1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
|
/*
* @(#)Double.java 1.82 03/01/23
*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.lang;
/**
* The <code>Double</code> class wraps a value of the primitive type
* <code>double</code> in an object. An object of type
* <code>Double</code> contains a single field whose type is
* <code>double</code>.
* <p>
* In addition, this class provides several methods for converting a
* <code>double</code> to a <code>String</code> and a
* <code>String</code> to a <code>double</code>, as well as other
* constants and methods useful when dealing with a
* <code>double</code>.
*
* @author Lee Boynton
* @author Arthur van Hoff
* @version 1.82, 01/23/03
* @since JDK1.0
*/
public final class Double extends Number implements Comparable {
/**
* A constant holding the positive infinity of type
* <code>double</code>. It is equal to the value returned by
* <code>Double.longBitsToDouble(0x7ff0000000000000L)</code>.
*/
public static final double POSITIVE_INFINITY = 1.0 / 0.0;
/**
* A constant holding the negative infinity of type
* <code>double</code>. It is equal to the value returned by
* <code>Double.longBitsToDouble(0xfff0000000000000L)</code>.
*/
public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
/**
* A constant holding a Not-a-Number (NaN) value of type
* <code>double</code>. It is equivalent to the value returned by
* <code>Double.longBitsToDouble(0x7ff8000000000000L)</code>.
*/
public static final double NaN = 0.0d / 0.0;
/**
* A constant holding the largest positive finite value of type
* <code>double</code>, (2-2<sup>-52</sup>)·2<sup>1023</sup>.
* It is equal to the value returned by:
* <code>Double.longBitsToDouble(0x7fefffffffffffffL)</code>.
*/
public static final double MAX_VALUE = 1.7976931348623157e+308;
/**
* A constant holding the smallest positive nonzero value of type
* <code>double</code>, 2<sup>-1074</sup>. It is equal to the
* value returned by <code>Double.longBitsToDouble(0x1L)</code>.
*/
public static final double MIN_VALUE = 4.9e-324;
/**
* The <code>Class</code> instance representing the primitive type
* <code>double</code>.
*
* @since JDK1.1
*/
public static final Class TYPE = Class.getPrimitiveClass("double");
/**
* Returns a string representation of the <code>double</code>
* argument. All characters mentioned below are ASCII characters.
* <ul>
* <li>If the argument is NaN, the result is the string
* "<code>NaN</code>".
* <li>Otherwise, the result is a string that represents the sign and
* magnitude (absolute value) of the argument. If the sign is negative,
* the first character of the result is '<code>-</code>'
* (<code>'\u002D'</code>); if the sign is positive, no sign character
* appears in the result. As for the magnitude <i>m</i>:
* <ul>
* <li>If <i>m</i> is infinity, it is represented by the characters
* <code>"Infinity"</code>; thus, positive infinity produces the result
* <code>"Infinity"</code> and negative infinity produces the result
* <code>"-Infinity"</code>.
*
* <li>If <i>m</i> is zero, it is represented by the characters
* <code>"0.0"</code>; thus, negative zero produces the result
* <code>"-0.0"</code> and positive zero produces the result
* <code>"0.0"</code>.
*
* <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less
* than 10<sup>7</sup>, then it is represented as the integer part of
* <i>m</i>, in decimal form with no leading zeroes, followed by
* '<code>.</code>' (<code>'\u002E'</code>), followed by one or
* more decimal digits representing the fractional part of <i>m</i>.
*
* <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
* equal to 10<sup>7</sup>, then it is represented in so-called
* "computerized scientific notation." Let <i>n</i> be the unique
* integer such that 10<sup><i>n</i></sup> <= <i>m</i> <
* 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
* mathematically exact quotient of <i>m</i> and
* 10<sup><i>n</i></sup> so that 1 <= <i>a</i> < 10. The
* magnitude is then represented as the integer part of <i>a</i>,
* as a single decimal digit, followed by '<code>.</code>'
* (<code>'\u002E'</code>), followed by decimal digits
* representing the fractional part of <i>a</i>, followed by the
* letter '<code>E</code>' (<code>'\u0045'</code>), followed
* by a representation of <i>n</i> as a decimal integer, as
* produced by the method {@link Integer#toString(int)}.
