1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
(**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2007 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(* This code is from Alexandre Miquel's Htree
(http://www.pps.jussieu.fr/~miquel/soft.html) *)
(*** Complex numbers *)
let ( ~-& ) (x, y) = (-.x, -.y)
let ( ~& ) (x, y) = (x, -.y)
let ( +& ) (x1, y1) (x2, y2) =
(x1 +. x2, y1 +. y2)
let ( -& ) (x1, y1) (x2, y2) =
(x1 +. x2, y1 +. y2)
let ( *& ) (x1, y1) (x2, y2) =
(x1*.x2 -. y1*.y2, x1*.y2 +. y1*.x2)
let ( /& ) (x1, y1) (x2, y2) =
let n2 = x2*.x2 +. y2*.y2 in
((x1*.x2 +. y1*.y2)/.n2, (-.x1*.y2 +. y1*.x2)/.n2)
let ( *.& ) f (x, y) =
(f*.x, f*.y)
let norm_sqr (x, y) =
x*.x +. y*.y
let norm (x, y) =
sqrt(x*.x +. y*.y)
let normalize (x, y) =
let n = sqrt(x*.x +. y*.y) in
(x/.n, y/.n)
let expi t =
(cos t, sin t)
(*** Hyperbolic geometry ***)
let th t =
let ept = exp t
and emt = exp (-.t) in
(ept -. emt)/.(ept +. emt)
let ath x =
0.5*.log((1.0 +. x)/.(1.0 -. x))
let pi = 3.14159265358979323846
let pi_over_2 = pi/.2.0
let pi_over_4 = pi/.4.0
let one = (1.0, 0.0)
let translate a z =
(a +& z)/&(one +& (~&a) *& z)
let gamma a u t =
let utht = th t *.& u in
(a +& utht) /& (one +& (~&a) *& utht)
let delta a u t =
let atht = th t *.& a
and utht = th t *.& u in
(u +& atht) /& (one +& (~&a) *& utht)
(* solving a Cramer system *)
let cramer a1 a2 b1 b2 c1 c2 =
let cdet = a1*.b2 -. a2*.b1
and xdet = c1*.b2 -. c2*.b1
and ydet = a1*.c2 -. a2*.c1 in
(xdet/.cdet, ydet/.cdet) ;;
let drag_origin (x0, y0) (x1, y1) (x2, y2) =
let (x1, y1) = translate (-.x0, -.y0) (x1, y1) in
let x3 = x1*.x2 -. y1*.y2 in
let y3 = x1*.y2 +. y1*.x2 in
cramer (1.0 -. x3) (-.y3) (-.y3) (1.0 +. x3) (x2 -. x1) (y2 -. y1)
let shrink_factor (x, y) =
1.0 -. (x*.x +. y*.y)
(*** Hyperbolic turtle ***)
type coord = float * float
type turtle =
{
pos : coord ; (* with |pos| < 1 *)
dir : coord (* with |dir| = 1 *)
}
let make_turtle pos angle =
{
pos = pos ;
dir = expi angle
}
let make_turtle_dir pos dir =
{
pos = pos ;
dir = dir
}
let dist tdep tdest =
let a = tdep.pos in
let b = tdest.pos in
ath (norm ( (a -& b) /& (one -& (~&a) *& b)))
let dir_to tdep tdest t =
let a = tdep.pos in
let d = tdest.pos in
((d -& a) /& (th t *.&( one -& (~&a) *& d)))
(* return a turtle for a distance from original *)
let advance turtle step =
{ pos = gamma turtle.pos turtle.dir step ;
dir = delta turtle.pos turtle.dir step }
(* return a turtle for a distance d from original with steps *)
let advance_many turtle d steps =
let d = d /. (float steps) in
let rec adv t = function
| 0 -> t
| n -> adv (advance t d) (n-1)
in
adv turtle steps
(* return a list of turtle along distance d from original turtle with steps *)
let list_advance_many turtle d steps =
let d = d /. (float steps) in
let rec adv t = function
| 0 -> []
| n -> t :: adv (advance t d) (n-1)
in
adv turtle steps
let turn turtle u =
{ turtle with dir = turtle.dir *& u }
let turn_left turtle angle =
turn turtle (expi angle) (*** a comprendre pourquoi je dois inverser + et - de l'angle ***)
let turn_right turtle angle =
turn turtle (expi (-.angle)) (*** a comprendre pourquoi je dois inverser + et - de l'angle ***)
let dummy_turtle = { pos = (0., 0.); dir = (0., 0.) }
(* [step_from n] computes the best `distance' for solving the
dictator's problem in the complex hyperbolic plane for [n]
dictators. In a half-plane, we have to use the distance
given by [step_from (2*n)] or, better, the distance given
by [step_from (2*max(3 n))]. *)
let step_from n =
ath (tan (pi_over_4 -. pi/.float(2*n)))
(* [hspace_dist_sqr turtle] computes the square of the distance
between the origin and the half-space in front of [turtle]. *)
let hspace_dist_sqr turtle =
let (ax, ay) = turtle.pos
and (dx, dy) = turtle.dir in
if ax*.dx +. ay*.dy < 0.0
then begin
0.0
end else begin
let ux = dy and uy = -.dx in
let alpha = ax*.ax +. ay*.ay
and beta = 2.0*.(ax*.ux +. ay*.uy) in
if beta = 0.0 then
alpha
else
begin
let gamma = (1.0 +. alpha)/.beta in
let delta = gamma*.gamma -. 1.0 in
let sol =
if beta > 0.0
then -.gamma +. sqrt(delta)
else -.gamma -. sqrt(delta) in
let (zx, zy) = translate (ax, ay) (ux*.sol, uy*.sol) in
let res = zx*.zx +. zy*.zy in
res
end
end
(* Limit of visibility for nodes *)
let rlimit = 0.98
let rlimit_sqr = rlimit *. rlimit
|