1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
/*
* @(#)Math.java 1.57 03/01/23
*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.lang;
//KML import java.util.Random;
/**
* The class <code>Math</code> contains methods for performing basic
* numeric operations such as the elementary exponential, logarithm,
* square root, and trigonometric functions.
* <p>
* Unlike some of the numeric methods of class
* <code>StrictMath</code>, all implementations of the equivalent
* functions of class <code>Math</code> are not defined to return the
* bit-for-bit same results. This relaxation permits
* better-performing implementations where strict reproducibility is
* not required.
* <p>
* By default many of the <code>Math</code> methods simply call
* the equivalent method in <code>StrictMath</code> for their
* implementation. Code generators are encouraged to use
* platform-specific native libraries or microprocessor instructions,
* where available, to provide higher-performance implementations of
* <code>Math</code> methods. Such higher-performance
* implementations still must conform to the specification for
* <code>Math</code>.
* <p>
* The quality of implementation specifications concern two
* properties, accuracy of the returned result and monotonicity of the
* method. Accuracy of the floating-point <code>Math</code> methods
* is measured in terms of <i>ulps</i>, units in the last place. For
* a given floating-point format, an ulp of a specific real number
* value is the difference between the two floating-point values
* closest to that numerical value. When discussing the accuracy of a
* method as a whole rather than at a specific argument, the number of
* ulps cited is for the worst-case error at any argument. If a
* method always has an error less than 0.5 ulps, the method always
* returns the floating-point number nearest the exact result; such a
* method is <i>correctly rounded</i>. A correctly rounded method is
* generally the best a floating-point approximation can be; however,
* it is impractical for many floating-point methods to be correctly
* rounded. Instead, for the <code>Math</code> class, a larger error
* bound of 1 or 2 ulps is allowed for certain methods. Informally,
* with a 1 ulp error bound, when the exact result is a representable
* number the exact result should be returned; otherwise, either of
* the two floating-point numbers closest to the exact result may be
* returned. Besides accuracy at individual arguments, maintaining
* proper relations between the method at different arguments is also
* important. Therefore, methods with more than 0.5 ulp errors are
* required to be <i>semi-monotonic</i>: whenever the mathematical
* function is non-decreasing, so is the floating-point approximation,
* likewise, whenever the mathematical function is non-increasing, so
* is the floating-point approximation. Not all approximations that
* have 1 ulp accuracy will automatically meet the monotonicity
* requirements.
*
* @author unascribed
* @version 1.57, 01/23/03
* @since JDK1.0
*/
public final strictfp class Math {
/**
* Don't let anyone instantiate this class.
*/
private Math() {}
/**
* The <code>double</code> value that is closer than any other to
* <i>e</i>, the base of the natural logarithms.
*/
public static final double E = 2.7182818284590452354;
/**
* The <code>double</code> value that is closer than any other to
* <i>pi</i>, the ratio of the circumference of a circle to its
* diameter.
*/
public static final double PI = 3.14159265358979323846;
/**
* Returns the trigonometric sine of an angle. Special cases:
* <ul><li>If the argument is NaN or an infinity, then the
* result is NaN.
* <li>If the argument is zero, then the result is a zero with the
* same sign as the argument.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a an angle, in radians.
* @return the sine of the argument.
*/
public static double sin(double a) {
//KML return StrictMath.sin(a); // default impl. delegates to StrictMath
}
/**
* Returns the trigonometric cosine of an angle. Special cases:
* <ul><li>If the argument is NaN or an infinity, then the
* result is NaN.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a an angle, in radians.
* @return the cosine of the argument.
*/
public static double cos(double a) {
//KML return StrictMath.cos(a); // default impl. delegates to StrictMath
}
/**
* Returns the trigonometric tangent of an angle. Special cases:
* <ul><li>If the argument is NaN or an infinity, then the result
* is NaN.
* <li>If the argument is zero, then the result is a zero with the
* same sign as the argument.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a an angle, in radians.