* </ul>
* </ul>
* How many digits must be printed for the fractional part of
* <i>m</i> or <i>a</i>? There must be at least one digit to represent
* the fractional part, and beyond that as many, but only as many, more
* digits as are needed to uniquely distinguish the argument value from
* adjacent values of type <code>double</code>. That is, suppose that
* <i>x</i> is the exact mathematical value represented by the decimal
* representation produced by this method for a finite nonzero argument
* <i>d</i>. Then <i>d</i> must be the <code>double</code> value nearest
* to <i>x</i>; or if two <code>double</code> values are equally close
* to <i>x</i>, then <i>d</i> must be one of them and the least
* significant bit of the significand of <i>d</i> must be <code>0</code>.
* <p>
* To create localized string representations of a floating-point
* value, use subclasses of {@link java.text.NumberFormat}.
*
* @param d the <code>double</code> to be converted.
* @return a string representation of the argument.
*/
public static String toString(double d) {
return new FloatingDecimal(d).toJavaFormatString();
}
/**
* Returns a <code>Double</code> object holding the
* <code>double</code> value represented by the argument string
* <code>s</code>.
* <p>
* If <code>s</code> is <code>null</code>, then a
* <code>NullPointerException</code> is thrown.
* <p>
* Leading and trailing whitespace characters in <code>s</code>
* are ignored. The rest of <code>s</code> should constitute a
* <i>FloatValue</i> as described by the lexical rule:
* <blockquote><i>
* <dl>
* <dt>FloatValue:
* <dd><i>Sign<sub>opt</sub></i> <code>NaN</code>
* <dd><i>Sign<sub>opt</sub></i> <code>Infinity</code>
* <dd>Sign<sub>opt</sub> FloatingPointLiteral
* </dl>
* </i></blockquote>
* where <i>Sign</i> and <i>FloatingPointLiteral</i> are as
* defined in
* <a href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#230798">§3.10.2</a>
* of the <a href="http://java.sun.com/docs/books/jls/html/">Java
* Language Specification</a>. If <code>s</code> does not have the
* form of a <i>FloatValue</i>, then a <code>NumberFormatException</code>
* is thrown. Otherwise, <code>s</code> is regarded as
* representing an exact decimal value in the usual "computerized
* scientific notation"; this exact decimal value is then
* conceptually converted to an "infinitely precise" binary value
* that is then rounded to type <code>double</code> by the usual
* round-to-nearest rule of IEEE 754 floating-point arithmetic,
* which includes preserving the sign of a zero value. Finally, a
* <code>Double</code> object representing this
* <code>double</code> value is returned.
* <p>
* To interpret localized string representations of a
* floating-point value, use subclasses of {@link
* java.text.NumberFormat}.
*
* <p>Note that trailing format specifiers, specifiers that
* determine the type of a floating-point literal
* (<code>1.0f</code> is a <code>float</code> value;
* <code>1.0d</code> is a <code>double</code> value), do
* <em>not</em> influence the results of this method. In other
* words, the numerical value of the input string is converted
* directly to the target floating-point type. The two-step
* sequence of conversions, string to <code>float</code> followed
* by <code>float</code> to <code>double</code>, is <em>not</em>
* equivalent to converting a string directly to
* <code>double</code>. For example, the <code>float</code>
* literal <code>0.1f</code> is equal to the <code>double</code>
* value <code>0.10000000149011612</code>; the <code>float</code>
* literal <code>0.1f</code> represents a different numerical
* value than the <code>double</code> literal
* <code>0.1</code>. (The numerical value 0.1 cannot be exactly
* represented in a binary floating-point number.)
*
* @param s the string to be parsed.
* @return a <code>Double</code> object holding the value
* represented by the <code>String</code> argument.
