File: bitv.ml

package info (click to toggle)
why 2.13-2
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,608 kB
  • ctags: 16,817
  • sloc: ml: 102,672; java: 7,173; ansic: 4,439; makefile: 1,409; sh: 585
file content (620 lines) | stat: -rw-r--r-- 18,591 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
(**************************************************************************)
(*                                                                        *)
(*  Copyright (C) Jean-Christophe Filliatre                               *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2, with the special exception on linking              *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(*i $Id: bitv.ml,v 1.18 2008/04/01 09:59:03 filliatr Exp $ i*)

(*s Bit vectors. The interface and part of the code are borrowed from the 
    [Array] module of the ocaml standard library (but things are simplified
    here since we can always initialize a bit vector). This module also
    provides bitwise operations. *)

(*s We represent a bit vector by a vector of integers (field [bits]),
    and we keep the information of the size of the bit vector since it
    can not be found out with the size of the array (field [length]). *)

type t = {
  length : int;
  bits   : int array }

let length v = v.length

(*s Each element of the array is an integer containing [bpi] bits, where
    [bpi] is determined according to the machine word size. Since we do not
    use the sign bit, [bpi] is 30 on a 32-bits machine and 62 on a 64-bits
    machines. We maintain the following invariant:
    {\em The unused bits of the last integer are always 
    zeros.} This is ensured by [create] and maintained in other functions
    using [normalize]. [bit_j], [bit_not_j], [low_mask] and [up_mask]
    are arrays used to extract and mask bits in a single integer. *)

let bpi = Sys.word_size - 2

let max_length = Sys.max_array_length * bpi

let bit_j = Array.init bpi (fun j -> 1 lsl j)
let bit_not_j = Array.init bpi (fun j -> max_int - bit_j.(j))

let low_mask = Array.create (succ bpi) 0
let _ = 
  for i = 1 to bpi do low_mask.(i) <- low_mask.(i-1) lor bit_j.(pred i) done

let keep_lowest_bits a j = a land low_mask.(j)

let high_mask = Array.init (succ bpi) (fun j -> low_mask.(j) lsl (bpi-j))

let keep_highest_bits a j = a land high_mask.(j)

(*s Creating and normalizing a bit vector is easy: it is just a matter of
    taking care of the invariant. Copy is immediate. *)

let create n b =
  let initv = if b then max_int else 0 in
  let r = n mod bpi in
  if r = 0 then
    { length = n; bits = Array.create (n / bpi) initv }
  else begin
    let s = n / bpi in
    let b = Array.create (succ s) initv in
    b.(s) <- b.(s) land low_mask.(r);
    { length = n; bits = b }
  end
    
let normalize v =
  let r = v.length mod bpi in
  if r > 0 then
    let b = v.bits in
    let s = Array.length b in
    b.(s-1) <- b.(s-1) land low_mask.(r)

let copy v = { length = v.length; bits = Array.copy v.bits }

(*s Access and assignment. The [n]th bit of a bit vector is the [j]th
    bit of the [i]th integer, where [i = n / bpi] and [j = n mod
    bpi]. Both [i] and [j] and computed by the function [pos].
    Accessing a bit is testing whether the result of the corresponding
    mask operation is non-zero, and assigning it is done with a
    bitwiwe operation: an {\em or} with [bit_j] to set it, and an {\em
    and} with [bit_not_j] to unset it. *)

let pos n = 
  let i = n / bpi and j = n mod bpi in
  if j < 0 then (i - 1, j + bpi) else (i,j)

let unsafe_get v n =
  let (i,j) = pos n in 
  ((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_j j)) > 0

let unsafe_set v n b =
  let (i,j) = pos n in
  if b then
    Array.unsafe_set v.bits i 
      ((Array.unsafe_get v.bits i) lor (Array.unsafe_get bit_j j))
  else 
    Array.unsafe_set v.bits i 
      ((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_not_j j))

(*s The corresponding safe operations test the validiy of the access. *)

let get v n =
  if n < 0 or n >= v.length then invalid_arg "Bitv.get";
  let (i,j) = pos n in 
  ((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_j j)) > 0

let set v n b =
  if n < 0 or n >= v.length then invalid_arg "Bitv.set";
  let (i,j) = pos n in
  if b then
    Array.unsafe_set v.bits i
      ((Array.unsafe_get v.bits i) lor (Array.unsafe_get bit_j j))
  else
    Array.unsafe_set v.bits i
      ((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_not_j j))

