File: ed_hyper.ml

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (217 lines) | stat: -rw-r--r-- 5,729 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2007                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2, with the special exception on linking              *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(* This code is from Alexandre Miquel's Htree
   (http://www.pps.jussieu.fr/~miquel/soft.html) *)

(*** Complex numbers *)

let ( ~-& ) (x, y) = (-.x, -.y) 
let ( ~& ) (x, y) = (x, -.y) 

let ( +& ) (x1, y1) (x2, y2) =
  (x1 +. x2, y1 +. y2) 

let ( -& ) (x1, y1) (x2, y2) =
  (x1 +. x2, y1 +. y2) 

let ( *& ) (x1, y1) (x2, y2) =
  (x1*.x2 -. y1*.y2, x1*.y2 +. y1*.x2) 

let ( /& ) (x1, y1) (x2, y2) =
  let n2 = x2*.x2 +. y2*.y2 in
  ((x1*.x2 +. y1*.y2)/.n2, (-.x1*.y2 +. y1*.x2)/.n2) 

let ( *.& ) f (x, y) =
  (f*.x, f*.y) 

let norm_sqr (x, y) =
  x*.x +. y*.y 

let norm (x, y) =
  sqrt(x*.x +. y*.y) 

let normalize (x, y) =
  let n = sqrt(x*.x +. y*.y) in
  (x/.n, y/.n) 

let expi t =
  (cos t, sin t) 

(*** Hyperbolic geometry ***)

let th t =
  let ept = exp t
  and emt = exp (-.t) in
  (ept -. emt)/.(ept +. emt)

let ath x =
  0.5*.log((1.0 +. x)/.(1.0 -. x)) 

let pi = 3.14159265358979323846 
let pi_over_2 = pi/.2.0 
let pi_over_4 = pi/.4.0 

let one = (1.0, 0.0) 

let translate a z =
  (a +& z)/&(one +& (~&a) *& z) 

let gamma a u t =
  let utht = th t *.& u in
  (a +& utht) /& (one +& (~&a) *& utht) 

let delta a u t =
  let atht = th t *.& a
  and utht = th t *.& u in
  (u +& atht) /& (one +& (~&a) *& utht)

(* solving a Cramer system *)
let cramer a1 a2 b1 b2 c1 c2 =
  let cdet = a1*.b2 -. a2*.b1
  and xdet = c1*.b2 -. c2*.b1
  and ydet = a1*.c2 -. a2*.c1 in
  (xdet/.cdet, ydet/.cdet) ;;

let drag_origin (x0, y0) (x1, y1) (x2, y2) =
  let (x1, y1) = translate (-.x0, -.y0) (x1, y1) in
  let x3 = x1*.x2 -. y1*.y2 in
  let y3 = x1*.y2 +. y1*.x2 in
  cramer (1.0 -. x3) (-.y3) (-.y3) (1.0 +. x3) (x2 -. x1) (y2 -. y1)

let shrink_factor (x, y) =
  1.0 -. (x*.x +. y*.y)




(*** Hyperbolic turtle ***)

type coord = float * float 

type turtle =
    {
      pos : coord ;  (* with |pos| < 1 *)
      dir : coord    (* with |dir| = 1 *)
    } 

let make_turtle pos angle =
  { 
    pos = pos ;
    dir = expi angle 
  }

let make_turtle_dir pos dir =
  { 
    pos = pos ;
    dir = dir 
  }


let dist tdep tdest = 
  let a = tdep.pos in
  let b = tdest.pos in
  ath (norm ( (a -& b) /& (one -& (~&a) *& b)))

let dir_to tdep tdest t =
  let a = tdep.pos in
  let d = tdest.pos in
  ((d -& a) /& (th t *.&( one -& (~&a) *& d))) 
  


(* return a turtle for a distance from original *)
let advance turtle step =
   { pos = gamma turtle.pos turtle.dir step ;
     dir = delta turtle.pos turtle.dir step }

(* return a turtle for a distance d from original with steps  *)
let advance_many turtle d steps =
  let d = d /. (float steps) in
  let rec adv t = function 
    | 0 -> t
    | n -> adv (advance t d) (n-1)
  in
  adv turtle steps

(* return a list of turtle along distance d from original turtle with steps  *)
let list_advance_many turtle d steps =
  let d = d /. (float steps) in
  let rec adv t = function 
    | 0 -> []
    | n -> t :: adv (advance t d) (n-1)
  in
  adv turtle steps

let turn turtle u =
  { turtle with dir = turtle.dir *& u }

let turn_left turtle angle =
  turn turtle (expi angle)       (*** a comprendre pourquoi je dois inverser + et - de l'angle ***)

let turn_right turtle angle =
  turn turtle (expi (-.angle))           (*** a comprendre pourquoi je dois inverser + et - de l'angle ***) 

let dummy_turtle = { pos = (0., 0.); dir = (0., 0.) }




(* [step_from n] computes the best `distance' for solving the
   dictator's problem in the complex hyperbolic plane for [n]
   dictators.  In a half-plane, we have to use the distance
   given by [step_from (2*n)] or, better, the distance given
   by [step_from (2*max(3 n))]. *)
let step_from n =
  ath (tan (pi_over_4 -. pi/.float(2*n)))


(* [hspace_dist_sqr turtle] computes the square of the distance
   between the origin and the half-space in front of [turtle]. *)
let hspace_dist_sqr turtle  =
  let (ax, ay) = turtle.pos
  and (dx, dy) = turtle.dir in
  if ax*.dx +. ay*.dy < 0.0
   then begin 
    0.0 
  end else begin
    let ux = dy and uy = -.dx in
    let alpha = ax*.ax +. ay*.ay
    and beta = 2.0*.(ax*.ux +. ay*.uy) in
    if beta = 0.0 then
      alpha
    else
      begin
	let gamma = (1.0 +. alpha)/.beta in
	let delta = gamma*.gamma -. 1.0 in
	let sol =
          if beta > 0.0
          then -.gamma +. sqrt(delta)
          else -.gamma -. sqrt(delta) in
	let (zx, zy) = translate (ax, ay) (ux*.sol, uy*.sol) in
	let res = zx*.zx +. zy*.zy in
	res
      end
  end



(* Limit of visibility for nodes *)
let rlimit =  0.98
let rlimit_sqr = rlimit *. rlimit