.
(* Extension on the right *)
Lemma right_extension :
forall (A:array Z) (i j:Z),
(i >= 0)%Z ->
(j < array_length A - 1)%Z ->
sorted_array A i j ->
(access A j <= access A (j + 1))%Z -> sorted_array A i (j + 1).
Proof.
intros; unfold sorted_array; intros.
elim (Z_lt_ge_dec x j).
intro Hcut.
apply H1; omega.
intro HCut.
replace x with j; [ assumption | omega ].
Qed.
(* Substitution of the leftmost value by a smaller value *)
Lemma left_substitution :
forall (A:array Z) (i j v:Z),
(i >= 0)%Z ->
(j < array_length A)%Z ->
sorted_array A i j ->
(v <= access A i)%Z -> sorted_array (update A i v) i j.
Proof.
intros A i j v H_i H_j H_sorted H_v.
unfold sorted_array; intros.
cut (x = i \/ (x > i)%Z).
intro Hcut; elim Hcut; clear Hcut; intro.
rewrite H2.
AccessSame; try omega.
AccessOther; try omega.
apply Zle_trans with (m := access A i);
[ assumption | apply H_sorted; omega ].
do 2 (AccessOther; try omega).
apply H_sorted; omega.
omega.
Qed.
(* Substitution of the rightmost value by a larger value *)
Lemma right_substitution :
forall (A:array Z) (i j v:Z),
(i >= 0)%Z ->
(j < array_length A)%Z ->
sorted_array A i j ->
(access A j <= v)%Z -> sorted_array (update A j v) i j.
Proof.
intros A i j v H_i H_j H_sorted H_v.
unfold sorted_array; intros.
cut (x = (j - 1)%Z \/ (x < j - 1)%Z).
intro Hcut; elim Hcut; clear Hcut; intro.
rewrite H2.
replace (j-1+1)%Z with j.
2: omega.
AccessOther; try omega.
apply Zle_trans with (m := access A j).
apply sorted_elements with (n := i) (m := j); try omega; assumption.
assumption.
do 2 (AccessOther; try omega).
apply H_sorted; omega.
omega.
Qed.
(* Affectation outside of the sorted region *)
Lemma no_effect :
forall (A:array Z) (i j k v:Z),
(i >= 0)%Z ->
(j < array_length A)%Z ->
sorted_array A i j ->
(0 <= k < i)%Z \/ (j < k < array_length A)%Z ->
sorted_array (update A k v) i j.
Proof.
intros.
unfold sorted_array; intros.
do 2 (AccessOther; try omega).
apply H1; assumption.
Qed.
Lemma sorted_array_id :
forall (t1 t2:array Z) (g d:Z),
sorted_array t1 g d -> array_id t1 t2 g d -> sorted_array t2 g d.
Proof.
intros t1 t2 g d Hsorted Hid.
unfold array_id in Hid.
unfold sorted_array in Hsorted.
unfold sorted_array.
intros Hgd x H1x H2x.
rewrite <- (Hid x); [ idtac | omega ].
rewrite <- (Hid (x + 1)%Z); [ idtac | omega ].
apply Hsorted; assumption.
Qed.
|