* @exception NumberFormatException if the string does not contain a
* parsable number.
*/
public static Double valueOf(String s) throws NumberFormatException {
return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
}
/**
* Returns a new <code>double</code> initialized to the value
* represented by the specified <code>String</code>, as performed
* by the <code>valueOf</code> method of class
* <code>Double</code>.
*
* @param s the string to be parsed.
* @return the <code>double</code> value represented by the string
* argument.
* @exception NumberFormatException if the string does not contain
* a parsable <code>double</code>.
* @see java.lang.Double#valueOf(String)
* @since 1.2
*/
public static double parseDouble(String s) throws NumberFormatException {
return FloatingDecimal.readJavaFormatString(s).doubleValue();
}
/**
* Returns <code>true</code> if the specified number is a
* Not-a-Number (NaN) value, <code>false</code> otherwise.
*
* @param v the value to be tested.
* @return <code>true</code> if the value of the argument is NaN;
* <code>false</code> otherwise.
*/
static public boolean isNaN(double v) {
return (v != v);
}
/**
* Returns <code>true</code> if the specified number is infinitely
* large in magnitude, <code>false</code> otherwise.
*
* @param v the value to be tested.
* @return <code>true</code> if the value of the argument is positive
* infinity or negative infinity; <code>false</code> otherwise.
*/
static public boolean isInfinite(double v) {
return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
}
/**
* The value of the Double.
*
* @serial
*/
private double value;
/**
* Constructs a newly allocated <code>Double</code> object that
* represents the primitive <code>double</code> argument.
*
* @param value the value to be represented by the <code>Double</code>.
*/
public Double(double value) {
this.value = value;
}
/**
* Constructs a newly allocated <code>Double</code> object that
* represents the floating-point value of type <code>double</code>
* represented by the string. The string is converted to a
* <code>double</code> value as if by the <code>valueOf</code> method.
*
* @param s a string to be converted to a <code>Double</code>.
* @exception NumberFormatException if the string does not contain a
* parsable number.
* @see java.lang.Double#valueOf(java.lang.String)
*/
public Double(String s) throws NumberFormatException {
// REMIND: this is inefficient
this(valueOf(s).doubleValue());
}
/**
* Returns <code>true</code> if this <code>Double</code> value is
* a Not-a-Number (NaN), <code>false</code> otherwise.
*
* @return <code>true</code> if the value represented by this object is
* NaN; <code>false</code> otherwise.
*/
public boolean isNaN() {
return isNaN(value);
}
/**
* Returns <code>true</code> if this <code>Double</code> value is
* infinitely large in magnitude, <code>false</code> otherwise.
*
* @return <code>true</code> if the value represented by this object is
* positive infinity or negative infinity;
* <code>false</code> otherwise.
*/
public boolean isInfinite() {
return isInfinite(value);
}
/**
* Returns a string representation of this <code>Double</code> object.
* The primitive <code>double</code> value represented by this
* object is converted to a string exactly as if by the method
* <code>toString</code> of one argument.
*
* @return a <code>String</code> representation of this object.
* @see java.lang.Double#toString(double)
*/
public String toString() {
return String.valueOf(value);
}
/**
* Returns the value of this <code>Double</code> as a <code>byte</code> (by
* casting to a <code>byte</code>).
*
* @return the <code>double</code> value represented by this object
* converted to type <code>byte</code>
* @since JDK1.1
*/
public byte byteValue() {
return (byte)value;
}
/**
* Returns the value of this <code>Double</code> as a
* <code>short</code> (by casting to a <code>short</code>).
*
* @return the <code>double</code> value represented by this object
* converted to type <code>short</code>
* @since JDK1.1
*/
public short shortValue() {
return (short)value;
}
/**
* Returns the value of this <code>Double</code> as an
* <code>int</code> (by casting to type <code>int</code>).
*
* @return the <code>double</code> value represented by this object
* converted to type <code>int</code>
*/
public int intValue() {
return (int)value;
}
/**
* Returns the value of this <code>Double</code> as a
* <code>long</code> (by casting to type <code>long</code>).