* @return the tangent of the argument.
*/
public static double tan(double a) {
//KML return StrictMath.tan(a); // default impl. delegates to StrictMath
}
/**
* Returns the arc sine of an angle, in the range of -<i>pi</i>/2 through
* <i>pi</i>/2. Special cases:
* <ul><li>If the argument is NaN or its absolute value is greater
* than 1, then the result is NaN.
* <li>If the argument is zero, then the result is a zero with the
* same sign as the argument.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a the value whose arc sine is to be returned.
* @return the arc sine of the argument.
*/
public static double asin(double a) {
//KML return StrictMath.asin(a); // default impl. delegates to StrictMath
}
/**
* Returns the arc cosine of an angle, in the range of 0.0 through
* <i>pi</i>. Special case:
* <ul><li>If the argument is NaN or its absolute value is greater
* than 1, then the result is NaN.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a the value whose arc cosine is to be returned.
* @return the arc cosine of the argument.
*/
public static double acos(double a) {
//KML return StrictMath.acos(a); // default impl. delegates to StrictMath
}
/**
* Returns the arc tangent of an angle, in the range of -<i>pi</i>/2
* through <i>pi</i>/2. Special cases:
* <ul><li>If the argument is NaN, then the result is NaN.
* <li>If the argument is zero, then the result is a zero with the
* same sign as the argument.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a the value whose arc tangent is to be returned.
* @return the arc tangent of the argument.
*/
public static double atan(double a) {
//KML return StrictMath.atan(a); // default impl. delegates to StrictMath
}
/**
* Converts an angle measured in degrees to an approximately
* equivalent angle measured in radians. The conversion from
* degrees to radians is generally inexact.
*
* @param angdeg an angle, in degrees
* @return the measurement of the angle <code>angdeg</code>
* in radians.
* @since 1.2
*/
public static double toRadians(double angdeg) {
return angdeg / 180.0 * PI;
}
/**
* Converts an angle measured in radians to an approximately
* equivalent angle measured in degrees. The conversion from
* radians to degrees is generally inexact; users should
* <i>not</i> expect <code>cos(toRadians(90.0))</code> to exactly
* equal <code>0.0</code>.
*
* @param angrad an angle, in radians
* @return the measurement of the angle <code>angrad</code>
* in degrees.
* @since 1.2
*/
public static double toDegrees(double angrad) {
return angrad * 180.0 / PI;
}
/**
* Returns Euler's number <i>e</i> raised to the power of a
* <code>double</code> value. Special cases:
* <ul><li>If the argument is NaN, the result is NaN.
* <li>If the argument is positive infinity, then the result is
* positive infinity.
* <li>If the argument is negative infinity, then the result is
* positive zero.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a the exponent to raise <i>e</i> to.
* @return the value <i>e</i><sup><code>a</code></sup>,
* where <i>e</i> is the base of the natural logarithms.
*/
public static double exp(double a) {
//KML return StrictMath.exp(a); // default impl. delegates to StrictMath
}
/**
* Returns the natural logarithm (base <i>e</i>) of a <code>double</code>
* value. Special cases:
* <ul><li>If the argument is NaN or less than zero, then the result
* is NaN.
* <li>If the argument is positive infinity, then the result is
* positive infinity.
* <li>If the argument is positive zero or negative zero, then the
* result is negative infinity.</ul>
* <p>
* A result must be within 1 ulp of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param a a number greater than <code>0.0</code>.
* @return the value ln <code>a</code>, the natural logarithm of
* <code>a</code>.
*/
public static double log(double a) {
//KML return StrictMath.log(a); // default impl. delegates to StrictMath
}
/**
* Returns the correctly rounded positive square root of a
* <code>double</code> value.
* Special cases:
* <ul><li>If the argument is NaN or less than zero, then the result
* is NaN.
* <li>If the argument is positive infinity, then the result is positive
* infinity.
