File: Match.v

package info (click to toggle)
why 2.30%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 26,916 kB
  • sloc: ml: 116,979; java: 9,376; ansic: 5,175; makefile: 1,335; sh: 531; lisp: 127
file content (199 lines) | stat: -rw-r--r-- 4,504 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
(* Load Programs. *)(**************************************************************************)
(*                                                                        *)
(* Proof of the Knuth-Morris-Pratt Algorithm.                             *)
(*                                                                        *)
(* Jean-Christophe Fillitre (LRI, Universit Paris Sud)                  *)
(* November 1998                                                          *)
(*                                                                        *)
(**************************************************************************)

Require Export WhyArrays.

Set Implicit Arguments.
Unset Strict Implicit.


(* Here we define the property (match t1 i1 t2 i2 n) which expresses
 * that the two segments [i1...i1+n-1] of t1 and [i2...i2+n-1] of t2
 * are equal.
 *)

Inductive match_ (A:Set) (t1:array A) (i1:Z) (t2:array A) (i2 n:Z) :
Prop :=
    match_cons :
      (0 <= i1 <= array_length t1 - n)%Z ->
      (0 <= i2 <= array_length t2 - n)%Z ->
      (forall i:Z,
         (0 <= i < n)%Z -> access t1 (i1 + i) = access t2 (i2 + i)) ->
      match_ t1 i1 t2 i2 n.


(* Lemmas about match *)

Require Import Omega.

Section match_lemmas.

Variable A : Set.
Variable t1 : array A.
Variable t2 : array A.

Lemma match_empty :
 forall i1 i2:Z,
   (0 <= i1 <= array_length t1)%Z ->
   (0 <= i2 <= array_length t2)%Z -> match_ t1 i1 t2 i2 0.
Proof.
intros i1 i2 Hi1 Hi2.
apply match_cons.
 omega.
 omega.
intros.
 absurd (i < 0)%Z; omega.
Qed.

Lemma match_right_extension :
 forall i1 i2 n:Z,
   match_ t1 i1 t2 i2 n ->
   (i1 <= array_length t1 - n - 1)%Z ->
   (i2 <= array_length t2 - n - 1)%Z ->
   access t1 (i1 + n) = access t2 (i2 + n) ->
   match_ t1 i1 t2 i2 (n + 1).
Proof.
intros i1 i2 n Hmatch Hi1 Hi2 Hn.
elim Hmatch; intros Hi1' Hi2' Heq.
apply match_cons.
omega.
omega.
intros i Hi.
elim (Z_le_lt_eq_dec i n).
intro.
 apply Heq.
 omega.
intro H.
 rewrite H.
 auto.
omega.
Qed.

Lemma match_contradiction_at_first :
 forall i1 i2 n:Z,
   (0 < n)%Z -> access t1 i1 <> access t2 i2 -> ~ match_ t1 i1 t2 i2 n.
Proof.
intros i1 i2 n Hn Heq.
red.
 intro Hmatch.
 elim Hmatch; intros.
absurd (access t1 i1 = access t2 i2); [ assumption | idtac ].
replace i1 with (i1 + 0)%Z.
 replace i2 with (i2 + 0)%Z.
apply (H1 0%Z).
omega.
omega.
omega.
Qed.

Lemma match_contradiction_at_i :
 forall i1 i2 i n:Z,
   (0 < n)%Z ->
   (0 <= i < n)%Z ->
   access t1 (i1 + i) <> access t2 (i2 + i) -> ~ match_ t1 i1 t2 i2 n.
Proof.
intros i1 i2 i n Hn Hi Heq.
red.
 intro Hmatch.
 elim Hmatch; intros.
absurd (access t1 (i1 + i) = access t2 (i2 + i));
 [ assumption | idtac ].
apply (H1 i); omega.
Qed.
  
Lemma match_right_weakening :
 forall i1 i2 n n':Z,
   match_ t1 i1 t2 i2 n -> (n' < n)%Z -> match_ t1 i1 t2 i2 n'.
Proof.
intros i1 i2 n n' Hmatch Hn.
elim Hmatch; intros.
apply match_cons.
 omega.
 omega.
intros i Hi.
 apply H1; omega.
Qed.

Lemma match_left_weakening :
 forall i1 i2 n n':Z,
   match_ t1 (i1 - (n - n')) t2 (i2 - (n - n')) n ->
   (n' < n)%Z -> match_ t1 i1 t2 i2 n'.
Proof.
intros i1 i2 n n' Hmatch Hn.
decompose [match_] Hmatch.
apply match_cons.
 omega.
 omega.
intros i Hi.
replace (i1 + i)%Z with (i1 - (n - n') + (i + (n - n')))%Z.
replace (i2 + i)%Z with (i2 - (n - n') + (i + (n - n')))%Z.
apply H1.
omega.
 omega.
 omega.
Qed.

Lemma match_sym :
 forall i1 i2 n:Z, match_ t1 i1 t2 i2 n -> match_ t2 i2 t1 i1 n.
Proof.
intros i1 i2 n Hmatch.
decompose [match_] Hmatch.
apply match_cons.
 omega.
 omega.
intros i Hi.
 symmetry.
apply H1; omega.
Qed.

Variable t3 : array A.

Lemma match_trans :
 forall i1 i2 i3 n:Z,
   match_ t1 i1 t2 i2 n -> match_ t2 i2 t3 i3 n -> match_ t1 i1 t3 i3 n.
Proof.
intros i1 i2 i3 n H12 H23.
decompose [match_] H12.
 decompose [match_] H23.
apply match_cons.
 omega.
 omega.
intros i Hi.
 apply trans_equal with (y := access t2 (i2 + i)).
apply H1; omega.
apply H4; omega.
Qed.

Lemma match_left_extension :
 forall i j n:Z,
   (0 <= i)%Z ->
   (0 <= j)%Z ->
   (0 < n)%Z ->
   access t1 i = access t2 j ->
   match_ t1 (i + 1) t2 (j + 1) (n - 1) -> match_ t1 i t2 j n.
Proof.
intros i j n H1 H2 H3 H4 Hmatch.
decompose [match_] Hmatch.
apply match_cons.
 omega.
 omega.
intuition.
assert (i0 = 0%Z \/ (0 < i0)%Z).
 omega.
 intuition.
subst; ring (i + 0)%Z; ring (j + 0)%Z; assumption.
replace (i + i0)%Z with (i + 1 + (i0 - 1))%Z; try omega.
replace (j + i0)%Z with (j + 1 + (i0 - 1))%Z; try omega.
apply H5; omega.
Qed.

End match_lemmas.