1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
(* This file was originally generated by why.
It can be modified; only the generated parts will be overwritten. *)
Require Import Why.
(* ----------- PRELIMINAIRES ------------- *)
(* définition et propriétés de *)
Require Import Omega.
Require Import ZArithRing.
Ltac omega' := abstract omega.
Set Implicit Arguments.
Unset Strict Implicit.
(* Induction pour vérifier qu'on est le maximum *)
Inductive Maximize (t:array Z) (n m:Z) : Z -> Prop :=
Maxim_cons :
forall k:Z,
((k <= n)%Z -> (access t k <= m)%Z) ->
((k < n)%Z -> Maximize t n m (k + 1)%Z) -> Maximize t n m k.
(* Signification de ce prédicat: *)
Lemma Maximize_ext1 :
forall (t:array Z) (n m k i:Z),
Maximize t n m k -> (k <= i <= n)%Z -> (access t i <= m)%Z.
Proof.
intros t n m k i H1; elim H1; auto.
intros k0 H2 H3 HR H4; case (Z_eq_dec k0 i).
intros H; rewrite <- H; apply H2; omega'.
intros; apply HR; omega'.
Qed.
Lemma Maximize_ext2 :
forall (t:array Z) (n m k:Z),
(forall i:Z, (k <= i <= n)%Z -> (access t i <= m)%Z) ->
Maximize t n m k.
Proof.
intros t n m k.
refine
(well_founded_ind (Zwf_up_well_founded n)
(fun k:Z =>
(forall i:Z, (k <= i <= n)%Z -> (access t i <= m)%Z) ->
Maximize t n m k) _ _).
clear k; intros k HR H.
constructor 1.
intros; apply H; omega'.
intros; apply HR.
unfold Zwf_up; omega'.
intros; apply H; omega'.
Qed.
(* compatibilité de avec *)
Lemma Maximize_Zle :
forall (t:array Z) (n m1 m2 k:Z),
Maximize t n m1 k -> (k <= n)%Z -> (m1 <= m2)%Z -> Maximize t n m2 k.
Proof.
intros t n m1 m2 k H0; elim H0.
intros k0 H1 H2 H3 H4 H5; constructor 1.
omega'.
intros; apply H3; omega'.
Qed.
Set Strict Implicit.
Unset Implicit Arguments.
(* ----------- FIN PRELIMINAIRES ----------- *)
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
ArraySubst t0.
Save.
Proof.
intuition.
subst; auto with *.
Save.
(*Why type*) Definition farray: Set ->Set.
Admitted.
(*Why logic*) Definition access : forall (A1:Set), (array A1) -> Z -> A1.
Admitted.
Implicit Arguments access.
(*Why logic*) Definition update :
forall (A1:Set), (array A1) -> Z -> A1 -> (array A1).
Admitted.
Implicit Arguments update.
(*Why axiom*) Lemma access_update :
forall (A1:Set),
(forall (a:(array A1)),
(forall (i:Z), (forall (v:A1), (access (update a i v) i) = v))).
Admitted.
(*Why axiom*) Lemma access_update_neq :
forall (A1:Set),
(forall (a:(array A1)),
(forall (i:Z),
(forall (j:Z),
(forall (v:A1), (i <> j -> (access (update a i v) j) = (access a j)))))).
Admitted.
(*Why logic*) Definition array_length : forall (A1:Set), (array A1) -> Z.
Admitted.
Implicit Arguments array_length.
(*Why predicate*) Definition sorted_array (t:(array Z)) (i:Z) (j:Z)
:= (forall (k1:Z),
(forall (k2:Z),
((i <= k1 /\ k1 <= k2) /\ k2 <= j -> (access t k1) <= (access t k2)))).
(*Why predicate*) Definition exchange (A111:Set) (a1:(array A111)) (a2:(array A111)) (i:Z) (j:Z)
:= (array_length a1) = (array_length a2) /\
(access a1 i) = (access a2 j) /\ (access a2 i) = (access a1 j) /\
(forall (k:Z), (k <> i /\ k <> j -> (access a1 k) = (access a2 k))).
Implicit Arguments exchange.
(*Why logic*) Definition permut :
forall (A1:Set), (array A1) -> (array A1) -> Z -> Z -> Prop.
Admitted.
Implicit Arguments permut.
(*Why axiom*) Lemma permut_refl :
forall (A1:Set),
(forall (t:(array A1)), (forall (l:Z), (forall (u:Z), (permut t t l u)))).
Admitted.
(*Why axiom*) Lemma permut_sym :
forall (A1:Set),
(forall (t1:(array A1)),
(forall (t2:(array A1)),
(forall (l:Z), (forall (u:Z), ((permut t1 t2 l u) -> (permut t2 t1 l u)))))).
Admitted.
(*Why axiom*) Lemma permut_trans :
forall (A1:Set),
(forall (t1:(array A1)),
(forall (t2:(array A1)),
(forall (t3:(array A1)),
(forall (l:Z),
(forall (u:Z),
((permut t1 t2 l u) -> ((permut t2 t3 l u) -> (permut t1 t3 l u)))))))).
Admitted.
(*Why axiom*) Lemma permut_exchange :
forall (A1:Set),
(forall (a1:(array A1)),
(forall (a2:(array A1)),
(forall (l:Z),
(forall (u:Z),
(forall (i:Z),
(forall (j:Z),
(l <= i /\ i <= u ->
(l <= j /\ j <= u -> ((exchange a1 a2 i j) -> (permut a1 a2 l u)))))))))).
