File: Math.java

package info (click to toggle)
why 2.30%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 26,916 kB
  • sloc: ml: 116,979; java: 9,376; ansic: 5,175; makefile: 1,335; sh: 531; lisp: 127
file content (904 lines) | stat: -rw-r--r-- 37,242 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
/*
 * @(#)Math.java	1.57 03/01/23
 *
 * Copyright 2003 Sun Microsystems, Inc. All rights reserved.
 * SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

package java.lang;
//KML import java.util.Random;


/**
 * The class <code>Math</code> contains methods for performing basic
 * numeric operations such as the elementary exponential, logarithm,
 * square root, and trigonometric functions.
 * <p>
 * Unlike some of the numeric methods of class
 * <code>StrictMath</code>, all implementations of the equivalent
 * functions of class <code>Math</code> are not defined to return the
 * bit-for-bit same results.  This relaxation permits
 * better-performing implementations where strict reproducibility is
 * not required.
 * <p>
 * By default many of the <code>Math</code> methods simply call
 * the equivalent method in <code>StrictMath</code> for their
 * implementation.  Code generators are encouraged to use
 * platform-specific native libraries or microprocessor instructions,
 * where available, to provide higher-performance implementations of
 * <code>Math</code> methods.  Such higher-performance
 * implementations still must conform to the specification for
 * <code>Math</code>.
 * <p>
 * The quality of implementation specifications concern two
 * properties, accuracy of the returned result and monotonicity of the
 * method.  Accuracy of the floating-point <code>Math</code> methods
 * is measured in terms of <i>ulps</i>, units in the last place.  For
 * a given floating-point format, an ulp of a specific real number
 * value is the difference between the two floating-point values
 * closest to that numerical value.  When discussing the accuracy of a
 * method as a whole rather than at a specific argument, the number of
 * ulps cited is for the worst-case error at any argument.  If a
 * method always has an error less than 0.5 ulps, the method always
 * returns the floating-point number nearest the exact result; such a
 * method is <i>correctly rounded</i>.  A correctly rounded method is
 * generally the best a floating-point approximation can be; however,
 * it is impractical for many floating-point methods to be correctly
 * rounded.  Instead, for the <code>Math</code> class, a larger error
 * bound of 1 or 2 ulps is allowed for certain methods.  Informally,
 * with a 1 ulp error bound, when the exact result is a representable
 * number the exact result should be returned; otherwise, either of
 * the two floating-point numbers closest to the exact result may be
 * returned.  Besides accuracy at individual arguments, maintaining
 * proper relations between the method at different arguments is also
 * important.  Therefore, methods with more than 0.5 ulp errors are
 * required to be <i>semi-monotonic</i>: whenever the mathematical
 * function is non-decreasing, so is the floating-point approximation,
 * likewise, whenever the mathematical function is non-increasing, so
 * is the floating-point approximation.  Not all approximations that
 * have 1 ulp accuracy will automatically meet the monotonicity
 * requirements.
 * 
 * @author  unascribed
 * @version 1.57, 01/23/03
 * @since   JDK1.0
 */

public final strictfp class Math {

    /**
     * Don't let anyone instantiate this class.
     */
    private Math() {}

    /**
     * The <code>double</code> value that is closer than any other to
     * <i>e</i>, the base of the natural logarithms.
     */
    public static final double E = 2.7182818284590452354;

    /**
     * The <code>double</code> value that is closer than any other to
     * <i>pi</i>, the ratio of the circumference of a circle to its
     * diameter.
     */
    public static final double PI = 3.14159265358979323846;

    /**
     * Returns the trigonometric sine of an angle.  Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the 
     * result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   a   an angle, in radians.
     * @return  the sine of the argument.
     */
    public static double sin(double a) {
	//KML return StrictMath.sin(a); // default impl. delegates to StrictMath
    }
    
    /**
     * Returns the trigonometric cosine of an angle. Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the 
     * result is NaN.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   a   an angle, in radians.
     * @return  the cosine of the argument.
     */
    public static double cos(double a) {
	//KML return StrictMath.cos(a); // default impl. delegates to StrictMath
    }
   