* <li>If the argument is positive zero or negative zero, then the
* result is the same as the argument.</ul>
* Otherwise, the result is the <code>double</code> value closest to
* the true mathematical square root of the argument value.
*
* @param a a value.
* <!--@return the value of √ <code>a</code>.-->
* @return the positive square root of <code>a</code>.
* If the argument is NaN or less than zero, the result is NaN.
*/
/*@ requires a >= 0.0;
@ ensures \result * \result == a;
@*/
public static double sqrt(double a) {
/*KML
return StrictMath.sqrt(a); // default impl. delegates to StrictMath
// Note that hardware sqrt instructions
// frequently can be directly used by JITs
// and should be much faster than doing
// Math.sqrt in software.
*/
}
/**
* Computes the remainder operation on two arguments as prescribed
* by the IEEE 754 standard.
* The remainder value is mathematically equal to
* <code>f1 - f2</code> × <i>n</i>,
* where <i>n</i> is the mathematical integer closest to the exact
* mathematical value of the quotient <code>f1/f2</code>, and if two
* mathematical integers are equally close to <code>f1/f2</code>,
* then <i>n</i> is the integer that is even. If the remainder is
* zero, its sign is the same as the sign of the first argument.
* Special cases:
* <ul><li>If either argument is NaN, or the first argument is infinite,
* or the second argument is positive zero or negative zero, then the
* result is NaN.
* <li>If the first argument is finite and the second argument is
* infinite, then the result is the same as the first argument.</ul>
*
* @param f1 the dividend.
* @param f2 the divisor.
* @return the remainder when <code>f1</code> is divided by
* <code>f2</code>.
*/
public static double IEEEremainder(double f1, double f2) {
//KML return StrictMath.IEEEremainder(f1, f2); // delegate to StrictMath
}
/**
* Returns the smallest (closest to negative infinity)
* <code>double</code> value that is not less than the argument and is
* equal to a mathematical integer. Special cases:
* <ul><li>If the argument value is already equal to a mathematical
* integer, then the result is the same as the argument.
* <li>If the argument is NaN or an infinity or positive zero or negative
* zero, then the result is the same as the argument.
* <li>If the argument value is less than zero but greater than -1.0,
* then the result is negative zero.</ul>
* Note that the value of <code>Math.ceil(x)</code> is exactly the
* value of <code>-Math.floor(-x)</code>.
*
* @param a a value.
* <!--@return the value ⌈ <code>a</code> ⌉.-->
* @return the smallest (closest to negative infinity)
* floating-point value that is not less than the argument
* and is equal to a mathematical integer.
*/
public static double ceil(double a) {
//KML return StrictMath.ceil(a); // default impl. delegates to StrictMath
}
/**
* Returns the largest (closest to positive infinity)
* <code>double</code> value that is not greater than the argument and
* is equal to a mathematical integer. Special cases:
* <ul><li>If the argument value is already equal to a mathematical
* integer, then the result is the same as the argument.
* <li>If the argument is NaN or an infinity or positive zero or
* negative zero, then the result is the same as the argument.</ul>
*
* @param a a value.
* <!--@return the value ⌊ <code>a</code> ⌋.-->
* @return the largest (closest to positive infinity)
* floating-point value that is not greater than the argument
* and is equal to a mathematical integer.
*/
public static double floor(double a) {
//KML return StrictMath.floor(a); // default impl. delegates to StrictMath
}
/**
* Returns the <code>double</code> value that is closest in value
* to the argument and is equal to a mathematical integer. If two
* <code>double</code> values that are mathematical integers are
* equally close, the result is the integer value that is
* even. Special cases:
* <ul><li>If the argument value is already equal to a mathematical
* integer, then the result is the same as the argument.
* <li>If the argument is NaN or an infinity or positive zero or negative
* zero, then the result is the same as the argument.</ul>
*
* @param a a <code>double</code> value.
* @return the closest floating-point value to <code>a</code> that is
* equal to a mathematical integer.
