File: Double.java

package info (click to toggle)
why 2.30%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 26,916 kB
  • sloc: ml: 116,979; java: 9,376; ansic: 5,175; makefile: 1,335; sh: 531; lisp: 127
file content (679 lines) | stat: -rw-r--r-- 28,832 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
/*
 * @(#)Double.java	1.82 03/01/23
 *
 * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.lang;

/**
 * The <code>Double</code> class wraps a value of the primitive type
 * <code>double</code> in an object. An object of type
 * <code>Double</code> contains a single field whose type is
 * <code>double</code>.
 * <p>
 * In addition, this class provides several methods for converting a
 * <code>double</code> to a <code>String</code> and a
 * <code>String</code> to a <code>double</code>, as well as other
 * constants and methods useful when dealing with a
 * <code>double</code>.
 *
 * @author  Lee Boynton
 * @author  Arthur van Hoff
 * @version 1.82, 01/23/03
 * @since JDK1.0
 */
public final class Double extends Number implements Comparable {
    /**
     * A constant holding the positive infinity of type
     * <code>double</code>. It is equal to the value returned by
     * <code>Double.longBitsToDouble(0x7ff0000000000000L)</code>.
     */
    public static final double POSITIVE_INFINITY = 1.0 / 0.0;

    /**
     * A constant holding the negative infinity of type
     * <code>double</code>. It is equal to the value returned by
     * <code>Double.longBitsToDouble(0xfff0000000000000L)</code>.
     */
    public static final double NEGATIVE_INFINITY = -1.0 / 0.0;

    /** 
     * A constant holding a Not-a-Number (NaN) value of type
     * <code>double</code>. It is equivalent to the value returned by
     * <code>Double.longBitsToDouble(0x7ff8000000000000L)</code>.
     */
    public static final double NaN = 0.0d / 0.0;

    /**
     * A constant holding the largest positive finite value of type
     * <code>double</code>, (2-2<sup>-52</sup>)&middot;2<sup>1023</sup>.
     * It is equal to the value returned by:
     * <code>Double.longBitsToDouble(0x7fefffffffffffffL)</code>.
     */
    public static final double MAX_VALUE = 1.7976931348623157e+308;

    /**
     * A constant holding the smallest positive nonzero value of type
     * <code>double</code>, 2<sup>-1074</sup>. It is equal to the
     * value returned by <code>Double.longBitsToDouble(0x1L)</code>.
     */
    public static final double MIN_VALUE = 4.9e-324;

    /**
     * The <code>Class</code> instance representing the primitive type
     * <code>double</code>.
     *
     * @since JDK1.1 
     */
    public static final Class	TYPE = Class.getPrimitiveClass("double");

    /**
     * Returns a string representation of the <code>double</code> 
     * argument. All characters mentioned below are ASCII characters.
     * <ul>
     * <li>If the argument is NaN, the result is the string
     *     &quot;<code>NaN</code>&quot;.
     * <li>Otherwise, the result is a string that represents the sign and 
     * magnitude (absolute value) of the argument. If the sign is negative, 
     * the first character of the result is '<code>-</code>' 
     * (<code>'&#92;u002D'</code>); if the sign is positive, no sign character 
     * appears in the result. As for the magnitude <i>m</i>:
     * <ul>
     * <li>If <i>m</i> is infinity, it is represented by the characters 
     * <code>"Infinity"</code>; thus, positive infinity produces the result 
     * <code>"Infinity"</code> and negative infinity produces the result 
     * <code>"-Infinity"</code>.
     *
     * <li>If <i>m</i> is zero, it is represented by the characters 
     * <code>"0.0"</code>; thus, negative zero produces the result 
     * <code>"-0.0"</code> and positive zero produces the result 
     * <code>"0.0"</code>. 
     *
     * <li>If <i>m</i> is greater than or equal to 10<sup>-3</sup> but less 
     * than 10<sup>7</sup>, then it is represented as the integer part of 
     * <i>m</i>, in decimal form with no leading zeroes, followed by 
     * '<code>.</code>' (<code>'&#92;u002E'</code>), followed by one or 
     * more decimal digits representing the fractional part of <i>m</i>. 
     *
     * <li>If <i>m</i> is less than 10<sup>-3</sup> or greater than or
     * equal to 10<sup>7</sup>, then it is represented in so-called
     * "computerized scientific notation." Let <i>n</i> be the unique
     * integer such that 10<sup><i>n</i></sup> &lt;= <i>m</i> &lt;
     * 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
     * mathematically exact quotient of <i>m</i> and
     * 10<sup><i>n</i></sup> so that 1 &lt;= <i>a</i> &lt; 10. The
     * magnitude is then represented as the integer part of <i>a</i>,
     * as a single decimal digit, followed by '<code>.</code>'
     * (<code>'&#92;u002E'</code>), followed by decimal digits
     * representing the fractional part of <i>a</i>, followed by the
     * letter '<code>E</code>' (<code>'&#92;u0045'</code>), followed
     * by a representation of <i>n</i> as a decimal integer, as
     * produced by the method {@link Integer#toString(int)}.
     * </ul>
     * </ul>
     * How many digits must be printed for the fractional part of 
     * <i>m</i> or <i>a</i>? There must be at least one digit to represent 
     * the fractional part, and beyond that as many, but only as many, more 
     * digits as are needed to uniquely distinguish the argument value from
     * adjacent values of type <code>double</code>. That is, suppose that 
     * <i>x</i> is the exact mathematical value represented by the decimal 
     * representation produced by this method for a finite nonzero argument 
     * <i>d</i>. Then <i>d</i> must be the <code>double</code> value nearest 
     * to <i>x</i>; or if two <code>double</code> values are equally close 
     * to <i>x</i>, then <i>d</i> must be one of them and the least
     * significant bit of the significand of <i>d</i> must be <code>0</code>.
     * <p>
     * To create localized string representations of a floating-point
     * value, use subclasses of {@link java.text.NumberFormat}.
     *
     * @param   d   the <code>double</code> to be converted.
     * @return a string representation of the argument.
     */
    public static String toString(double d) {
	return new FloatingDecimal(d).toJavaFormatString();
    }