    /**
     * Returns the trigonometric tangent of an angle.  Special cases:
     * <ul><li>If the argument is NaN or an infinity, then the result 
     * is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   a   an angle, in radians.
     * @return  the tangent of the argument.
     */
    public static double tan(double a) {
	//KML return StrictMath.tan(a); // default impl. delegates to StrictMath
    }

    /**
     * Returns the arc sine of an angle, in the range of -<i>pi</i>/2 through
     * <i>pi</i>/2. Special cases: 
     * <ul><li>If the argument is NaN or its absolute value is greater 
     * than 1, then the result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   a   the value whose arc sine is to be returned.
     * @return  the arc sine of the argument.
     */
    public static double asin(double a) {
	//KML return StrictMath.asin(a); // default impl. delegates to StrictMath
    }

    /**
     * Returns the arc cosine of an angle, in the range of 0.0 through
     * <i>pi</i>.  Special case:
     * <ul><li>If the argument is NaN or its absolute value is greater 
     * than 1, then the result is NaN.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results 
     * must be semi-monotonic.
     *
     * @param   a   the value whose arc cosine is to be returned.
     * @return  the arc cosine of the argument.
     */
    public static double acos(double a) {
	//KML return StrictMath.acos(a); // default impl. delegates to StrictMath
    }

    /**
     * Returns the arc tangent of an angle, in the range of -<i>pi</i>/2
     * through <i>pi</i>/2.  Special cases: 
     * <ul><li>If the argument is NaN, then the result is NaN.
     * <li>If the argument is zero, then the result is a zero with the
     * same sign as the argument.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   a   the value whose arc tangent is to be returned.
     * @return  the arc tangent of the argument.
     */
    public static double atan(double a) {
	//KML return StrictMath.atan(a); // default impl. delegates to StrictMath
    }

    /**
     * Converts an angle measured in degrees to an approximately
     * equivalent angle measured in radians.  The conversion from
     * degrees to radians is generally inexact.
     *
     * @param   angdeg   an angle, in degrees
     * @return  the measurement of the angle <code>angdeg</code>
     *          in radians.
     * @since   1.2
     */
    public static double toRadians(double angdeg) {
	return angdeg / 180.0 * PI;
    }

    /**
     * Converts an angle measured in radians to an approximately
     * equivalent angle measured in degrees.  The conversion from
     * radians to degrees is generally inexact; users should
     * <i>not</i> expect <code>cos(toRadians(90.0))</code> to exactly
     * equal <code>0.0</code>.
     *
     * @param   angrad   an angle, in radians
     * @return  the measurement of the angle <code>angrad</code>
     *          in degrees.
     * @since   1.2
     */
    public static double toDegrees(double angrad) {
	return angrad * 180.0 / PI;
    }

    /**
     * Returns Euler's number <i>e</i> raised to the power of a
     * <code>double</code> value.  Special cases:
     * <ul><li>If the argument is NaN, the result is NaN.
     * <li>If the argument is positive infinity, then the result is 
     * positive infinity.
     * <li>If the argument is negative infinity, then the result is 
     * positive zero.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   a   the exponent to raise <i>e</i> to.
     * @return  the value <i>e</i><sup><code>a</code></sup>, 
     *          where <i>e</i> is the base of the natural logarithms.
     */
    public static double exp(double a) {
	//KML return StrictMath.exp(a); // default impl. delegates to StrictMath
    }

    /**
     * Returns the natural logarithm (base <i>e</i>) of a <code>double</code>
     * value.  Special cases:
     * <ul><li>If the argument is NaN or less than zero, then the result 
     * is NaN.
     * <li>If the argument is positive infinity, then the result is 
     * positive infinity.
     * <li>If the argument is positive zero or negative zero, then the 
     * result is negative infinity.</ul>
     * <p>
     * A result must be within 1 ulp of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   a   a number greater than <code>0.0</code>.
     * @return  the value ln&nbsp;<code>a</code>, the natural logarithm of
     *          <code>a</code>.
     */
    public static double log(double a) {
	//KML return StrictMath.log(a); // default impl. delegates to StrictMath
    }

