1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
|
(**************************************************************************)
(* *)
(* The Why platform for program certification *)
(* Copyright (C) 2002-2008 *)
(* Romain BARDOU *)
(* Jean-Franois COUCHOT *)
(* Mehdi DOGGUY *)
(* Jean-Christophe FILLITRE *)
(* Thierry HUBERT *)
(* Claude MARCH *)
(* Yannick MOY *)
(* Christine PAULIN *)
(* Yann RGIS-GIANAS *)
(* Nicolas ROUSSET *)
(* Xavier URBAIN *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU General Public *)
(* License version 2, as published by the Free Software Foundation. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(* See the GNU General Public License version 2 for more details *)
(* (enclosed in the file GPL). *)
(* *)
(**************************************************************************)
open Lexing
open Ml_ocaml.Location
module StringMap = Map.Make(String)
(******************************************************************************)
let error x =
Printf.ksprintf
(fun s -> Printf.fprintf stderr "%s\n%!" s; exit 1) x
let locate_error loc =
Printf.ksprintf
(fun s -> error "File \"%s\", line %d, characters %d-%d:\n%s"
loc.loc_start.pos_fname
loc.loc_start.pos_lnum
(loc.loc_start.pos_cnum - loc.loc_start.pos_bol)
(loc.loc_end.pos_cnum - loc.loc_start.pos_bol)
s)
let caml_error loc report error =
let buf = Buffer.create 64 in
let fmt = Format.formatter_of_buffer buf in
report fmt error;
Format.pp_print_flush fmt ();
locate_error loc "%s" (Buffer.contents buf)
let log x =
Printf.ksprintf
(fun s -> Printf.printf "%s\n%!" s) x
let not_implemented loc =
Printf.ksprintf (locate_error loc "Not implemented (%s)")
let fresh_int = let c = ref(-1) in fun () -> incr c; !c
let rec list_filter_option acc = function
| [] -> List.rev acc
| None::rem -> list_filter_option acc rem
| (Some x)::rem -> list_filter_option (x::acc) rem
let list_filter_option l = list_filter_option [] l
let rec list_fold_map acc f useracc = function
| [] -> useracc, List.rev acc
| x::rem ->
let useracc', y = f useracc x in
list_fold_map (y::acc) f useracc' rem
let list_fold_map x = list_fold_map [] x
let rec list_fold_map2 acc f useracc l1 l2 = match l1, l2 with
| [], [] -> useracc, List.rev acc
| x1::rem1, x2::rem2 ->
let useracc', y = f useracc x1 x2 in
list_fold_map2 (y::acc) f useracc' rem1 rem2
| _::_, [] | [], _::_ -> raise (Invalid_argument "list_fold_map2")
let list_fold_map2 x = list_fold_map2 [] x
let rec list_fold_mapi i acc f useracc = function
| [] -> useracc, List.rev acc
| x::rem ->
let useracc', y = f useracc i x in
list_fold_mapi (i+1) (y::acc) f useracc' rem
let list_fold_mapi x = list_fold_mapi 0 [] x
let rec list_mapi f index acc = function
| [] -> List.rev acc
| x::rem -> list_mapi f (index + 1) ((f index x)::acc) rem
let list_mapi f = list_mapi f 0 []
let rec list_iteri f index = function
| [] -> ()
| x::rem ->
f index x;
list_iteri f (index + 1) rem
let list_iteri f = list_iteri f 0
let rec list_fold_lefti f i acc = function
| [] -> acc
| x::rem ->
list_fold_lefti f (i+1) (f i acc x) rem
let list_fold_lefti f = list_fold_lefti f 0
let triple_of_list ?(loc = Ml_ocaml.Location.none) = function
| [x; y; z] -> x, y, z
| args -> locate_error loc "3 arguments needed, %d found" (List.length args)
let couple_of_list ?(loc = Ml_ocaml.Location.none) = function
| [x; y] -> x, y
| args -> locate_error loc "2 arguments needed, %d found" (List.length args)
let singleton_of_list ?(loc = Ml_ocaml.Location.none) = function
| [x] -> x
| args -> locate_error loc "1 argument needed, %d found" (List.length args)
(******************************************************************************)
let identifier_of_symbol_char = function
| '!' -> "bang"
| ':' -> "colon"
| '=' -> "equal"
| '[' -> "lsquare"
| ']' -> "rsquare"
| '\'' -> "prime"
| c -> String.make 1 c