*
* @return the <code>double</code> value represented by this object
* converted to type <code>long</code>
*/
public long longValue() {
return (long)value;
}
/**
* Returns the <code>float</code> value of this
* <code>Double</code> object.
*
* @return the <code>double</code> value represented by this object
* converted to type <code>float</code>
* @since JDK1.0
*/
public float floatValue() {
return (float)value;
}
/**
* Returns the <code>double</code> value of this
* <code>Double</code> object.
*
* @return the <code>double</code> value represented by this object
*/
public double doubleValue() {
return (double)value;
}
/**
* Returns a hash code for this <code>Double</code> object. The
* result is the exclusive OR of the two halves of the
* <code>long</code> integer bit representation, exactly as
* produced by the method {@link #doubleToLongBits(double)}, of
* the primitive <code>double</code> value represented by this
* <code>Double</code> object. That is, the hash code is the value
* of the expression:
* <blockquote><pre>
* (int)(v^(v>>>32))
* </pre></blockquote>
* where <code>v</code> is defined by:
* <blockquote><pre>
* long v = Double.doubleToLongBits(this.doubleValue());
* </pre></blockquote>
*
* @return a <code>hash code</code> value for this object.
*/
public int hashCode() {
long bits = doubleToLongBits(value);
return (int)(bits ^ (bits >>> 32));
}
/**
* Compares this object against the specified object. The result
* is <code>true</code> if and only if the argument is not
* <code>null</code> and is a <code>Double</code> object that
* represents a <code>double</code> that has the same value as the
* <code>double</code> represented by this object. For this
* purpose, two <code>double</code> values are considered to be
* the same if and only if the method {@link
* #doubleToLongBits(double)} returns the identical
* <code>long</code> value when applied to each.
* <p>
* Note that in most cases, for two instances of class
* <code>Double</code>, <code>d1</code> and <code>d2</code>, the
* value of <code>d1.equals(d2)</code> is <code>true</code> if and
* only if
* <blockquote><pre>
* d1.doubleValue() == d2.doubleValue()
* </pre></blockquote>
* <p>
* also has the value <code>true</code>. However, there are two
* exceptions:
* <ul>
* <li>If <code>d1</code> and <code>d2</code> both represent
* <code>Double.NaN</code>, then the <code>equals</code> method
* returns <code>true</code>, even though
* <code>Double.NaN==Double.NaN</code> has the value
* <code>false</code>.
* <li>If <code>d1</code> represents <code>+0.0</code> while
* <code>d2</code> represents <code>-0.0</code>, or vice versa,
* the <code>equal</code> test has the value <code>false</code>,
* even though <code>+0.0==-0.0</code> has the value <code>true</code>.
* </ul>
* This definition allows hash tables to operate properly.
* @param obj the object to compare with.
* @return <code>true</code> if the objects are the same;
* <code>false</code> otherwise.
* @see java.lang.Double#doubleToLongBits(double)
*/
public boolean equals(Object obj) {
return (obj instanceof Double)
&& (doubleToLongBits(((Double)obj).value) ==
doubleToLongBits(value));
}
/**
* Returns a representation of the specified floating-point value
* according to the IEEE 754 floating-point "double
* format" bit layout.
* <p>
* Bit 63 (the bit that is selected by the mask
* <code>0x8000000000000000L</code>) represents the sign of the
* floating-point number. Bits
* 62-52 (the bits that are selected by the mask
* <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
* (the bits that are selected by the mask
* <code>0x000fffffffffffffL</code>) represent the significand
* (sometimes called the mantissa) of the floating-point number.
* <p>
* If the argument is positive infinity, the result is
* <code>0x7ff0000000000000L</code>.
* <p>
* If the argument is negative infinity, the result is
* <code>0xfff0000000000000L</code>.
* <p>
* If the argument is NaN, the result is
* <code>0x7ff8000000000000L</code>.
