1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
(**************************************************************************)
(* *)
(* Copyright (C) Jean-Christophe Filliatre *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(*i $Id: bitv.ml,v 1.18 2008/04/01 09:59:03 filliatr Exp $ i*)
(*s Bit vectors. The interface and part of the code are borrowed from the
[Array] module of the ocaml standard library (but things are simplified
here since we can always initialize a bit vector). This module also
provides bitwise operations. *)
(*s We represent a bit vector by a vector of integers (field [bits]),
and we keep the information of the size of the bit vector since it
can not be found out with the size of the array (field [length]). *)
type t = {
length : int;
bits : int array }
let length v = v.length
(*s Each element of the array is an integer containing [bpi] bits, where
[bpi] is determined according to the machine word size. Since we do not
use the sign bit, [bpi] is 30 on a 32-bits machine and 62 on a 64-bits
machines. We maintain the following invariant:
{\em The unused bits of the last integer are always
zeros.} This is ensured by [create] and maintained in other functions
using [normalize]. [bit_j], [bit_not_j], [low_mask] and [up_mask]
are arrays used to extract and mask bits in a single integer. *)
let bpi = Sys.word_size - 2
let max_length = Sys.max_array_length * bpi
let bit_j = Array.init bpi (fun j -> 1 lsl j)
let bit_not_j = Array.init bpi (fun j -> max_int - bit_j.(j))
let low_mask = Array.create (succ bpi) 0
let _ =
for i = 1 to bpi do low_mask.(i) <- low_mask.(i-1) lor bit_j.(pred i) done
let keep_lowest_bits a j = a land low_mask.(j)
let high_mask = Array.init (succ bpi) (fun j -> low_mask.(j) lsl (bpi-j))
let keep_highest_bits a j = a land high_mask.(j)
(*s Creating and normalizing a bit vector is easy: it is just a matter of
taking care of the invariant. Copy is immediate. *)
let create n b =
let initv = if b then max_int else 0 in
let r = n mod bpi in
if r = 0 then
{ length = n; bits = Array.create (n / bpi) initv }
else begin
let s = n / bpi in
let b = Array.create (succ s) initv in
b.(s) <- b.(s) land low_mask.(r);
{ length = n; bits = b }
end
let normalize v =
let r = v.length mod bpi in
if r > 0 then
let b = v.bits in
let s = Array.length b in
b.(s-1) <- b.(s-1) land low_mask.(r)
let copy v = { length = v.length; bits = Array.copy v.bits }
(*s Access and assignment. The [n]th bit of a bit vector is the [j]th
bit of the [i]th integer, where [i = n / bpi] and [j = n mod
bpi]. Both [i] and [j] and computed by the function [pos].
Accessing a bit is testing whether the result of the corresponding
mask operation is non-zero, and assigning it is done with a
bitwiwe operation: an {\em or} with [bit_j] to set it, and an {\em
and} with [bit_not_j] to unset it. *)
let pos n =
let i = n / bpi and j = n mod bpi in
if j < 0 then (i - 1, j + bpi) else (i,j)
let unsafe_get v n =
let (i,j) = pos n in
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_j j)) > 0
let unsafe_set v n b =
let (i,j) = pos n in
if b then
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) lor (Array.unsafe_get bit_j j))
else
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_not_j j))
(*s The corresponding safe operations test the validiy of the access. *)
let get v n =
if n < 0 or n >= v.length then invalid_arg "Bitv.get";
let (i,j) = pos n in
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_j j)) > 0
let set v n b =
if n < 0 or n >= v.length then invalid_arg "Bitv.set";
let (i,j) = pos n in
if b then
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) lor (Array.unsafe_get bit_j j))
else
Array.unsafe_set v.bits i
((Array.unsafe_get v.bits i) land (Array.unsafe_get bit_not_j j))
(*s [init] is implemented naively using [unsafe_set]. *)
let init n f =
let v = create n false in
for i = 0 to pred n do
unsafe_set v i (f i)
done;
v
(*s Handling bits by packets is the key for efficiency of functions
[append], [concat], [sub] and [blit].
We start by a very general function [blit_bits a i m v n] which blits
the bits [i] to [i+m-1] of a native integer [a]
onto the bit vector [v] at index [n]. It assumes that [i..i+m-1] and
[n..n+m-1] are respectively valid subparts of [a] and [v].