    /**
     * Returns the correctly rounded positive square root of a 
     * <code>double</code> value.
     * Special cases:
     * <ul><li>If the argument is NaN or less than zero, then the result 
     * is NaN. 
     * <li>If the argument is positive infinity, then the result is positive 
     * infinity. 
     * <li>If the argument is positive zero or negative zero, then the 
     * result is the same as the argument.</ul>
     * Otherwise, the result is the <code>double</code> value closest to 
     * the true mathematical square root of the argument value.
     * 
     * @param   a   a value.
     * <!--@return  the value of &radic;&nbsp;<code>a</code>.-->
     * @return  the positive square root of <code>a</code>.
     *          If the argument is NaN or less than zero, the result is NaN.
     */
    /*@ requires a >= 0.0;
      @ ensures \result * \result == a;
      @*/
    public static double sqrt(double a) {
	/*KML
	return StrictMath.sqrt(a); // default impl. delegates to StrictMath
				   // Note that hardware sqrt instructions
				   // frequently can be directly used by JITs
				   // and should be much faster than doing
				   // Math.sqrt in software.
				   */
    }

    /**
     * Computes the remainder operation on two arguments as prescribed 
     * by the IEEE 754 standard.
     * The remainder value is mathematically equal to 
     * <code>f1&nbsp;-&nbsp;f2</code>&nbsp;&times;&nbsp;<i>n</i>,
     * where <i>n</i> is the mathematical integer closest to the exact 
     * mathematical value of the quotient <code>f1/f2</code>, and if two 
     * mathematical integers are equally close to <code>f1/f2</code>, 
     * then <i>n</i> is the integer that is even. If the remainder is 
     * zero, its sign is the same as the sign of the first argument. 
     * Special cases:
     * <ul><li>If either argument is NaN, or the first argument is infinite, 
     * or the second argument is positive zero or negative zero, then the 
     * result is NaN.
     * <li>If the first argument is finite and the second argument is 
     * infinite, then the result is the same as the first argument.</ul>
     *
     * @param   f1   the dividend.
     * @param   f2   the divisor.
     * @return  the remainder when <code>f1</code> is divided by
     *          <code>f2</code>.
     */
    public static double IEEEremainder(double f1, double f2) {
        //KML return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
    }

    /**
     * Returns the smallest (closest to negative infinity) 
     * <code>double</code> value that is not less than the argument and is 
     * equal to a mathematical integer. Special cases:
     * <ul><li>If the argument value is already equal to a mathematical 
     * integer, then the result is the same as the argument. 
     * <li>If the argument is NaN or an infinity or positive zero or negative 
     * zero, then the result is the same as the argument. 
     * <li>If the argument value is less than zero but greater than -1.0, 
     * then the result is negative zero.</ul>
     * Note that the value of <code>Math.ceil(x)</code> is exactly the 
     * value of <code>-Math.floor(-x)</code>.
     *
     * @param   a   a value.
     * <!--@return  the value &lceil;&nbsp;<code>a</code>&nbsp;&rceil;.-->
     * @return  the smallest (closest to negative infinity) 
     *          floating-point value that is not less than the argument
     *          and is equal to a mathematical integer. 
     */
    public static double ceil(double a) {
	//KML return StrictMath.ceil(a); // default impl. delegates to StrictMath
    }

    /**
     * Returns the largest (closest to positive infinity) 
     * <code>double</code> value that is not greater than the argument and 
     * is equal to a mathematical integer. Special cases:
     * <ul><li>If the argument value is already equal to a mathematical 
     * integer, then the result is the same as the argument. 
     * <li>If the argument is NaN or an infinity or positive zero or 
     * negative zero, then the result is the same as the argument.</ul>
     *
     * @param   a   a value.
     * <!--@return  the value &lfloor;&nbsp;<code>a</code>&nbsp;&rfloor;.-->
     * @return  the largest (closest to positive infinity) 
     *          floating-point value that is not greater than the argument
     *          and is equal to a mathematical integer. 
     */
    public static double floor(double a) {
	//KML return StrictMath.floor(a); // default impl. delegates to StrictMath
    }