    /**
     * Returns a <code>Double</code> object holding the
     * <code>double</code> value represented by the argument string
     * <code>s</code>.
     * <p>
     * If <code>s</code> is <code>null</code>, then a 
     * <code>NullPointerException</code> is thrown.
     * <p>
     * Leading and trailing whitespace characters in <code>s</code>
     * are ignored. The rest of <code>s</code> should constitute a
     * <i>FloatValue</i> as described by the lexical rule:
     * <blockquote><i>
     * <dl>
     * <dt>FloatValue:
     * <dd><i>Sign<sub>opt</sub></i> <code>NaN</code>
     * <dd><i>Sign<sub>opt</sub></i> <code>Infinity</code>
     * <dd>Sign<sub>opt</sub> FloatingPointLiteral
     * </dl>
     * </i></blockquote>
     * where <i>Sign</i> and <i>FloatingPointLiteral</i> are as
     * defined in 
     * <a href="http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#230798">&sect;3.10.2</a>
     * of the <a href="http://java.sun.com/docs/books/jls/html/">Java 
     * Language Specification</a>. If <code>s</code> does not have the 
     * form of a <i>FloatValue</i>, then a <code>NumberFormatException</code>
     * is thrown. Otherwise, <code>s</code> is regarded as
     * representing an exact decimal value in the usual "computerized
     * scientific notation"; this exact decimal value is then
     * conceptually converted to an "infinitely precise" binary value
     * that is then rounded to type <code>double</code> by the usual
     * round-to-nearest rule of IEEE 754 floating-point arithmetic,
     * which includes preserving the sign of a zero value. Finally, a
     * <code>Double</code> object representing this
     * <code>double</code> value is returned.
     * <p>
     * To interpret localized string representations of a
     * floating-point value, use subclasses of {@link
     * java.text.NumberFormat}.
     *
     * <p>Note that trailing format specifiers, specifiers that
     * determine the type of a floating-point literal
     * (<code>1.0f</code> is a <code>float</code> value;
     * <code>1.0d</code> is a <code>double</code> value), do
     * <em>not</em> influence the results of this method.  In other
     * words, the numerical value of the input string is converted
     * directly to the target floating-point type.  The two-step
     * sequence of conversions, string to <code>float</code> followed
     * by <code>float</code> to <code>double</code>, is <em>not</em>
     * equivalent to converting a string directly to
     * <code>double</code>. For example, the <code>float</code>
     * literal <code>0.1f</code> is equal to the <code>double</code>
     * value <code>0.10000000149011612</code>; the <code>float</code>
     * literal <code>0.1f</code> represents a different numerical
     * value than the <code>double</code> literal
     * <code>0.1</code>. (The numerical value 0.1 cannot be exactly
     * represented in a binary floating-point number.)
     *
     * @param      s   the string to be parsed.
     * @return     a <code>Double</code> object holding the value
     *             represented by the <code>String</code> argument.
     * @exception  NumberFormatException  if the string does not contain a
     *               parsable number.
     */
    public static Double valueOf(String s) throws NumberFormatException {
	return new Double(FloatingDecimal.readJavaFormatString(s).doubleValue());
    }