(*s [init] is implemented naively using [unsafe_set]. *)

let init n f =
  let v = create n false in
  for i = 0 to pred n do
    unsafe_set v i (f i)
  done;
  v

(*s Handling bits by packets is the key for efficiency of functions
    [append], [concat], [sub] and [blit]. 
    We start by a very general function [blit_bits a i m v n] which blits 
    the bits [i] to [i+m-1] of a native integer [a] 
    onto the bit vector [v] at index [n]. It assumes that [i..i+m-1] and
    [n..n+m-1] are respectively valid subparts of [a] and [v]. 
    It is optimized when the bits fit the lowest boundary of an integer 
    (case [j == 0]). *)

let blit_bits a i m v n =
  let (i',j) = pos n in
  if j == 0 then
    Array.unsafe_set v i'
      ((keep_lowest_bits (a lsr i) m) lor
       (keep_highest_bits (Array.unsafe_get v i') (bpi - m)))
  else 
    let d = m + j - bpi in
    if d > 0 then begin
      Array.unsafe_set v i'
	(((keep_lowest_bits (a lsr i) (bpi - j)) lsl j) lor
	 (keep_lowest_bits (Array.unsafe_get v i') j));
      Array.unsafe_set v (succ i')
	((keep_lowest_bits (a lsr (i + bpi - j)) d) lor
	 (keep_highest_bits (Array.unsafe_get v (succ i')) (bpi - d)))
    end else 
      Array.unsafe_set v i'
	(((keep_lowest_bits (a lsr i) m) lsl j) lor
	 ((Array.unsafe_get v i') land (low_mask.(j) lor high_mask.(-d))))

(*s [blit_int] implements [blit_bits] in the particular case when
    [i=0] and [m=bpi] i.e. when we blit all the bits of [a]. *)

let blit_int a v n =
  let (i,j) = pos n in
  if j == 0 then
    Array.unsafe_set v i a
  else begin
    Array.unsafe_set v i 
      ( (keep_lowest_bits (Array.unsafe_get v i) j) lor
       ((keep_lowest_bits a (bpi - j)) lsl j));
    Array.unsafe_set v (succ i)
      ((keep_highest_bits (Array.unsafe_get v (succ i)) (bpi - j)) lor
       (a lsr (bpi - j)))
  end

(*s When blitting a subpart of a bit vector into another bit vector, there
    are two possible cases: (1) all the bits are contained in a single integer
    of the first bit vector, and a single call to [blit_bits] is the
    only thing to do, or (2) the source bits overlap on several integers of
    the source array, and then we do a loop of [blit_int], with two calls
    to [blit_bits] for the two bounds. *)

let unsafe_blit v1 ofs1 v2 ofs2 len =
  if len > 0 then
    let (bi,bj) = pos ofs1 in
    let (ei,ej) = pos (ofs1 + len - 1) in
    if bi == ei then
      blit_bits (Array.unsafe_get v1 bi) bj len v2 ofs2
    else begin
      blit_bits (Array.unsafe_get v1 bi) bj (bpi - bj) v2 ofs2;
      let n = ref (ofs2 + bpi - bj) in
      for i = succ bi to pred ei do
	blit_int (Array.unsafe_get v1 i) v2 !n;
	n := !n + bpi
      done;
      blit_bits (Array.unsafe_get v1 ei) 0 (succ ej) v2 !n
    end

let blit v1 ofs1 v2 ofs2 len =
  if len < 0 or ofs1 < 0 or ofs1 + len > v1.length
             or ofs2 < 0 or ofs2 + len > v2.length
  then invalid_arg "Bitv.blit";
  unsafe_blit v1.bits ofs1 v2.bits ofs2 len

(*s Extracting the subvector [ofs..ofs+len-1] of [v] is just creating a
    new vector of length [len] and blitting the subvector of [v] inside. *)

let sub v ofs len =
  if ofs < 0 or len < 0 or ofs + len > v.length then invalid_arg "Bitv.sub";
  let r = create len false in
  unsafe_blit v.bits ofs r.bits 0 len;
  r