    /**
     * Returns the <code>double</code> value that is closest in value
     * to the argument and is equal to a mathematical integer. If two
     * <code>double</code> values that are mathematical integers are
     * equally close, the result is the integer value that is
     * even. Special cases:
     * <ul><li>If the argument value is already equal to a mathematical 
     * integer, then the result is the same as the argument. 
     * <li>If the argument is NaN or an infinity or positive zero or negative 
     * zero, then the result is the same as the argument.</ul>
     *
     * @param   a   a <code>double</code> value.
     * @return  the closest floating-point value to <code>a</code> that is
     *          equal to a mathematical integer.
     */
    public static double rint(double a) {
	//KML return StrictMath.rint(a); // default impl. delegates to StrictMath
    }

    /**
     * Converts rectangular coordinates (<code>x</code>,&nbsp;<code>y</code>)
     * to polar (r,&nbsp;<i>theta</i>).
     * This method computes the phase <i>theta</i> by computing an arc tangent
     * of <code>y/x</code> in the range of -<i>pi</i> to <i>pi</i>. Special 
     * cases:
     * <ul><li>If either argument is NaN, then the result is NaN. 
     * <li>If the first argument is positive zero and the second argument 
     * is positive, or the first argument is positive and finite and the 
     * second argument is positive infinity, then the result is positive 
     * zero. 
     * <li>If the first argument is negative zero and the second argument 
     * is positive, or the first argument is negative and finite and the 
     * second argument is positive infinity, then the result is negative zero. 
     * <li>If the first argument is positive zero and the second argument 
     * is negative, or the first argument is positive and finite and the 
     * second argument is negative infinity, then the result is the 
     * <code>double</code> value closest to <i>pi</i>. 
     * <li>If the first argument is negative zero and the second argument 
     * is negative, or the first argument is negative and finite and the 
     * second argument is negative infinity, then the result is the 
     * <code>double</code> value closest to -<i>pi</i>. 
     * <li>If the first argument is positive and the second argument is 
     * positive zero or negative zero, or the first argument is positive 
     * infinity and the second argument is finite, then the result is the 
     * <code>double</code> value closest to <i>pi</i>/2. 
     * <li>If the first argument is negative and the second argument is 
     * positive zero or negative zero, or the first argument is negative 
     * infinity and the second argument is finite, then the result is the 
     * <code>double</code> value closest to -<i>pi</i>/2. 
     * <li>If both arguments are positive infinity, then the result is the 
     * <code>double</code> value closest to <i>pi</i>/4. 
     * <li>If the first argument is positive infinity and the second argument 
     * is negative infinity, then the result is the <code>double</code> 
     * value closest to 3*<i>pi</i>/4. 
     * <li>If the first argument is negative infinity and the second argument 
     * is positive infinity, then the result is the <code>double</code> value 
     * closest to -<i>pi</i>/4. 
     * <li>If both arguments are negative infinity, then the result is the 
     * <code>double</code> value closest to -3*<i>pi</i>/4.</ul>
     * <p>
     * A result must be within 2 ulps of the correctly rounded result.  Results
     * must be semi-monotonic.
     *
     * @param   y   the ordinate coordinate
     * @param   x   the abscissa coordinate
     * @return  the <i>theta</i> component of the point
     *          (<i>r</i>,&nbsp;<i>theta</i>)
     *          in polar coordinates that corresponds to the point
     *          (<i>x</i>,&nbsp;<i>y</i>) in Cartesian coordinates.
     */
    public static double atan2(double y, double x) {
	//KML return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
    }