    /**
     * Returns a new <code>double</code> initialized to the value
     * represented by the specified <code>String</code>, as performed
     * by the <code>valueOf</code> method of class
     * <code>Double</code>.
     *
     * @param      s   the string to be parsed.
     * @return the <code>double</code> value represented by the string
     *         argument.
     * @exception NumberFormatException if the string does not contain
     *            a parsable <code>double</code>.
     * @see        java.lang.Double#valueOf(String)
     * @since 1.2
     */
    public static double parseDouble(String s) throws NumberFormatException {
	return FloatingDecimal.readJavaFormatString(s).doubleValue();
    }

    /**
     * Returns <code>true</code> if the specified number is a
     * Not-a-Number (NaN) value, <code>false</code> otherwise.
     *
     * @param   v   the value to be tested.
     * @return  <code>true</code> if the value of the argument is NaN;
     *          <code>false</code> otherwise.
     */
    static public boolean isNaN(double v) {
	return (v != v);
    }

    /**
     * Returns <code>true</code> if the specified number is infinitely
     * large in magnitude, <code>false</code> otherwise.
     *
     * @param   v   the value to be tested.
     * @return  <code>true</code> if the value of the argument is positive
     *          infinity or negative infinity; <code>false</code> otherwise.
     */
    static public boolean isInfinite(double v) {
	return (v == POSITIVE_INFINITY) || (v == NEGATIVE_INFINITY);
    }

    /**
     * The value of the Double.
     *
     * @serial
     */
    private double value;

    /**
     * Constructs a newly allocated <code>Double</code> object that
     * represents the primitive <code>double</code> argument.
     *
     * @param   value   the value to be represented by the <code>Double</code>.
     */
    public Double(double value) {
	this.value = value;
    }

    /**
     * Constructs a newly allocated <code>Double</code> object that
     * represents the floating-point value of type <code>double</code>
     * represented by the string. The string is converted to a
     * <code>double</code> value as if by the <code>valueOf</code> method.
     *
     * @param      s   a string to be converted to a <code>Double</code>.
     * @exception  NumberFormatException  if the string does not contain a
     *               parsable number.
     * @see        java.lang.Double#valueOf(java.lang.String)
     */
    public Double(String s) throws NumberFormatException {
	// REMIND: this is inefficient
	this(valueOf(s).doubleValue());
    }

    /**
     * Returns <code>true</code> if this <code>Double</code> value is
     * a Not-a-Number (NaN), <code>false</code> otherwise.
     *
     * @return  <code>true</code> if the value represented by this object is
     *          NaN; <code>false</code> otherwise.
     */
    public boolean isNaN() {
	return isNaN(value);
    }

    /**
     * Returns <code>true</code> if this <code>Double</code> value is
     * infinitely large in magnitude, <code>false</code> otherwise.
     *
     * @return  <code>true</code> if the value represented by this object is
     *          positive infinity or negative infinity;
     *          <code>false</code> otherwise.
     */
    public boolean isInfinite() {
	return isInfinite(value);
    }

    /**
     * Returns a string representation of this <code>Double</code> object.
     * The primitive <code>double</code> value represented by this
     * object is converted to a string exactly as if by the method
     * <code>toString</code> of one argument.
     *
     * @return  a <code>String</code> representation of this object.
     * @see java.lang.Double#toString(double)
     */
    public String toString() {
	return String.valueOf(value);
    }

    /**
     * Returns the value of this <code>Double</code> as a <code>byte</code> (by
     * casting to a <code>byte</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>byte</code>
     * @since JDK1.1 
     */
    public byte byteValue() {
	return (byte)value;
    }

    /**
     * Returns the value of this <code>Double</code> as a
     * <code>short</code> (by casting to a <code>short</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>short</code>
     * @since JDK1.1 
     */
    public short shortValue() {
	return (short)value;
    }

    /**
     * Returns the value of this <code>Double</code> as an
     * <code>int</code> (by casting to type <code>int</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>int</code>
     */
    public int intValue() {
	return (int)value;
    }