It is optimized when the bits fit the lowest boundary of an integer
(case [j == 0]). *)
let blit_bits a i m v n =
let (i',j) = pos n in
if j == 0 then
Array.unsafe_set v i'
((keep_lowest_bits (a lsr i) m) lor
(keep_highest_bits (Array.unsafe_get v i') (bpi - m)))
else
let d = m + j - bpi in
if d > 0 then begin
Array.unsafe_set v i'
(((keep_lowest_bits (a lsr i) (bpi - j)) lsl j) lor
(keep_lowest_bits (Array.unsafe_get v i') j));
Array.unsafe_set v (succ i')
((keep_lowest_bits (a lsr (i + bpi - j)) d) lor
(keep_highest_bits (Array.unsafe_get v (succ i')) (bpi - d)))
end else
Array.unsafe_set v i'
(((keep_lowest_bits (a lsr i) m) lsl j) lor
((Array.unsafe_get v i') land (low_mask.(j) lor high_mask.(-d))))
(*s [blit_int] implements [blit_bits] in the particular case when
[i=0] and [m=bpi] i.e. when we blit all the bits of [a]. *)
let blit_int a v n =
let (i,j) = pos n in
if j == 0 then
Array.unsafe_set v i a
else begin
Array.unsafe_set v i
( (keep_lowest_bits (Array.unsafe_get v i) j) lor
((keep_lowest_bits a (bpi - j)) lsl j));
Array.unsafe_set v (succ i)
((keep_highest_bits (Array.unsafe_get v (succ i)) (bpi - j)) lor
(a lsr (bpi - j)))
end
(*s When blitting a subpart of a bit vector into another bit vector, there
are two possible cases: (1) all the bits are contained in a single integer
of the first bit vector, and a single call to [blit_bits] is the
only thing to do, or (2) the source bits overlap on several integers of
the source array, and then we do a loop of [blit_int], with two calls
to [blit_bits] for the two bounds. *)
let unsafe_blit v1 ofs1 v2 ofs2 len =
if len > 0 then
let (bi,bj) = pos ofs1 in
let (ei,ej) = pos (ofs1 + len - 1) in
if bi == ei then
blit_bits (Array.unsafe_get v1 bi) bj len v2 ofs2
else begin
blit_bits (Array.unsafe_get v1 bi) bj (bpi - bj) v2 ofs2;
let n = ref (ofs2 + bpi - bj) in
for i = succ bi to pred ei do
blit_int (Array.unsafe_get v1 i) v2 !n;
n := !n + bpi
done;
blit_bits (Array.unsafe_get v1 ei) 0 (succ ej) v2 !n
end
let blit v1 ofs1 v2 ofs2 len =
if len < 0 or ofs1 < 0 or ofs1 + len > v1.length
or ofs2 < 0 or ofs2 + len > v2.length
then invalid_arg "Bitv.blit";
unsafe_blit v1.bits ofs1 v2.bits ofs2 len
(*s Extracting the subvector [ofs..ofs+len-1] of [v] is just creating a
new vector of length [len] and blitting the subvector of [v] inside. *)
let sub v ofs len =
if ofs < 0 or len < 0 or ofs + len > v.length then invalid_arg "Bitv.sub";
let r = create len false in
unsafe_blit v.bits ofs r.bits 0 len;
r
(*s The concatenation of two bit vectors [v1] and [v2] is obtained by
creating a vector for the result and blitting inside the two vectors.
[v1] is copied directly. *)
let append v1 v2 =
let l1 = v1.length
and l2 = v2.length in
let r = create (l1 + l2) false in
let b1 = v1.bits in
let b2 = v2.bits in
let b = r.bits in
for i = 0 to Array.length b1 - 1 do
Array.unsafe_set b i (Array.unsafe_get b1 i)
done;
unsafe_blit b2 0 b l1 l2;
r
(*s The concatenation of a list of bit vectors is obtained by iterating
[unsafe_blit]. *)
let concat vl =
let size = List.fold_left (fun sz v -> sz + v.length) 0 vl in
let res = create size false in
let b = res.bits in
let pos = ref 0 in
List.iter
(fun v ->
let n = v.length in
unsafe_blit v.bits 0 b !pos n;
pos := !pos + n)
vl;
res
(*s Filling is a particular case of blitting with a source made of all
ones or all zeros. Thus we instanciate [unsafe_blit], with 0 and
[max_int]. *)
let blit_zeros v ofs len =
if len > 0 then
let (bi,bj) = pos ofs in
let (ei,ej) = pos (ofs + len - 1) in
if bi == ei then
blit_bits 0 bj len v ofs
else begin
blit_bits 0 bj (bpi - bj) v ofs;
let n = ref (ofs + bpi - bj) in
for i = succ bi to pred ei do
blit_int 0 v !n;
n := !n + bpi
done;
blit_bits 0 0 (succ ej) v !n
end
let blit_ones v ofs len =
if len > 0 then
let (bi,bj) = pos ofs in
let (ei,ej) = pos (ofs + len - 1) in
if bi == ei then
blit_bits max_int bj len v ofs
else begin
blit_bits max_int bj (bpi - bj) v ofs;