(*s The concatenation of two bit vectors [v1] and [v2] is obtained by 
    creating a vector for the result and blitting inside the two vectors.
    [v1] is copied directly. *)

let append v1 v2 =
  let l1 = v1.length 
  and l2 = v2.length in
  let r = create (l1 + l2) false in
  let b1 = v1.bits in
  let b2 = v2.bits in
  let b = r.bits in
  for i = 0 to Array.length b1 - 1 do 
    Array.unsafe_set b i (Array.unsafe_get b1 i) 
  done;  
  unsafe_blit b2 0 b l1 l2;
  r

(*s The concatenation of a list of bit vectors is obtained by iterating
    [unsafe_blit]. *)

let concat vl =
  let size = List.fold_left (fun sz v -> sz + v.length) 0 vl in
  let res = create size false in
  let b = res.bits in
  let pos = ref 0 in
  List.iter
    (fun v ->
       let n = v.length in
       unsafe_blit v.bits 0 b !pos n;
       pos := !pos + n)
    vl;
  res

(*s Filling is a particular case of blitting with a source made of all
    ones or all zeros. Thus we instanciate [unsafe_blit], with 0 and
    [max_int]. *)

let blit_zeros v ofs len =
  if len > 0 then
    let (bi,bj) = pos ofs in
    let (ei,ej) = pos (ofs + len - 1) in
    if bi == ei then
      blit_bits 0 bj len v ofs
    else begin
      blit_bits 0 bj (bpi - bj) v ofs;
      let n = ref (ofs + bpi - bj) in
      for i = succ bi to pred ei do
	blit_int 0 v !n;
	n := !n + bpi
      done;
      blit_bits 0 0 (succ ej) v !n
    end

let blit_ones v ofs len =
  if len > 0 then
    let (bi,bj) = pos ofs in
    let (ei,ej) = pos (ofs + len - 1) in
    if bi == ei then
      blit_bits max_int bj len v ofs
    else begin
      blit_bits max_int bj (bpi - bj) v ofs;
      let n = ref (ofs + bpi - bj) in
      for i = succ bi to pred ei do
	blit_int max_int v !n;
	n := !n + bpi
      done;
      blit_bits max_int 0 (succ ej) v !n
    end

let fill v ofs len b =
  if ofs < 0 or len < 0 or ofs + len > v.length then invalid_arg "Bitv.fill";
  if b then blit_ones v.bits ofs len else blit_zeros v.bits ofs len

(*s All the iterators are implemented as for traditional arrays, using
    [unsafe_get]. For [iter] and [map], we do not precompute [(f
    true)] and [(f false)] since [f] is likely to have
    side-effects. *)

let iter f v =
  for i = 0 to v.length - 1 do f (unsafe_get v i) done

let map f v =
  let l = v.length in
  let r = create l false in
  for i = 0 to l - 1 do
    unsafe_set r i (f (unsafe_get v i))
  done;
  r

let iteri f v =
  for i = 0 to v.length - 1 do f i (unsafe_get v i) done

let mapi f v =
  let l = v.length in
  let r = create l false in
  for i = 0 to l - 1 do
    unsafe_set r i (f i (unsafe_get v i))
  done;
  r

let fold_left f x v =
  let r = ref x in
  for i = 0 to v.length - 1 do
    r := f !r (unsafe_get v i)
  done;
  !r

let fold_right f v x =
  let r = ref x in
  for i = v.length - 1 downto 0 do
    r := f (unsafe_get v i) !r
  done;
  !r

let foldi_left f x v =
  let r = ref x in
  for i = 0 to v.length - 1 do
    r := f !r i (unsafe_get v i)
  done;
  !r

let foldi_right f v x =
  let r = ref x in
  for i = v.length - 1 downto 0 do
    r := f i (unsafe_get v i) !r
  done;
  !r

let iteri_true f v =
  Array.iteri 
    (fun i n -> if n != 0 then begin
       let i_bpi = i * bpi in
       for j = 0 to bpi - 1 do
	 if n land (Array.unsafe_get bit_j j) > 0 then f (i_bpi + j)
       done
     end) 
    v.bits