    /**
     * Returns the value of this <code>Double</code> as a
     * <code>long</code> (by casting to type <code>long</code>).
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>long</code>
     */
    public long longValue() {
	return (long)value;
    }

    /**
     * Returns the <code>float</code> value of this
     * <code>Double</code> object.
     *
     * @return  the <code>double</code> value represented by this object
     *          converted to type <code>float</code>
     * @since JDK1.0 
     */
    public float floatValue() {
	return (float)value;
    }

    /**
     * Returns the <code>double</code> value of this
     * <code>Double</code> object.
     *
     * @return the <code>double</code> value represented by this object
     */
    public double doubleValue() {
	return (double)value;
    }

    /**
     * Returns a hash code for this <code>Double</code> object. The
     * result is the exclusive OR of the two halves of the
     * <code>long</code> integer bit representation, exactly as
     * produced by the method {@link #doubleToLongBits(double)}, of
     * the primitive <code>double</code> value represented by this
     * <code>Double</code> object. That is, the hash code is the value
     * of the expression:
     * <blockquote><pre>
     * (int)(v^(v&gt;&gt;&gt;32))
     * </pre></blockquote>
     * where <code>v</code> is defined by: 
     * <blockquote><pre>
     * long v = Double.doubleToLongBits(this.doubleValue());
     * </pre></blockquote>
     *
     * @return  a <code>hash code</code> value for this object.
     */
    public int hashCode() {
	long bits = doubleToLongBits(value);
	return (int)(bits ^ (bits >>> 32));
    }

    /**
     * Compares this object against the specified object.  The result
     * is <code>true</code> if and only if the argument is not
     * <code>null</code> and is a <code>Double</code> object that
     * represents a <code>double</code> that has the same value as the
     * <code>double</code> represented by this object. For this
     * purpose, two <code>double</code> values are considered to be
     * the same if and only if the method {@link
     * #doubleToLongBits(double)} returns the identical
     * <code>long</code> value when applied to each.
     * <p>
     * Note that in most cases, for two instances of class
     * <code>Double</code>, <code>d1</code> and <code>d2</code>, the
     * value of <code>d1.equals(d2)</code> is <code>true</code> if and
     * only if
     * <blockquote><pre>
     *   d1.doubleValue()&nbsp;== d2.doubleValue()
     * </pre></blockquote>
     * <p>
     * also has the value <code>true</code>. However, there are two
     * exceptions:
     * <ul>
     * <li>If <code>d1</code> and <code>d2</code> both represent
     *     <code>Double.NaN</code>, then the <code>equals</code> method
     *     returns <code>true</code>, even though
     *     <code>Double.NaN==Double.NaN</code> has the value
     *     <code>false</code>.
     * <li>If <code>d1</code> represents <code>+0.0</code> while
     *     <code>d2</code> represents <code>-0.0</code>, or vice versa,
     *     the <code>equal</code> test has the value <code>false</code>,
     *     even though <code>+0.0==-0.0</code> has the value <code>true</code>.
     * </ul>
     * This definition allows hash tables to operate properly.
     * @param   obj   the object to compare with.
     * @return  <code>true</code> if the objects are the same;
     *          <code>false</code> otherwise.
     * @see java.lang.Double#doubleToLongBits(double)
     */
    public boolean equals(Object obj) {
	return (obj instanceof Double)
	       && (doubleToLongBits(((Double)obj).value) ==
		      doubleToLongBits(value));
    }

    /**
     * Returns a representation of the specified floating-point value
     * according to the IEEE 754 floating-point "double
     * format" bit layout.
     * <p>
     * Bit 63 (the bit that is selected by the mask 
     * <code>0x8000000000000000L</code>) represents the sign of the 
     * floating-point number. Bits 
     * 62-52 (the bits that are selected by the mask 
     * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0 
     * (the bits that are selected by the mask 
     * <code>0x000fffffffffffffL</code>) represent the significand 
     * (sometimes called the mantissa) of the floating-point number. 
     * <p>
     * If the argument is positive infinity, the result is
     * <code>0x7ff0000000000000L</code>.
     * <p>
     * If the argument is negative infinity, the result is
     * <code>0xfff0000000000000L</code>.
     * <p>
     * If the argument is NaN, the result is 
     * <code>0x7ff8000000000000L</code>. 
     * <p>
     * In all cases, the result is a <code>long</code> integer that, when 
     * given to the {@link #longBitsToDouble(long)} method, will produce a 
     * floating-point value the same as the argument to 
     * <code>doubleToLongBits</code> (except all NaN values are
     * collapsed to a single &quot;canonical&quot; NaN value).
     *
     * @param   value   a <code>double</code> precision floating-point number.
     * @return the bits that represent the floating-point number.  
     */
    public static native long doubleToLongBits(double value);