let n = ref (ofs + bpi - bj) in
for i = succ bi to pred ei do
blit_int max_int v !n;
n := !n + bpi
done;
blit_bits max_int 0 (succ ej) v !n
end
let fill v ofs len b =
if ofs < 0 or len < 0 or ofs + len > v.length then invalid_arg "Bitv.fill";
if b then blit_ones v.bits ofs len else blit_zeros v.bits ofs len
(*s All the iterators are implemented as for traditional arrays, using
[unsafe_get]. For [iter] and [map], we do not precompute [(f
true)] and [(f false)] since [f] is likely to have
side-effects. *)
let iter f v =
for i = 0 to v.length - 1 do f (unsafe_get v i) done
let map f v =
let l = v.length in
let r = create l false in
for i = 0 to l - 1 do
unsafe_set r i (f (unsafe_get v i))
done;
r
let iteri f v =
for i = 0 to v.length - 1 do f i (unsafe_get v i) done
let mapi f v =
let l = v.length in
let r = create l false in
for i = 0 to l - 1 do
unsafe_set r i (f i (unsafe_get v i))
done;
r
let fold_left f x v =
let r = ref x in
for i = 0 to v.length - 1 do
r := f !r (unsafe_get v i)
done;
!r
let fold_right f v x =
let r = ref x in
for i = v.length - 1 downto 0 do
r := f (unsafe_get v i) !r
done;
!r
let foldi_left f x v =
let r = ref x in
for i = 0 to v.length - 1 do
r := f !r i (unsafe_get v i)
done;
!r
let foldi_right f v x =
let r = ref x in
for i = v.length - 1 downto 0 do
r := f i (unsafe_get v i) !r
done;
!r
let iteri_true f v =
Array.iteri
(fun i n -> if n != 0 then begin
let i_bpi = i * bpi in
for j = 0 to bpi - 1 do
if n land (Array.unsafe_get bit_j j) > 0 then f (i_bpi + j)
done
end)
v.bits
(*s Bitwise operations. It is straigthforward, since bitwise operations
can be realized by the corresponding bitwise operations over integers.
However, one has to take care of normalizing the result of [bwnot]
which introduces ones in highest significant positions. *)
let bw_and v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_and";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- b1.(i) land b2.(i)
done;
{ length = l; bits = a }
let bw_or v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_or";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- b1.(i) lor b2.(i)
done;
{ length = l; bits = a }
let bw_xor v1 v2 =
let l = v1.length in
if l <> v2.length then invalid_arg "Bitv.bw_xor";
let b1 = v1.bits
and b2 = v2.bits in
let n = Array.length b1 in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- b1.(i) lxor b2.(i)
done;
{ length = l; bits = a }
let bw_not v =
let b = v.bits in
let n = Array.length b in
let a = Array.create n 0 in
for i = 0 to n - 1 do
a.(i) <- max_int land (lnot b.(i))
done;
let r = { length = v.length; bits = a } in
normalize r;
r
(*s Shift operations. It is easy to reuse [unsafe_blit], although it is
probably slightly less efficient than a ad-hoc piece of code. *)
let rec shiftl v d =
if d == 0 then
copy v
else if d < 0 then
shiftr v (-d)
else begin
let n = v.length in
let r = create n false in
if d < n then unsafe_blit v.bits 0 r.bits d (n - d);
r
end
and shiftr v d =
if d == 0 then
copy v
else if d < 0 then
shiftl v (-d)
else begin
let n = v.length in
let r = create n false in
if d < n then unsafe_blit v.bits d r.bits 0 (n - d);
r
end
(*s Testing for all zeros and all ones. *)
let all_zeros v =
let b = v.bits in
let n = Array.length b in
let rec test i =
(i == n) || ((Array.unsafe_get b i == 0) && test (succ i))
in
test 0
let all_ones v =
let b = v.bits in
let n = Array.length b in
let rec test i =
if i == n - 1 then
let m = v.length mod bpi in
(Array.unsafe_get b i) == (if m == 0 then max_int else low_mask.(m))
else
((Array.unsafe_get b i) == max_int) && test (succ i)
in
test 0
(*s Conversions to and from strings. *)
let to_string v =
let n = v.length in
let s = String.make n '0' in
for i = 0 to n - 1 do
if unsafe_get v i then s.[i] <- '1'
done;
s
let print fmt v = Format.pp_print_string fmt (to_string v)
let of_string s =
let n = String.length s in
let v = create n false in