* <p>
* In all cases, the result is a <code>long</code> integer that, when
* given to the {@link #longBitsToDouble(long)} method, will produce a
* floating-point value the same as the argument to
* <code>doubleToLongBits</code> (except all NaN values are
* collapsed to a single "canonical" NaN value).
*
* @param value a <code>double</code> precision floating-point number.
* @return the bits that represent the floating-point number.
*/
public static native long doubleToLongBits(double value);
/**
* Returns a representation of the specified floating-point value
* according to the IEEE 754 floating-point "double
* format" bit layout, preserving Not-a-Number (NaN) values.
* <p>
* Bit 63 (the bit that is selected by the mask
* <code>0x8000000000000000L</code>) represents the sign of the
* floating-point number. Bits
* 62-52 (the bits that are selected by the mask
* <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0
* (the bits that are selected by the mask
* <code>0x000fffffffffffffL</code>) represent the significand
* (sometimes called the mantissa) of the floating-point number.
* <p>
* If the argument is positive infinity, the result is
* <code>0x7ff0000000000000L</code>.
* <p>
* If the argument is negative infinity, the result is
* <code>0xfff0000000000000L</code>.
* <p>
* If the argument is NaN, the result is the <code>long</code>
* integer representing the actual NaN value. Unlike the
* <code>doubleToLongBits</code> method,
* <code>doubleToRawLongBits</code> does not collapse all the bit
* patterns encoding a NaN to a single "canonical" NaN
* value.
* <p>
* In all cases, the result is a <code>long</code> integer that,
* when given to the {@link #longBitsToDouble(long)} method, will
* produce a floating-point value the same as the argument to
* <code>doubleToRawLongBits</code>.
*
* @param value a <code>double</code> precision floating-point number.
* @return the bits that represent the floating-point number.
*/
public static native long doubleToRawLongBits(double value);
/**
* Returns the <code>double</code> value corresponding to a given
* bit representation.
* The argument is considered to be a representation of a
* floating-point value according to the IEEE 754 floating-point
* "double format" bit layout.
* <p>
* If the argument is <code>0x7ff0000000000000L</code>, the result
* is positive infinity.
* <p>
* If the argument is <code>0xfff0000000000000L</code>, the result
* is negative infinity.
* <p>
* If the argument is any value in the range
* <code>0x7ff0000000000001L</code> through
* <code>0x7fffffffffffffffL</code> or in the range
* <code>0xfff0000000000001L</code> through
* <code>0xffffffffffffffffL</code>, the result is a NaN. No IEEE
* 754 floating-point operation provided by Java can distinguish
* between two NaN values of the same type with different bit
* patterns. Distinct values of NaN are only distinguishable by
* use of the <code>Double.doubleToRawLongBits</code> method.
* <p>
* In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three
* values that can be computed from the argument:
* <blockquote><pre>
* int s = ((bits >> 63) == 0) ? 1 : -1;
* int e = (int)((bits >> 52) & 0x7ffL);
* long m = (e == 0) ?
* (bits & 0xfffffffffffffL) << 1 :
* (bits & 0xfffffffffffffL) | 0x10000000000000L;
* </pre></blockquote>
* Then the floating-point result equals the value of the mathematical
* expression <i>s</i>·<i>m</i>·2<sup><i>e</i>-1075</sup>.
*<p>
* Note that this method may not be able to return a
* <code>double</code> NaN with exactly same bit pattern as the
* <code>long</code> argument. IEEE 754 distinguishes between two
* kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>. The
* differences between the two kinds of NaN are generally not
* visible in Java. Arithmetic operations on signaling NaNs turn
* them into quiet NaNs with a different, but often similar, bit
* pattern. However, on some processors merely copying a
* signaling NaN also performs that conversion. In particular,
* copying a signaling NaN to return it to the calling method
* may perform this conversion. So <code>longBitsToDouble</code>
* may not be able to return a <code>double</code> with a
* signaling NaN bit pattern. Consequently, for some
* <code>long</code> values,
* <code>doubleToRawLongBits(longBitsToDouble(start))</code> may
* <i>not</i> equal <code>start</code>. Moreover, which
* particular bit patterns represent signaling NaNs is platform
* dependent; although all NaN bit patterns, quiet or signaling,
* must be in the NaN range identified above.