let identifier_of_symbol = function
| "ref" -> "jessica_ref"
| s ->
let buf = Buffer.create 10 in
for i = 0 to String.length s - 1 do
Buffer.add_string buf (identifier_of_symbol_char s.[i])
done;
Buffer.contents buf
let idents = Hashtbl.create 111 (* 111 = 42 + 69 *)
let fresh_ident base =
if Hashtbl.mem idents base then begin
let i = Hashtbl.find idents base + 1 in
Hashtbl.replace idents base i;
identifier_of_symbol base ^ string_of_int i
end else begin
Hashtbl.add idents base 0;
identifier_of_symbol base
end
(******************************************************************************)
open Jc_ast
open Jc_env
open Jc_fenv
open Jc_output
let default_region = Jc_region.dummy_region
let is_unit t = t = JCTnative Tunit
let is_void_statement_node = function
| JCTSblock []
| JCTSexpr({ jc_texpr_node = JCTEconst JCCvoid }) -> true
| _ -> false
let is_void_statement s = is_void_statement_node s.jc_tstatement_node
let make_expr ?(loc=Loc.dummy_position) ?(label="") ~node ~ty = {
jc_texpr_node = node;
jc_texpr_loc = loc;
jc_texpr_type = ty;
jc_texpr_label = label; (* ? *)
jc_texpr_region = default_region;
}
let make_assertion ?(loc=Loc.dummy_position) ?(label="") ~node = {
jc_assertion_node = node;
jc_assertion_loc = loc;
jc_assertion_label = label; (* ? *)
}
let make_term ?(loc=Loc.dummy_position) ?(label="") ~node ~ty = {
jc_term_node = node;
jc_term_type = ty;
jc_term_loc = loc;
jc_term_label = label;
jc_term_region = default_region;
}
let make_bool_expr ?(loc=Loc.dummy_position) ?(label="") ~node =
make_expr ~loc:loc ~label:label ~node:node ~ty:(JCTnative Tboolean)
let make_int_expr ?(loc=Loc.dummy_position) ?(label="") ~node =
make_expr ~loc:loc ~label:label ~node:node ~ty:(JCTnative Tinteger)
let make_bool_term ?(loc=Loc.dummy_position) ?(label="") ~node =
make_term ~loc:loc ~label:label ~node:node ~ty:(JCTnative Tboolean)
let make_int_term ?(loc=Loc.dummy_position) ?(label="") ~node =
make_term ~loc:loc ~label:label ~node:node ~ty:(JCTnative Tinteger)
let make_eq_term a b =
(* it shouldn't always be "int"... but for the output it works *)
make_bool_term (JCTbinary(a, Beq_int, b))
let make_eq_expr a b =
make_expr (JCTEbinary(a, Beq_int, b)) (JCTnative Tboolean)
let make_eq_assertion a b =
make_assertion (JCAbool_term(make_eq_term a b))
let make_var_term vi =
make_term (JCTvar vi) vi.jc_var_info_type
let make_var_expr vi =
make_expr (JCTEvar vi) vi.jc_var_info_type
let make_and a b = match a.jc_assertion_node, b.jc_assertion_node with
| JCAand al, JCAand bl -> make_assertion (JCAand(al@bl))
| JCAtrue, _ -> b
| _, JCAtrue -> a
| _ -> make_assertion (JCAand [ a; b ])
let make_implies a b = match a.jc_assertion_node with
| JCAtrue -> b
| _ -> make_assertion (JCAimplies(a, b))
let make_and_expr a b = match a.jc_texpr_node, b.jc_texpr_node with
| JCTEconst JCCboolean true, _ -> b
| _, JCTEconst JCCboolean true -> a
| _ -> make_bool_expr (JCTEbinary(a, Bland, b))
let make_and_term a b = match a.jc_term_node, b.jc_term_node with
| JCTconst JCCboolean true, _ -> b
| _, JCTconst JCCboolean true -> a
| _ -> make_bool_term (JCTbinary(a, Bland, b))
let make_or a b = match a.jc_assertion_node, b.jc_assertion_node with
| JCAor al, JCAor bl -> make_assertion (JCAor(al@bl))
| JCAfalse, _ -> b
| _, JCAfalse -> a
| _ -> make_assertion (JCAor [ a; b ])
let make_or_expr a b = match a.jc_texpr_node, b.jc_texpr_node with
| JCTEconst JCCboolean false, _ -> b
| _, JCTEconst JCCboolean false -> a
| _ -> make_bool_expr (JCTEbinary(a, Blor, b))
let make_or_term a b = match a.jc_term_node, b.jc_term_node with
| JCTconst JCCboolean false, _ -> b
| _, JCTconst JCCboolean false -> a
| _ -> make_bool_term (JCTbinary(a, Blor, b))
let make_and_list = List.fold_left make_and (make_assertion JCAtrue)
let make_and_list_expr = List.fold_left make_and_expr