    /**
     * Returns the value of the first argument raised to the power of the
     * second argument. Special cases:
     *
     * <ul><li>If the second argument is positive or negative zero, then the 
     * result is 1.0. 
     * <li>If the second argument is 1.0, then the result is the same as the 
     * first argument.
     * <li>If the second argument is NaN, then the result is NaN. 
     * <li>If the first argument is NaN and the second argument is nonzero, 
     * then the result is NaN. 
     *
     * <li>If
     * <ul>
     * <li>the absolute value of the first argument is greater than 1
     * and the second argument is positive infinity, or
     * <li>the absolute value of the first argument is less than 1 and
     * the second argument is negative infinity,
     * </ul>
     * then the result is positive infinity. 
     *
     * <li>If 
     * <ul>
     * <li>the absolute value of the first argument is greater than 1 and 
     * the second argument is negative infinity, or 
     * <li>the absolute value of the 
     * first argument is less than 1 and the second argument is positive 
     * infinity,
     * </ul>
     * then the result is positive zero. 
     *
     * <li>If the absolute value of the first argument equals 1 and the 
     * second argument is infinite, then the result is NaN. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is greater than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is less than zero,
     * </ul>
     * then the result is positive zero. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is positive zero and the second argument
     * is less than zero, or
     * <li>the first argument is positive infinity and the second
     * argument is greater than zero,
     * </ul>
     * then the result is positive infinity.
     *
     * <li>If 
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is greater than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is less than zero but not a finite odd integer,
     * </ul>
     * then the result is positive zero. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a positive finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a negative finite odd integer,
     * </ul>
     * then the result is negative zero. 
     *
     * <li>If
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is less than zero but not a finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is greater than zero but not a finite odd integer,
     * </ul>
     * then the result is positive infinity. 
     *
     * <li>If 
     * <ul>
     * <li>the first argument is negative zero and the second argument
     * is a negative finite odd integer, or
     * <li>the first argument is negative infinity and the second
     * argument is a positive finite odd integer,
     * </ul>
     * then the result is negative infinity. 
     *
     * <li>If the first argument is finite and less than zero
     * <ul>
     * <li> if the second argument is a finite even integer, the
     * result is equal to the result of raising the absolute value of
     * the first argument to the power of the second argument
     *
     * <li>if the second argument is a finite odd integer, the result
     * is equal to the negative of the result of raising the absolute
     * value of the first argument to the power of the second
     * argument
     *
     * <li>if the second argument is finite and not an integer, then
     * the result is NaN.
     * </ul>
     *
     * <li>If both arguments are integers, then the result is exactly equal 
     * to the mathematical result of raising the first argument to the power 
     * of the second argument if that result can in fact be represented 
     * exactly as a <code>double</code> value.</ul>
     * 
     * <p>(In the foregoing descriptions, a floating-point value is
     * considered to be an integer if and only if it is finite and a
     * fixed point of the method {@link #ceil <tt>ceil</tt>} or,
     * equivalently, a fixed point of the method {@link #floor
     * <tt>floor</tt>}. A value is a fixed point of a one-argument
     * method if and only if the result of applying the method to the
     * value is equal to the value.)
     *
     * <p>A result must be within 1 ulp of the correctly rounded
     * result.  Results must be semi-monotonic.
     *
     * @param   a   the base.
     * @param   b   the exponent.
     * @return  the value <code>a<sup>b</sup></code>.
     */
    public static double pow(double a, double b) {
	//KML return StrictMath.pow(a, b); // default impl. delegates to StrictMath
    }

    /**
     * Returns the closest <code>int</code> to the argument. The 
     * result is rounded to an integer by adding 1/2, taking the 
     * floor of the result, and casting the result to type <code>int</code>. 
     * In other words, the result is equal to the value of the expression:
     * <p><pre>(int)Math.floor(a + 0.5f)</pre>
     * <p>
     * Special cases:
     * <ul><li>If the argument is NaN, the result is 0.
     * <li>If the argument is negative infinity or any value less than or 
     * equal to the value of <code>Integer.MIN_VALUE</code>, the result is 
     * equal to the value of <code>Integer.MIN_VALUE</code>. 
     * <li>If the argument is positive infinity or any value greater than or 
     * equal to the value of <code>Integer.MAX_VALUE</code>, the result is 
     * equal to the value of <code>Integer.MAX_VALUE</code>.</ul> 
     *
     * @param   a   a floating-point value to be rounded to an integer.
     * @return  the value of the argument rounded to the nearest
     *          <code>int</code> value.
     * @see     java.lang.Integer#MAX_VALUE
     * @see     java.lang.Integer#MIN_VALUE
     */
    public static int round(float a) {
	return (int)floor(a + 0.5f);
    }