(*s Bitwise operations. It is straigthforward, since bitwise operations
    can be realized by the corresponding bitwise operations over integers.
    However, one has to take care of normalizing the result of [bwnot]
    which introduces ones in highest significant positions. *)

let bw_and v1 v2 = 
  let l = v1.length in
  if l <> v2.length then invalid_arg "Bitv.bw_and";
  let b1 = v1.bits 
  and b2 = v2.bits in
  let n = Array.length b1 in
  let a = Array.create n 0 in
  for i = 0 to n - 1 do
    a.(i) <- b1.(i) land b2.(i)
  done;
  { length = l; bits = a }
  
let bw_or v1 v2 = 
  let l = v1.length in
  if l <> v2.length then invalid_arg "Bitv.bw_or";
  let b1 = v1.bits 
  and b2 = v2.bits in
  let n = Array.length b1 in
  let a = Array.create n 0 in
  for i = 0 to n - 1 do
    a.(i) <- b1.(i) lor b2.(i)
  done;
  { length = l; bits = a }
  
let bw_xor v1 v2 = 
  let l = v1.length in
  if l <> v2.length then invalid_arg "Bitv.bw_xor";
  let b1 = v1.bits 
  and b2 = v2.bits in
  let n = Array.length b1 in
  let a = Array.create n 0 in
  for i = 0 to n - 1 do
    a.(i) <- b1.(i) lxor b2.(i)
  done;
  { length = l; bits = a }
  
let bw_not v = 
  let b = v.bits in
  let n = Array.length b in
  let a = Array.create n 0 in
  for i = 0 to n - 1 do
    a.(i) <- max_int land (lnot b.(i))
  done;
  let r = { length = v.length; bits = a } in
  normalize r;
  r

(*s Shift operations. It is easy to reuse [unsafe_blit], although it is 
    probably slightly less efficient than a ad-hoc piece of code. *)

let rec shiftl v d =
  if d == 0 then 
    copy v
  else if d < 0 then
    shiftr v (-d)
  else begin
    let n = v.length in
    let r = create n false in
    if d < n then unsafe_blit v.bits 0 r.bits d (n - d);
    r
  end
  
and shiftr v d =
  if d == 0 then 
    copy v
  else if d < 0 then
    shiftl v (-d)
  else begin
    let n = v.length in
    let r = create n false in
    if d < n then unsafe_blit v.bits d r.bits 0 (n - d);
    r
  end

(*s Testing for all zeros and all ones. *)

let all_zeros v = 
  let b = v.bits in
  let n = Array.length b in
  let rec test i = 
    (i == n) || ((Array.unsafe_get b i == 0) && test (succ i)) 
  in
  test 0

let all_ones v = 
  let b = v.bits in
  let n = Array.length b in
  let rec test i = 
    if i == n - 1 then
      let m = v.length mod bpi in
      (Array.unsafe_get b i) == (if m == 0 then max_int else low_mask.(m))
    else
      ((Array.unsafe_get b i) == max_int) && test (succ i)
  in
  test 0

(*s Conversions to and from strings. *)

let to_string v = 
  let n = v.length in
  let s = String.make n '0' in
  for i = 0 to n - 1 do
    if unsafe_get v i then s.[i] <- '1'
  done;
  s

let print fmt v = Format.pp_print_string fmt (to_string v)

let of_string s =
  let n = String.length s in
  let v = create n false in
  for i = 0 to n - 1 do
    let c = String.unsafe_get s i in
    if c = '1' then 
      unsafe_set v i true
    else 
      if c <> '0' then invalid_arg "Bitv.of_string"
  done;
  v

(*s Iteration on all bit vectors of length [n] using a Gray code. *)

let first_set v n = 
  let rec lookup i = 
    if i = n then raise Not_found ;
    if unsafe_get v i then i else lookup (i + 1)
  in 
  lookup 0

let gray_iter f n = 
  let bv = create n false in 
  let rec iter () =
    f bv; 
    unsafe_set bv 0 (not (unsafe_get bv 0));
    f bv; 
    let pos = succ (first_set bv n) in
    if pos < n then begin
      unsafe_set bv pos (not (unsafe_get bv pos));
      iter ()
    end
  in
  if n > 0 then iter ()