(make_bool_expr (JCTEconst(JCCboolean true)))
let make_and_list_term = List.fold_left make_and_term
(make_bool_term (JCTconst(JCCboolean true)))
let make_or_list = List.fold_left make_or (make_assertion JCAfalse)
let make_or_list_expr = List.fold_left make_or_expr
(make_bool_expr (JCTEconst(JCCboolean false)))
let make_or_list_term = List.fold_left make_or_term
(make_bool_term (JCTconst(JCCboolean false)))
let expr_of_int i = make_int_expr(JCTEconst(JCCinteger(string_of_int i)))
let term_of_int i = make_int_term(JCTconst(JCCinteger(string_of_int i)))
let make_var_info ~name ~ty = {
jc_var_info_tag = fresh_int ();
jc_var_info_name = name;
jc_var_info_final_name = name;
jc_var_info_type = ty;
jc_var_info_formal = false;
jc_var_info_assigned = false;
jc_var_info_static = false;
jc_var_info_region = default_region;
}
(* Jc_pervasives produces names that will be used by Jessie too, which is bad *)
let new_var = let var_cnt = ref 0 in fun ?add ty ->
let add = match add with
| None -> "_"
| Some s -> "_"^s^"_"
in
incr var_cnt;
let id = "jessica"^add^(string_of_int !var_cnt) in
make_var_info ~name:id ~ty:ty
let ignored_var ty = make_var_info ~name:"jessica_ignored" ~ty:ty
let expr_seq_to_let =
List.fold_right
(fun e acc ->
make_expr
(JCTElet(ignored_var e.jc_texpr_type, e, acc))
acc.jc_texpr_type)
let make_statement ?(loc=Loc.dummy_position) s = {
jc_tstatement_node = s;
jc_tstatement_loc = loc;
}
let make_statement_block ?(loc=Loc.dummy_position) sl =
(* remove voids and flatten blocks *)
let sl = List.map
(fun s ->
if is_void_statement s then [] else
match s with
| { jc_tstatement_node = JCTSblock l } -> l
| _ -> [ s ])
sl
in
match List.flatten sl with
| ([] as l)
| ([ { jc_tstatement_node = JCTSdecl _ } ] as l)
| (_::_::_ as l) -> make_statement ~loc:loc (JCTSblock l)
| [ x ] -> x
let make_affect vi e =
if is_unit e.jc_texpr_type then
make_statement (JCTSexpr e)
else
make_statement (JCTSexpr({ e with jc_texpr_node = JCTEassign_var(vi, e) }))
let make_affect_field x fi e =
if is_unit e.jc_texpr_type then
make_statement (JCTSexpr e)
else
make_statement (JCTSexpr({ e with jc_texpr_node =
JCTEassign_heap(x, fi, e) }))
let make_affect_field_expr x fi e =
make_expr (JCTEassign_heap(x, fi, e)) (JCTnative Tunit)
let make_discard e =
make_statement (JCTSexpr e)
let make_return e =
make_statement (JCTSreturn(e.jc_texpr_type, e))
let make_var_decl vi init s =
make_statement (JCTSdecl(vi, init, s))
let make_var_decls =
List.fold_left (fun acc vi -> make_var_decl vi None acc)
let make_var_tmp ty init cont =
let vi = new_var ty in
make_var_decl vi init (cont vi (make_expr (JCTEvar vi) ty))
let make_let_tmp ty f =
let vi = new_var ty in
let ve = make_expr (JCTEvar vi) ty in
let a, b = f vi ve in
JCTElet(vi, a, b)
let make_pointer ?min ?max tov =
JCTpointer(tov,
(match min with None -> None | Some i -> Some(Num.num_of_int i)),
(match max with None -> None | Some i -> Some(Num.num_of_int i)))
let make_valid_pointer tov =
make_pointer ~min:0 ~max:0 tov
let make_let_alloc_tmp ?(count=expr_of_int 1) si f =
let ty = make_valid_pointer (JCtag si) in
let init = make_expr (JCTEalloc(count, si)) ty in
make_let_tmp ty (fun vi ve -> init, f vi ve)
let make_seq_expr el acc =
let ty = acc.jc_texpr_type in
List.fold_left
(fun acc e -> make_expr (JCTElet(ignored_var e.jc_texpr_type, e, acc)) ty)
acc
(List.rev el)
let make_alloc_tmp si =
let ty = make_valid_pointer (JCtag si) in
let init = make_expr (JCTEalloc(expr_of_int 1, si)) ty in
make_var_tmp ty (Some init)
(*let make_alloc_tmp si cont =
let tmp_ty = make_pointer_type si in
let tmp_var = new_var tmp_ty in
let tmp_expr = make_expr (JCTEvar tmp_var) tmp_ty in
let tmp_init = make_expr (JCTEalloc(expr_of_int 1, si)) tmp_ty in
make_var_decl tmp_var (Some tmp_init) (cont tmp_var tmp_expr)*)
let void = make_expr (JCTEconst JCCvoid) (JCTnative Tunit)