    /**
     * Returns the closest <code>long</code> to the argument. The result 
     * is rounded to an integer by adding 1/2, taking the floor of the 
     * result, and casting the result to type <code>long</code>. In other 
     * words, the result is equal to the value of the expression:
     * <p><pre>(long)Math.floor(a + 0.5d)</pre>
     * <p>
     * Special cases:
     * <ul><li>If the argument is NaN, the result is 0.
     * <li>If the argument is negative infinity or any value less than or 
     * equal to the value of <code>Long.MIN_VALUE</code>, the result is 
     * equal to the value of <code>Long.MIN_VALUE</code>. 
     * <li>If the argument is positive infinity or any value greater than or 
     * equal to the value of <code>Long.MAX_VALUE</code>, the result is 
     * equal to the value of <code>Long.MAX_VALUE</code>.</ul> 
     *
     * @param   a   a floating-point value to be rounded to a 
     *		<code>long</code>.
     * @return  the value of the argument rounded to the nearest
     *          <code>long</code> value.
     * @see     java.lang.Long#MAX_VALUE
     * @see     java.lang.Long#MIN_VALUE
     */
    public static long round(double a) {
	return (long)floor(a + 0.5d);
    }

    //KML private static Random randomNumberGenerator;

    private static synchronized void initRNG() {
        /*KML
	  if (randomNumberGenerator == null) 
            randomNumberGenerator = new Random();
	*/
    }

    /**
     * Returns a <code>double</code> value with a positive sign, greater 
     * than or equal to <code>0.0</code> and less than <code>1.0</code>. 
     * Returned values are chosen pseudorandomly with (approximately) 
     * uniform distribution from that range. 
     * <p>
     * When this method is first called, it creates a single new 
     * pseudorandom-number generator, exactly as if by the expression 
     * <blockquote><pre>new java.util.Random</pre></blockquote>
     * This new pseudorandom-number generator is used thereafter for all 
     * calls to this method and is used nowhere else. 
     * <p>
     * This method is properly synchronized to allow correct use by more 
     * than one thread. However, if many threads need to generate 
     * pseudorandom numbers at a great rate, it may reduce contention for 
     * each thread to have its own pseudorandom-number generator.
     *  
     * @return  a pseudorandom <code>double</code> greater than or equal 
     * to <code>0.0</code> and less than <code>1.0</code>.
     * @see     java.util.Random#nextDouble()
     */
    public static double random() {
        /*KML
	  if (randomNumberGenerator == null) initRNG();
	  return randomNumberGenerator.nextDouble();
	*/

    }

    /**
     * Returns the absolute value of an <code>int</code> value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned. 
     * <p>
     * Note that if the argument is equal to the value of 
     * <code>Integer.MIN_VALUE</code>, the most negative representable 
     * <code>int</code> value, the result is that same value, which is 
     * negative. 
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     * @see     java.lang.Integer#MIN_VALUE
     */
    public static int abs(int a) {
	return (a < 0) ? -a : a;
    }

    /**
     * Returns the absolute value of a <code>long</code> value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned. 
     * <p>
     * Note that if the argument is equal to the value of 
     * <code>Long.MIN_VALUE</code>, the most negative representable 
     * <code>long</code> value, the result is that same value, which is 
     * negative. 
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     * @see     java.lang.Long#MIN_VALUE
     */
    public static long abs(long a) {
	return (a < 0) ? -a : a;
    }

    /**
     * Returns the absolute value of a <code>float</code> value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned.
     * Special cases:
     * <ul><li>If the argument is positive zero or negative zero, the 
     * result is positive zero. 
     * <li>If the argument is infinite, the result is positive infinity. 
     * <li>If the argument is NaN, the result is NaN.</ul>
     * In other words, the result is the same as the value of the expression: 
     * <p><pre>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</pre>
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     */
    public static float abs(float a) {
        return (a <= 0.0F) ? 0.0F - a : a;
    }
  
    /**
     * Returns the absolute value of a <code>double</code> value.
     * If the argument is not negative, the argument is returned.
     * If the argument is negative, the negation of the argument is returned.
     * Special cases:
     * <ul><li>If the argument is positive zero or negative zero, the result 
     * is positive zero. 
     * <li>If the argument is infinite, the result is positive infinity. 
     * <li>If the argument is NaN, the result is NaN.</ul>
     * In other words, the result is the same as the value of the expression: 
     * <p><code>Double.longBitsToDouble((Double.doubleToLongBits(a)&lt;&lt;1)&gt;&gt;&gt;1)</code> 
     *
     * @param   a   the argument whose absolute value is to be determined
     * @return  the absolute value of the argument.
     */
    /*@ ensures \result == \real_abs(a);
      @*/
    public static double abs(double a) {
        return (a <= 0.0D) ? 0.0D - a : a;
    }