for i = 0 to n - 1 do
let c = String.unsafe_get s i in
if c = '1' then
unsafe_set v i true
else
if c <> '0' then invalid_arg "Bitv.of_string"
done;
v
(*s Iteration on all bit vectors of length [n] using a Gray code. *)
let first_set v n =
let rec lookup i =
if i = n then raise Not_found ;
if unsafe_get v i then i else lookup (i + 1)
in
lookup 0
let gray_iter f n =
let bv = create n false in
let rec iter () =
f bv;
unsafe_set bv 0 (not (unsafe_get bv 0));
f bv;
let pos = succ (first_set bv n) in
if pos < n then begin
unsafe_set bv pos (not (unsafe_get bv pos));
iter ()
end
in
if n > 0 then iter ()
(*s Coercions to/from lists of integers *)
let of_list l =
let n = List.fold_left max 0 l in
let b = create (succ n) false in
let add_element i =
(* negative numbers are invalid *)
if i < 0 then invalid_arg "Bitv.of_list";
unsafe_set b i true
in
List.iter add_element l;
b
let of_list_with_length l len =
let b = create len false in
let add_element i =
if i < 0 || i >= len then invalid_arg "Bitv.of_list_with_length";
unsafe_set b i true
in
List.iter add_element l;
b
let to_list b =
let n = length b in
let rec make i acc =
if i < 0 then acc
else make (pred i) (if unsafe_get b i then i :: acc else acc)
in
make (pred n) []
(*s To/from integers. *)
(* [int] *)
let of_int_us i =
{ length = bpi; bits = [| i land max_int |] }
let to_int_us v =
if v.length < bpi then invalid_arg "Bitv.to_int_us";
v.bits.(0)
let of_int_s i =
{ length = succ bpi; bits = [| i land max_int; (i lsr bpi) land 1 |] }
let to_int_s v =
if v.length < succ bpi then invalid_arg "Bitv.to_int_s";
v.bits.(0) lor (v.bits.(1) lsl bpi)
(* [Int32] *)
let of_int32_us i = match Sys.word_size with
| 32 -> { length = 31;
bits = [| (Int32.to_int i) land max_int;
let hi = Int32.shift_right_logical i 30 in
(Int32.to_int hi) land 1 |] }
| 64 -> { length = 31; bits = [| (Int32.to_int i) land 0x7fffffff |] }
| _ -> assert false
let to_int32_us v =
if v.length < 31 then invalid_arg "Bitv.to_int32_us";
match Sys.word_size with
| 32 ->
Int32.logor (Int32.of_int v.bits.(0))
(Int32.shift_left (Int32.of_int (v.bits.(1) land 1)) 30)
| 64 ->
Int32.of_int (v.bits.(0) land 0x7fffffff)
| _ -> assert false
(* this is 0xffffffff (ocaml >= 3.08 checks for literal overflow) *)
let ffffffff = (0xffff lsl 16) lor 0xffff
let of_int32_s i = match Sys.word_size with
| 32 -> { length = 32;
bits = [| (Int32.to_int i) land max_int;
let hi = Int32.shift_right_logical i 30 in
(Int32.to_int hi) land 3 |] }
| 64 -> { length = 32; bits = [| (Int32.to_int i) land ffffffff |] }
| _ -> assert false
let to_int32_s v =
if v.length < 32 then invalid_arg "Bitv.to_int32_s";
match Sys.word_size with
| 32 ->
Int32.logor (Int32.of_int v.bits.(0))
(Int32.shift_left (Int32.of_int (v.bits.(1) land 3)) 30)
| 64 ->
Int32.of_int (v.bits.(0) land ffffffff)
| _ -> assert false
(* [Int64] *)
let of_int64_us i = match Sys.word_size with
| 32 -> { length = 63;
bits = [| (Int64.to_int i) land max_int;
(let mi = Int64.shift_right_logical i 30 in
(Int64.to_int mi) land max_int);
let hi = Int64.shift_right_logical i 60 in
(Int64.to_int hi) land 1 |] }
| 64 -> { length = 63;
bits = [| (Int64.to_int i) land max_int;
let hi = Int64.shift_right_logical i 62 in
(Int64.to_int hi) land 1 |] }
| _ -> assert false
let to_int64_us v = failwith "todo"
let of_int64_s i = failwith "todo"
let to_int64_s v = failwith "todo"
(* [Nativeint] *)
let select_of f32 f64 = match Sys.word_size with
| 32 -> (fun i -> f32 (Nativeint.to_int32 i))
| 64 -> (fun i -> f64 (Int64.of_nativeint i))
| _ -> assert false
let of_nativeint_s = select_of of_int32_s of_int64_s
let of_nativeint_us = select_of of_int32_us of_int64_us
let select_to f32 f64 = match Sys.word_size with
| 32 -> (fun i -> Nativeint.of_int32 (f32 i))
| 64 -> (fun i -> Int64.to_nativeint (f64 i))
| _ -> assert false
let to_nativeint_s = select_to to_int32_s to_int64_s
let to_nativeint_us = select_to to_int32_us to_int64_us
|