*
* @param bits any <code>long</code> integer.
* @return the <code>double</code> floating-point value with the same
* bit pattern.
*/
public static native double longBitsToDouble(long bits);
/**
* Compares two <code>Double</code> objects numerically. There
* are two ways in which comparisons performed by this method
* differ from those performed by the Java language numerical
* comparison operators (<code><, <=, ==, >= ></code>)
* when applied to primitive <code>double</code> values:
* <ul><li>
* <code>Double.NaN</code> is considered by this method
* to be equal to itself and greater than all other
* <code>double</code> values (including
* <code>Double.POSITIVE_INFINITY</code>).
* <li>
* <code>0.0d</code> is considered by this method to be greater
* than <code>-0.0d</code>.
* </ul>
* This ensures that <code>Double.compareTo(Object)</code> (which
* forwards its behavior to this method) obeys the general
* contract for <code>Comparable.compareTo</code>, and that the
* <i>natural order</i> on <code>Double</code>s is <i>consistent
* with equals</i>.
*
* @param anotherDouble the <code>Double</code> to be compared.
* @return the value <code>0</code> if <code>anotherDouble</code> is
* numerically equal to this <code>Double</code>; a value
* less than <code>0</code> if this <code>Double</code>
* is numerically less than <code>anotherDouble</code>;
* and a value greater than <code>0</code> if this
* <code>Double</code> is numerically greater than
* <code>anotherDouble</code>.
*
* @since 1.2
* @see Comparable#compareTo(Object)
*/
public int compareTo(Double anotherDouble) {
return Double.compare(value, anotherDouble.value);
}
/**
* Compares this <code>Double</code> object to another object. If
* the object is a <code>Double</code>, this function behaves like
* <code>compareTo(Double)</code>. Otherwise, it throws a
* <code>ClassCastException</code> (as <code>Double</code> objects
* are comparable only to other <code>Double</code> objects).
*
* @param o the <code>Object</code> to be compared.
* @return the value <code>0</code> if the argument is a
* <code>Double</code> numerically equal to this
* <code>Double</code>; a value less than <code>0</code>
* if the argument is a <code>Double</code> numerically
* greater than this <code>Double</code>; and a value
* greater than <code>0</code> if the argument is a
* <code>Double</code> numerically less than this
* <code>Double</code>.
* @exception <code>ClassCastException</code> if the argument is not a
* <code>Double</code>.
* @see java.lang.Comparable
* @since 1.2
*/
public int compareTo(Object o) {
return compareTo((Double)o);
}
/**
* Compares the two specified <code>double</code> values. The sign
* of the integer value returned is the same as that of the
* integer that would be returned by the call:
* <pre>
* new Double(d1).compareTo(new Double(d2))
* </pre>
*
* @param d1 the first <code>double</code> to compare
* @param d2 the second <code>double</code> to compare
* @return the value <code>0</code> if <code>d1</code> is
* numerically equal to <code>d2</code>; a value less than
* <code>0</code> if <code>d1</code> is numerically less than
* <code>d2</code>; and a value greater than <code>0</code>
* if <code>d1</code> is numerically greater than
* <code>d2</code>.
* @since 1.4
*/
public static int compare(double d1, double d2) {
if (d1 < d2)
return -1; // Neither val is NaN, thisVal is smaller
if (d1 > d2)
return 1; // Neither val is NaN, thisVal is larger
long thisBits = Double.doubleToLongBits(d1);
long anotherBits = Double.doubleToLongBits(d2);
return (thisBits == anotherBits ? 0 : // Values are equal
(thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
1)); // (0.0, -0.0) or (NaN, !NaN)
}
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = -9172774392245257468L;
}
|