    /**
     * Returns the greater of two <code>int</code> values. That is, the 
     * result is the argument closer to the value of 
     * <code>Integer.MAX_VALUE</code>. If the arguments have the same value, 
     * the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MAX_VALUE
     */
    /*@ ensures \result == \int_max(a,b);
      @*/
    public static int max(int a, int b) {
	return (a >= b) ? a : b;
    }

    /**
     * Returns the greater of two <code>long</code> values. That is, the 
     * result is the argument closer to the value of 
     * <code>Long.MAX_VALUE</code>. If the arguments have the same value, 
     * the result is that same value. 
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MAX_VALUE
     */
    /*@ ensures \result == \int_max(a,b);
      @*/
    public static long max(long a, long b) {
	return (a >= b) ? a : b;
    }

    //KML private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
    //KML private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);

    /**
     * Returns the greater of two <code>float</code> values.  That is,
     * the result is the argument closer to positive infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other negative zero, the
     * result is positive zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     */
    /*@ ensures \result == \real_max(a,b);
      @*/
    public static float max(float a, float b) {
        if (a != a) return a;	// a is NaN
	/*KML
	  if ((a == 0.0f) && (b == 0.0f)
	    && (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
	    return b;
	}
	*/
	return (a >= b) ? a : b;
    }

    /**
     * Returns the greater of two <code>double</code> values.  That
     * is, the result is the argument closer to positive infinity. If
     * the arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other negative zero, the
     * result is positive zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the larger of <code>a</code> and <code>b</code>.
     */
    /*@ ensures \result == \real_max(a,b);
      @*/
    public static double max(double a, double b) {
        if (a != a) return a;	// a is NaN
	/*KML
	  if ((a == 0.0d) && (b == 0.0d)
	    && (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
	    return b;
	}
	*/
	return (a >= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>int</code> values. That is,
     * the result the argument closer to the value of
     * <code>Integer.MIN_VALUE</code>.  If the arguments have the same
     * value, the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MIN_VALUE
     */
    /*@ ensures \result == \int_min(a,b);
      @*/
    public static int min(int a, int b) {
	return (a <= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>long</code> values. That is,
     * the result is the argument closer to the value of
     * <code>Long.MIN_VALUE</code>. If the arguments have the same
     * value, the result is that same value.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b</code>.
     * @see     java.lang.Long#MIN_VALUE
     */
    /*@ ensures \result == \int_min(a,b);
      @*/
    public static long min(long a, long b) {
	return (a <= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>float</code> values.  That is,
     * the result is the value closer to negative infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero.  If
     * one argument is positive zero and the other is negative zero,
     * the result is negative zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b.</code>
     */
    /*@ ensures \result == \real_min(a,b);
      @*/
    public static float min(float a, float b) {
        if (a != a) return a;	// a is NaN
	/*KML
	  if ((a == 0.0f) && (b == 0.0f)
	    && (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
	    return b;
	}
	*/
	return (a <= b) ? a : b;
    }

    /**
     * Returns the smaller of two <code>double</code> values.  That
     * is, the result is the value closer to negative infinity. If the
     * arguments have the same value, the result is that same
     * value. If either value is NaN, then the result is NaN.  Unlike
     * the the numerical comparison operators, this method considers
     * negative zero to be strictly smaller than positive zero. If one
     * argument is positive zero and the other is negative zero, the
     * result is negative zero.
     *
     * @param   a   an argument.
     * @param   b   another argument.
     * @return  the smaller of <code>a</code> and <code>b</code>.
     */
    /*@ ensures \result == \real_min(a,b);
      @*/
    public static double min(double a, double b) {
        if (a != a) return a;	// a is NaN
	/*KML
	  if ((a == 0.0d) && (b == 0.0d)
	    && (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
	    return b;
	}
	*/
	return (a <= b) ? a : b;
    }

}