Admitted.
(*Why axiom*) Lemma exchange_upd :
forall (A1:Set),
(forall (a:(array A1)),
(forall (i:Z),
(forall (j:Z),
(exchange a (update (update a i (access a j)) j (access a i)) i j)))).
Admitted.
(*Why axiom*) Lemma permut_weakening :
forall (A1:Set),
(forall (a1:(array A1)),
(forall (a2:(array A1)),
(forall (l1:Z),
(forall (r1:Z),
(forall (l2:Z),
(forall (r2:Z),
((l1 <= l2 /\ l2 <= r2) /\ r2 <= r1 ->
((permut a1 a2 l2 r2) -> (permut a1 a2 l1 r1))))))))).
Admitted.
(*Why axiom*) Lemma permut_eq :
forall (A1:Set),
(forall (a1:(array A1)),
(forall (a2:(array A1)),
(forall (l:Z),
(forall (u:Z),
(l <= u ->
((permut a1 a2 l u) ->
(forall (i:Z), (i < l \/ u < i -> (access a2 i) = (access a1 i))))))))).
Admitted.
(*Why predicate*) Definition permutation (A120:Set) (a1:(array A120)) (a2:(array A120))
:= (permut a1 a2 0 ((array_length a1) - 1)).
Implicit Arguments permutation.
(*Why axiom*) Lemma array_length_update :
forall (A1:Set),
(forall (a:(array A1)),
(forall (i:Z),
(forall (v:A1), (array_length (update a i v)) = (array_length a)))).
Admitted.
(*Why axiom*) Lemma permut_array_length :
forall (A1:Set),
(forall (a1:(array A1)),
(forall (a2:(array A1)),
(forall (l:Z),
(forall (u:Z),
((permut a1 a2 l u) -> (array_length a1) = (array_length a2)))))).
Admitted.
(*Why predicate*) Definition Maximize (t:(array Z)) (n:Z) (x:Z) (k:Z)
:= (forall (i:Z), (k <= i /\ i <= n -> (access t k) <= x)).
Proof.
intuition.
subst; auto.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition; subst.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
Proof.
intuition.
Save.
(* Début: preuve de *)
Proof.
intros; split.
Omega'.
rewrite Test4 in Pre18; tauto.
Qed.
Proof.
intros; Omega'.
Qed.
Proof.
intros; Omega'.
Qed.
Proof.
repeat (split; [ Omega' | auto ]).
subst nk.
ring (k0 - 1 + 1)%Z; intros;
apply Maximize_Zle with (m1 := access t i0); Omega' || tauto.
Qed.
Proof.
intros; subst nk; unfold Zwf; Omega'.
Qed.
Proof.
intros; subst nk.
repeat (split; [ Omega' | auto ]); ring (k0 - 1 + 1)%Z; tauto.
Qed.
Proof.
intros; subst nk.
unfold Zwf; Omega'.
Qed.
(* fin preuve de maximum *)
Proof.
intros; split.
Omega'.
split.
Omega'.
split.
Omega'.
constructor 1.
Omega'.
intros H; absurd (i1 < i1)%Z; Omega'.
Qed.
Proof.
intros; Omega'.
Qed.
Proof.
intros; decompose [and] Pre8; clear Pre8; split.
ArrayLength.
split.
omega.
split.
(* post-condition 1 *)
unfold sorted_array in H0; unfold sorted_array.
intros C1 k C2 C3; case Post9.
intros Clength C4 C5 C6 C7 C8.
case (Z_eq_dec k i1).
intros C9; rewrite C9; rewrite C6; rewrite C8; try Omega'.
apply Maximize_ext1 with (n := i1) (k := 0%Z); try Omega'.
apply H5; Omega'.
intros C9; rewrite C8; try Omega'.
rewrite C8; try Omega'.
apply H0; try Omega'.
(* post-condition 2 *)
split.
apply permut_trans with (t' := t0); auto.
eapply exchange_is_permut; eauto.
(* post-condition 3 *)
decompose [and] Post7; clear Post7.
case Post9; clear Post9.
intros Clength C1 C2 C3 C4 C5 C5a; replace (i0 + 1)%Z with i1.
rewrite C3.
apply Maximize_ext2; intros i' C6.
case (Z_eq_dec i' r).
intros C7; rewrite C7; rewrite C4.
apply Maximize_ext1 with (n := i1) (k := 0%Z); try Omega';
auto.
intros; rewrite C5; try Omega'.
apply Maximize_ext1 with (n := i1) (k := 0%Z); try Omega';
auto.
omega.
unfold Zwf; omega.
Qed.
Proof.
intros; subst i; ring (array_length t - 1 + 1)%Z; split.
Omega'.
split.
unfold sorted_array; intros H;
absurd (array_length t <= array_length t - 1)%Z; [ Omega' | auto ].
split.
apply permut_refl.
intros H; absurd (array_length t < array_length t)%Z;
[ Omega' | auto ].
Qed.
Proof.
intros; cut ((i1 + 1)%Z = 0%Z);
[ intros H; rewrite H in Post2; split; tauto | Omega' ].
Qed.
Proof.
(* FILL PROOF HERE *)
Save.
|