(*s Coercions to/from lists of integers *)

let of_list l =
  let n = List.fold_left max 0 l in
  let b = create (succ n) false in
  let add_element i = 
    (* negative numbers are invalid *)
    if i < 0 then invalid_arg "Bitv.of_list";
    unsafe_set b i true 
  in
  List.iter add_element l;
  b

let of_list_with_length l len =
  let b = create len false in
  let add_element i =
    if i < 0 || i >= len then invalid_arg "Bitv.of_list_with_length";
    unsafe_set b i true
  in
  List.iter add_element l;
  b

let to_list b =
  let n = length b in
  let rec make i acc = 
    if i < 0 then acc 
    else make (pred i) (if unsafe_get b i then i :: acc else acc)
  in
  make (pred n) []


(*s To/from integers. *)

(* [int] *)
let of_int_us i = 
  { length = bpi; bits = [| i land max_int |] }
let to_int_us v = 
  if v.length < bpi then invalid_arg "Bitv.to_int_us"; 
  v.bits.(0)

let of_int_s i = 
  { length = succ bpi; bits = [| i land max_int; (i lsr bpi) land 1 |] }
let to_int_s v = 
  if v.length < succ bpi then invalid_arg "Bitv.to_int_s"; 
  v.bits.(0) lor (v.bits.(1) lsl bpi)

(* [Int32] *)
let of_int32_us i = match Sys.word_size with
  | 32 -> { length = 31; 
	    bits = [| (Int32.to_int i) land max_int; 
		      let hi = Int32.shift_right_logical i 30 in
		      (Int32.to_int hi) land 1 |] }
  | 64 -> { length = 31; bits = [| (Int32.to_int i) land 0x7fffffff |] }
  | _ -> assert false
let to_int32_us v =
  if v.length < 31 then invalid_arg "Bitv.to_int32_us"; 
  match Sys.word_size with
    | 32 -> 
	Int32.logor (Int32.of_int v.bits.(0))
	            (Int32.shift_left (Int32.of_int (v.bits.(1) land 1)) 30)
    | 64 ->
	Int32.of_int (v.bits.(0) land 0x7fffffff)
    | _ -> assert false

(* this is 0xffffffff (ocaml >= 3.08 checks for literal overflow) *)
let ffffffff = (0xffff lsl 16) lor 0xffff

let of_int32_s i = match Sys.word_size with
  | 32 -> { length = 32; 
	    bits = [| (Int32.to_int i) land max_int; 
		      let hi = Int32.shift_right_logical i 30 in
		      (Int32.to_int hi) land 3 |] }
  | 64 -> { length = 32; bits = [| (Int32.to_int i) land ffffffff |] }
  | _ -> assert false
let to_int32_s v =
  if v.length < 32 then invalid_arg "Bitv.to_int32_s"; 
  match Sys.word_size with
    | 32 -> 
	Int32.logor (Int32.of_int v.bits.(0))
	            (Int32.shift_left (Int32.of_int (v.bits.(1) land 3)) 30)
    | 64 ->
	Int32.of_int (v.bits.(0) land ffffffff)
    | _ -> assert false

(* [Int64] *)
let of_int64_us i = match Sys.word_size with
  | 32 -> { length = 63; 
	    bits = [| (Int64.to_int i) land max_int; 
		      (let mi = Int64.shift_right_logical i 30 in
		       (Int64.to_int mi) land max_int);
		      let hi = Int64.shift_right_logical i 60 in
		      (Int64.to_int hi) land 1 |] }
  | 64 -> { length = 63; 
	    bits = [| (Int64.to_int i) land max_int;
		      let hi = Int64.shift_right_logical i 62 in 
		      (Int64.to_int hi) land 1 |] }
  | _ -> assert false
let to_int64_us v = failwith "todo"

let of_int64_s i = failwith "todo"
let to_int64_s v = failwith "todo"

(* [Nativeint] *)
let select_of f32 f64 = match Sys.word_size with 
  | 32 -> (fun i -> f32 (Nativeint.to_int32 i))
  | 64 -> (fun i -> f64 (Int64.of_nativeint i))
  | _ -> assert false
let of_nativeint_s = select_of of_int32_s of_int64_s
let of_nativeint_us = select_of of_int32_us of_int64_us
let select_to f32 f64 = match Sys.word_size with 
  | 32 -> (fun i -> Nativeint.of_int32 (f32 i))
  | 64 -> (fun i -> Int64.to_nativeint (f64 i))
  | _ -> assert false
let to_nativeint_s = select_to to_int32_s to_int64_s
let to_nativeint_us = select_to to_int32_us to_int64_us