*/
public static double rint(double a) {
//KML return StrictMath.rint(a); // default impl. delegates to StrictMath
}
/**
* Converts rectangular coordinates (<code>x</code>, <code>y</code>)
* to polar (r, <i>theta</i>).
* This method computes the phase <i>theta</i> by computing an arc tangent
* of <code>y/x</code> in the range of -<i>pi</i> to <i>pi</i>. Special
* cases:
* <ul><li>If either argument is NaN, then the result is NaN.
* <li>If the first argument is positive zero and the second argument
* is positive, or the first argument is positive and finite and the
* second argument is positive infinity, then the result is positive
* zero.
* <li>If the first argument is negative zero and the second argument
* is positive, or the first argument is negative and finite and the
* second argument is positive infinity, then the result is negative zero.
* <li>If the first argument is positive zero and the second argument
* is negative, or the first argument is positive and finite and the
* second argument is negative infinity, then the result is the
* <code>double</code> value closest to <i>pi</i>.
* <li>If the first argument is negative zero and the second argument
* is negative, or the first argument is negative and finite and the
* second argument is negative infinity, then the result is the
* <code>double</code> value closest to -<i>pi</i>.
* <li>If the first argument is positive and the second argument is
* positive zero or negative zero, or the first argument is positive
* infinity and the second argument is finite, then the result is the
* <code>double</code> value closest to <i>pi</i>/2.
* <li>If the first argument is negative and the second argument is
* positive zero or negative zero, or the first argument is negative
* infinity and the second argument is finite, then the result is the
* <code>double</code> value closest to -<i>pi</i>/2.
* <li>If both arguments are positive infinity, then the result is the
* <code>double</code> value closest to <i>pi</i>/4.
* <li>If the first argument is positive infinity and the second argument
* is negative infinity, then the result is the <code>double</code>
* value closest to 3*<i>pi</i>/4.
* <li>If the first argument is negative infinity and the second argument
* is positive infinity, then the result is the <code>double</code> value
* closest to -<i>pi</i>/4.
* <li>If both arguments are negative infinity, then the result is the
* <code>double</code> value closest to -3*<i>pi</i>/4.</ul>
* <p>
* A result must be within 2 ulps of the correctly rounded result. Results
* must be semi-monotonic.
*
* @param y the ordinate coordinate
* @param x the abscissa coordinate
* @return the <i>theta</i> component of the point
* (<i>r</i>, <i>theta</i>)
* in polar coordinates that corresponds to the point
* (<i>x</i>, <i>y</i>) in Cartesian coordinates.
*/
public static double atan2(double y, double x) {
//KML return StrictMath.atan2(y, x); // default impl. delegates to StrictMath
}
/**
* Returns the value of the first argument raised to the power of the
* second argument. Special cases:
*
* <ul><li>If the second argument is positive or negative zero, then the
* result is 1.0.
* <li>If the second argument is 1.0, then the result is the same as the
* first argument.
* <li>If the second argument is NaN, then the result is NaN.
* <li>If the first argument is NaN and the second argument is nonzero,
* then the result is NaN.
*
* <li>If
* <ul>
* <li>the absolute value of the first argument is greater than 1
* and the second argument is positive infinity, or
* <li>the absolute value of the first argument is less than 1 and
* the second argument is negative infinity,
* </ul>
* then the result is positive infinity.
*
* <li>If
* <ul>
* <li>the absolute value of the first argument is greater than 1 and
* the second argument is negative infinity, or
* <li>the absolute value of the
* first argument is less than 1 and the second argument is positive
* infinity,
* </ul>
* then the result is positive zero.
*
* <li>If the absolute value of the first argument equals 1 and the
* second argument is infinite, then the result is NaN.
*
* <li>If
* <ul>
* <li>the first argument is positive zero and the second argument
* is greater than zero, or
* <li>the first argument is positive infinity and the second
* argument is less than zero,
* </ul>
* then the result is positive zero.