let make_variant name =
let name = identifier_of_symbol name in {
jc_variant_info_name = name;
jc_variant_info_roots = [];
}
let make_root_struct vi name =
let name = identifier_of_symbol name in
let rec si = {
jc_struct_info_name = name;
jc_struct_info_parent = None;
jc_struct_info_root = si;
jc_struct_info_fields = [];
jc_struct_info_variant = Some vi;
} in
vi.jc_variant_info_roots <- si::vi.jc_variant_info_roots;
si
let make_field si name jcty =
let name = identifier_of_symbol name in
let fi = {
jc_field_info_tag = fresh_int ();
jc_field_info_name = name;
jc_field_info_final_name = name;
jc_field_info_type = jcty;
jc_field_info_struct = si;
jc_field_info_root = si.jc_struct_info_root;
jc_field_info_rep = true;
} in
si.jc_struct_info_fields <- fi::si.jc_struct_info_fields;
fi
let make_var name ty =
let name = identifier_of_symbol name in
{
jc_var_info_tag = fresh_int ();
jc_var_info_name = name;
jc_var_info_final_name = name;
jc_var_info_type = ty;
jc_var_info_region = default_region;
jc_var_info_formal = false;
jc_var_info_assigned = false;
jc_var_info_static = false;
}
let dummy_variant = make_variant "dummy_variant"
let dummy_struct = make_root_struct dummy_variant "dummy_struct"
let make_struct_def si invs =
JCstruct_def(
si.jc_struct_info_name,
(match si.jc_struct_info_parent with
| None -> None
| Some si -> Some si.jc_struct_info_name),
si.jc_struct_info_fields,
invs
)
let make_variant_def vi =
JCvariant_type_def(
vi.jc_variant_info_name,
List.map (fun root -> root.jc_struct_info_name) vi.jc_variant_info_roots
)
let make_app li args = {
jc_app_fun = li;
jc_app_args = args;
jc_app_region_assoc = [];
jc_app_label_assoc = [];
}
let make_app_term_node li args = JCTapp (make_app li args)
let quantify q vi body =
make_assertion (JCAquantifier(q, vi, body))
let quantify_list q =
List.fold_right (quantify q)
let make_fun_info ~name ~return_type ~params () = {
jc_fun_info_tag = fresh_int ();
jc_fun_info_name = name;
jc_fun_info_final_name = name;
jc_fun_info_result = make_var ("jessica_"^name^"_result") return_type;
jc_fun_info_parameters = params;
jc_fun_info_calls = [];
jc_fun_info_logic_apps = [];
jc_fun_info_effects = Jc_pervasives.empty_fun_effect;
jc_fun_info_return_region = default_region;
jc_fun_info_param_regions = [];
jc_fun_info_is_recursive = false;
}
let make_fun_def ~name ~return_type ~params ?body ~spec () =
JCfun_def(
return_type,
name,
params,
spec,
body
)
let make_behavior ?throws ?assumes ?assigns
?(ensures=make_assertion JCAtrue) () =
{
jc_behavior_throws = throws;
jc_behavior_assumes = assumes;
jc_behavior_assigns = begin match assigns with
| None -> None
| Some l -> Some(Loc.dummy_position, l)
end;
jc_behavior_ensures = ensures;
}
let make_fun_spec ?(requires=make_assertion JCAtrue)
?(free_requires=make_assertion JCAtrue)
?ensures ?assigns ?(behaviors=[]) () =
{
jc_fun_requires = requires;
jc_fun_free_requires = free_requires;
jc_fun_behavior =
let b = match ensures, assigns with
| None, None -> None
| Some e, None -> Some (make_behavior ~ensures:e ())
| None, Some a -> Some (make_behavior ~assigns:a ())
| Some e, Some a -> Some (make_behavior ~ensures:e ~assigns:a ())
in
match b with
| None -> behaviors
| Some b -> (Loc.dummy_position, "default", b)::behaviors
}
let make_offset_min term si =
make_int_term (JCToffset(Offset_min, term, si))
let make_offset_max term si =
make_int_term (JCToffset(Offset_max, term, si))
let result_var ty =
make_var_info "\\result" ty
let result_term ty =
make_var_term (result_var ty)
let make_deref_term a b =
make_term (JCTderef(a, LabelHere, b)) b.jc_field_info_type
let make_shift_term a b =
make_term (JCTshift(a, b)) a.jc_term_type
let make_deref_location a b =
JCLderef(a, LabelHere, b, default_region)
(*
Local Variables:
compile-command: "unset LANG; make -C .. -f build.makefile jessica.all"
End:
*)
|