1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
(**************************************************************************)
(* *)
(* Ocamlgraph: a generic graph library for OCaml *)
(* Copyright (C) 2004-2007 *)
(* Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Library General Public *)
(* License version 2, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
(* $Id:$ *)
module type Ordered = sig
type t
val compare : t -> t -> int
end
exception EmptyHeap
(*s Imperative implementation *)
module Imperative(X : Ordered) = struct
(* The heap is encoded in the array [data], where elements are stored
from [0] to [size - 1]. From an element stored at [i], the left
(resp. right) subtree, if any, is rooted at [2*i+1] (resp. [2*i+2]). *)
type t = { mutable size : int; mutable data : X.t array }
(* When [create n] is called, we cannot allocate the array, since there is
no known value of type [X.t]; we'll wait for the first addition to
do it, and we remember this situation with a negative size. *)
let create n =
if n <= 0 then invalid_arg "create";
{ size = -n; data = [||] }
let is_empty h = h.size <= 0
(* [resize] doubles the size of [data] *)
let resize h =
let n = h.size in
assert (n > 0);
let n' = 2 * n in
let d = h.data in
let d' = Array.create n' d.(0) in
Array.blit d 0 d' 0 n;
h.data <- d'
let add h x =
(* first addition: we allocate the array *)
if h.size < 0 then begin
h.data <- Array.create (- h.size) x; h.size <- 0
end;
let n = h.size in
(* resizing if needed *)
if n == Array.length h.data then resize h;
let d = h.data in
(* moving [x] up in the heap *)
let rec moveup i =
let fi = (i - 1) / 2 in
if i > 0 && X.compare d.(fi) x < 0 then begin
d.(i) <- d.(fi);
moveup fi
end else
d.(i) <- x
in
moveup n;
h.size <- n + 1
let maximum h =
if h.size <= 0 then raise EmptyHeap;
h.data.(0)
let remove h =
if h.size <= 0 then raise EmptyHeap;
let n = h.size - 1 in
h.size <- n;
let d = h.data in
let x = d.(n) in
(* moving [x] down in the heap *)
let rec movedown i =
let j = 2 * i + 1 in
if j < n then
let j =
let j' = j + 1 in
if j' < n && X.compare d.(j') d.(j) > 0 then j' else j
in
if X.compare d.(j) x > 0 then begin
d.(i) <- d.(j);
movedown j
end else
d.(i) <- x
else
d.(i) <- x
in
movedown 0
let pop_maximum h = let m = maximum h in remove h; m
let iter f h =
let d = h.data in
for i = 0 to h.size - 1 do f d.(i) done
let fold f h x0 =
let n = h.size in
let d = h.data in
let rec foldrec x i =
if i >= n then x else foldrec (f d.(i) x) (succ i)
in
foldrec x0 0
end
(*s Functional implementation *)
module type FunctionalSig = sig
type elt
type t
val empty : t
val add : elt -> t -> t
val maximum : t -> elt
val remove : t -> t
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
end
module Functional(X : Ordered) = struct
(* Heaps are encoded as complete binary trees, i.e., binary trees
which are full expect, may be, on the bottom level where it is filled
from the left.
These trees also enjoy the heap property, namely the value of any node
is greater or equal than those of its left and right subtrees.
There are 4 kinds of complete binary trees, denoted by 4 constructors:
[FFF] for a full binary tree (and thus 2 full subtrees);
[PPF] for a partial tree with a partial left subtree and a full
right subtree;
[PFF] for a partial tree with a full left subtree and a full right subtree
(but of different heights);
and [PFP] for a partial tree with a full left subtree and a partial
right subtree. *)
type elt = X.t
type t =
| Empty
| FFF of t * X.t * t (* full (full, full) *)
| PPF of t * X.t * t (* partial (partial, full) *)
| PFF of t * X.t * t (* partial (full, full) *)
| PFP of t * X.t * t (* partial (full, partial) *)
let empty = Empty
(* smart constructors for insertion *)
let p_f l x r = match l with
| Empty | FFF _ -> PFF (l, x, r)
| _ -> PPF (l, x, r)
let pf_ l x = function
| Empty | FFF _ as r -> FFF (l, x, r)
| r -> PFP (l, x, r)
let rec add x = function
| Empty ->
FFF (Empty, x, Empty)
(* insertion to the left *)
| FFF (l, y, r) | PPF (l, y, r) ->
if X.compare x y > 0 then p_f (add y l) x r else p_f (add x l) y r
(* insertion to the right *)
| PFF (l, y, r) | PFP (l, y, r) ->
if X.compare x y > 0 then pf_ l x (add y r) else pf_ l y (add x r)
let maximum = function
| Empty -> raise EmptyHeap
| FFF (_, x, _) | PPF (_, x, _) | PFF (_, x, _) | PFP (_, x, _) -> x
(* smart constructors for removal; note that they are different
from the ones for insertion! *)
let p_f l x r = match l with
| Empty | FFF _ -> FFF (l, x, r)
| _ -> PPF (l, x, r)
let pf_ l x = function
| Empty | FFF _ as r -> PFF (l, x, r)
| r -> PFP (l, x, r)
let rec remove = function
| Empty ->
raise EmptyHeap
| FFF (Empty, _, Empty) ->
Empty
| PFF (l, _, Empty) ->
l
(* remove on the left *)
| PPF (l, x, r) | PFF (l, x, r) ->
let xl = maximum l in
let xr = maximum r in
let l' = remove l in
if X.compare xl xr >= 0 then
p_f l' xl r
else
p_f l' xr (add xl (remove r))
(* remove on the right *)
| FFF (l, x, r) | PFP (l, x, r) ->
let xl = maximum l in
let xr = maximum r in
let r' = remove r in
if X.compare xl xr > 0 then
pf_ (add xr (remove l)) xl r'
else
pf_ l xr r'
let rec iter f = function
| Empty ->
()
| FFF (l, x, r) | PPF (l, x, r) | PFF (l, x, r) | PFP (l, x, r) ->
iter f l; f x; iter f r
let rec fold f h x0 = match h with
| Empty ->
x0
| FFF (l, x, r) | PPF (l, x, r) | PFF (l, x, r) | PFP (l, x, r) ->
fold f l (fold f r (f x x0))
end
|