    /**
     * Returns a representation of the specified floating-point value
     * according to the IEEE 754 floating-point "double
     * format" bit layout, preserving Not-a-Number (NaN) values.
     * <p>
     * Bit 63 (the bit that is selected by the mask 
     * <code>0x8000000000000000L</code>) represents the sign of the 
     * floating-point number. Bits 
     * 62-52 (the bits that are selected by the mask 
     * <code>0x7ff0000000000000L</code>) represent the exponent. Bits 51-0 
     * (the bits that are selected by the mask 
     * <code>0x000fffffffffffffL</code>) represent the significand 
     * (sometimes called the mantissa) of the floating-point number. 
     * <p>
     * If the argument is positive infinity, the result is
     * <code>0x7ff0000000000000L</code>.
     * <p>
     * If the argument is negative infinity, the result is
     * <code>0xfff0000000000000L</code>.
     * <p>
     * If the argument is NaN, the result is the <code>long</code>
     * integer representing the actual NaN value.  Unlike the
     * <code>doubleToLongBits</code> method,
     * <code>doubleToRawLongBits</code> does not collapse all the bit
     * patterns encoding a NaN to a single &quot;canonical&quot; NaN
     * value.
     * <p>
     * In all cases, the result is a <code>long</code> integer that,
     * when given to the {@link #longBitsToDouble(long)} method, will
     * produce a floating-point value the same as the argument to
     * <code>doubleToRawLongBits</code>.
     *
     * @param   value   a <code>double</code> precision floating-point number.
     * @return the bits that represent the floating-point number.
     */
    public static native long doubleToRawLongBits(double value);

    /**
     * Returns the <code>double</code> value corresponding to a given
     * bit representation.
     * The argument is considered to be a representation of a
     * floating-point value according to the IEEE 754 floating-point
     * "double format" bit layout.
     * <p>
     * If the argument is <code>0x7ff0000000000000L</code>, the result 
     * is positive infinity. 
     * <p>
     * If the argument is <code>0xfff0000000000000L</code>, the result 
     * is negative infinity. 
     * <p>
     * If the argument is any value in the range
     * <code>0x7ff0000000000001L</code> through
     * <code>0x7fffffffffffffffL</code> or in the range
     * <code>0xfff0000000000001L</code> through
     * <code>0xffffffffffffffffL</code>, the result is a NaN.  No IEEE
     * 754 floating-point operation provided by Java can distinguish
     * between two NaN values of the same type with different bit
     * patterns.  Distinct values of NaN are only distinguishable by
     * use of the <code>Double.doubleToRawLongBits</code> method.
     * <p>
     * In all other cases, let <i>s</i>, <i>e</i>, and <i>m</i> be three 
     * values that can be computed from the argument: 
     * <blockquote><pre>
     * int s = ((bits &gt;&gt; 63) == 0) ? 1 : -1;
     * int e = (int)((bits &gt;&gt; 52) & 0x7ffL);
     * long m = (e == 0) ?
     *                 (bits & 0xfffffffffffffL) &lt;&lt; 1 :
     *                 (bits & 0xfffffffffffffL) | 0x10000000000000L;
     * </pre></blockquote>
     * Then the floating-point result equals the value of the mathematical 
     * expression <i>s</i>&middot;<i>m</i>&middot;2<sup><i>e</i>-1075</sup>.
     *<p>
     * Note that this method may not be able to return a
     * <code>double</code> NaN with exactly same bit pattern as the
     * <code>long</code> argument.  IEEE 754 distinguishes between two
     * kinds of NaNs, quiet NaNs and <i>signaling NaNs</i>.  The
     * differences between the two kinds of NaN are generally not
     * visible in Java.  Arithmetic operations on signaling NaNs turn
     * them into quiet NaNs with a different, but often similar, bit
     * pattern.  However, on some processors merely copying a
     * signaling NaN also performs that conversion.  In particular,
     * copying a signaling NaN to return it to the calling method
     * may perform this conversion.  So <code>longBitsToDouble</code>
     * may not be able to return a <code>double</code> with a
     * signaling NaN bit pattern.  Consequently, for some
     * <code>long</code> values,
     * <code>doubleToRawLongBits(longBitsToDouble(start))</code> may
     * <i>not</i> equal <code>start</code>.  Moreover, which
     * particular bit patterns represent signaling NaNs is platform
     * dependent; although all NaN bit patterns, quiet or signaling,
     * must be in the NaN range identified above.
     *
     * @param   bits   any <code>long</code> integer.
     * @return  the <code>double</code> floating-point value with the same
     *          bit pattern.
     */
    public static native double longBitsToDouble(long bits);

    /**
     * Compares two <code>Double</code> objects numerically.  There
     * are two ways in which comparisons performed by this method
     * differ from those performed by the Java language numerical
     * comparison operators (<code>&lt;, &lt;=, ==, &gt;= &gt;</code>)
     * when applied to primitive <code>double</code> values:
     * <ul><li>
     *		<code>Double.NaN</code> is considered by this method
     *		to be equal to itself and greater than all other
     *		<code>double</code> values (including
     *		<code>Double.POSITIVE_INFINITY</code>).
     * <li>
     *		<code>0.0d</code> is considered by this method to be greater
     *		than <code>-0.0d</code>.
     * </ul>
     * This ensures that <code>Double.compareTo(Object)</code> (which
     * forwards its behavior to this method) obeys the general
     * contract for <code>Comparable.compareTo</code>, and that the
     * <i>natural order</i> on <code>Double</code>s is <i>consistent
     * with equals</i>.
     *
     * @param   anotherDouble   the <code>Double</code> to be compared.
     * @return  the value <code>0</code> if <code>anotherDouble</code> is
     *		numerically equal to this <code>Double</code>; a value
     *		less than <code>0</code> if this <code>Double</code>
     *		is numerically less than <code>anotherDouble</code>;
     *		and a value greater than <code>0</code> if this
     *		<code>Double</code> is numerically greater than
     *		<code>anotherDouble</code>.
     *		
     * @since   1.2
     * @see Comparable#compareTo(Object)
     */
    public int compareTo(Double anotherDouble) {
        return Double.compare(value, anotherDouble.value);
    }

    /**
     * Compares this <code>Double</code> object to another object.  If
     * the object is a <code>Double</code>, this function behaves like
     * <code>compareTo(Double)</code>.  Otherwise, it throws a
     * <code>ClassCastException</code> (as <code>Double</code> objects
     * are comparable only to other <code>Double</code> objects).
     *
     * @param   o the <code>Object</code> to be compared.
     * @return the value <code>0</code> if the argument is a
     *		<code>Double</code> numerically equal to this
     *		<code>Double</code>; a value less than <code>0</code>
     *		if the argument is a <code>Double</code> numerically
     *		greater than this <code>Double</code>; and a value
     *		greater than <code>0</code> if the argument is a
     *		<code>Double</code> numerically less than this
     *		<code>Double</code>.
     * @exception <code>ClassCastException</code> if the argument is not a
     *		  <code>Double</code>.
     * @see     java.lang.Comparable
     * @since 1.2
     */
    public int compareTo(Object o) {
	return compareTo((Double)o);
    }

    /**
     * Compares the two specified <code>double</code> values. The sign
     * of the integer value returned is the same as that of the
     * integer that would be returned by the call:
     * <pre>
     *    new Double(d1).compareTo(new Double(d2))
     * </pre>
     *
     * @param   d1        the first <code>double</code> to compare
     * @param   d2        the second <code>double</code> to compare
     * @return  the value <code>0</code> if <code>d1</code> is
     *		numerically equal to <code>d2</code>; a value less than
     *          <code>0</code> if <code>d1</code> is numerically less than
     *		<code>d2</code>; and a value greater than <code>0</code>
     *		if <code>d1</code> is numerically greater than
     *		<code>d2</code>.
     * @since 1.4
     */
    public static int compare(double d1, double d2) {
        if (d1 < d2)
            return -1;		 // Neither val is NaN, thisVal is smaller
        if (d1 > d2)
            return 1;		 // Neither val is NaN, thisVal is larger

        long thisBits = Double.doubleToLongBits(d1);
        long anotherBits = Double.doubleToLongBits(d2);

        return (thisBits == anotherBits ?  0 : // Values are equal
                (thisBits < anotherBits ? -1 : // (-0.0, 0.0) or (!NaN, NaN)
                 1));                          // (0.0, -0.0) or (NaN, !NaN)
    }

    /** use serialVersionUID from JDK 1.0.2 for interoperability */
    private static final long serialVersionUID = -9172774392245257468L;
}