*
* <li>If
* <ul>
* <li>the first argument is positive zero and the second argument
* is less than zero, or
* <li>the first argument is positive infinity and the second
* argument is greater than zero,
* </ul>
* then the result is positive infinity.
*
* <li>If
* <ul>
* <li>the first argument is negative zero and the second argument
* is greater than zero but not a finite odd integer, or
* <li>the first argument is negative infinity and the second
* argument is less than zero but not a finite odd integer,
* </ul>
* then the result is positive zero.
*
* <li>If
* <ul>
* <li>the first argument is negative zero and the second argument
* is a positive finite odd integer, or
* <li>the first argument is negative infinity and the second
* argument is a negative finite odd integer,
* </ul>
* then the result is negative zero.
*
* <li>If
* <ul>
* <li>the first argument is negative zero and the second argument
* is less than zero but not a finite odd integer, or
* <li>the first argument is negative infinity and the second
* argument is greater than zero but not a finite odd integer,
* </ul>
* then the result is positive infinity.
*
* <li>If
* <ul>
* <li>the first argument is negative zero and the second argument
* is a negative finite odd integer, or
* <li>the first argument is negative infinity and the second
* argument is a positive finite odd integer,
* </ul>
* then the result is negative infinity.
*
* <li>If the first argument is finite and less than zero
* <ul>
* <li> if the second argument is a finite even integer, the
* result is equal to the result of raising the absolute value of
* the first argument to the power of the second argument
*
* <li>if the second argument is a finite odd integer, the result
* is equal to the negative of the result of raising the absolute
* value of the first argument to the power of the second
* argument
*
* <li>if the second argument is finite and not an integer, then
* the result is NaN.
* </ul>
*
* <li>If both arguments are integers, then the result is exactly equal
* to the mathematical result of raising the first argument to the power
* of the second argument if that result can in fact be represented
* exactly as a <code>double</code> value.</ul>
*
* <p>(In the foregoing descriptions, a floating-point value is
* considered to be an integer if and only if it is finite and a
* fixed point of the method {@link #ceil <tt>ceil</tt>} or,
* equivalently, a fixed point of the method {@link #floor
* <tt>floor</tt>}. A value is a fixed point of a one-argument
* method if and only if the result of applying the method to the
* value is equal to the value.)
*
* <p>A result must be within 1 ulp of the correctly rounded
* result. Results must be semi-monotonic.
*
* @param a the base.
* @param b the exponent.
* @return the value <code>a<sup>b</sup></code>.
*/
public static double pow(double a, double b) {
//KML return StrictMath.pow(a, b); // default impl. delegates to StrictMath
}
/**
* Returns the closest <code>int</code> to the argument. The
* result is rounded to an integer by adding 1/2, taking the
* floor of the result, and casting the result to type <code>int</code>.
* In other words, the result is equal to the value of the expression:
* <p><pre>(int)Math.floor(a + 0.5f)</pre>
* <p>
* Special cases:
* <ul><li>If the argument is NaN, the result is 0.
* <li>If the argument is negative infinity or any value less than or
* equal to the value of <code>Integer.MIN_VALUE</code>, the result is
* equal to the value of <code>Integer.MIN_VALUE</code>.
* <li>If the argument is positive infinity or any value greater than or
* equal to the value of <code>Integer.MAX_VALUE</code>, the result is
* equal to the value of <code>Integer.MAX_VALUE</code>.</ul>
*
* @param a a floating-point value to be rounded to an integer.
* @return the value of the argument rounded to the nearest
* <code>int</code> value.
* @see java.lang.Integer#MAX_VALUE
* @see java.lang.Integer#MIN_VALUE
*/
public static int round(float a) {
return (int)floor(a + 0.5f);
}
/**
* Returns the closest <code>long</code> to the argument. The result
* is rounded to an integer by adding 1/2, taking the floor of the
* result, and casting the result to type <code>long</code>. In other
* words, the result is equal to the value of the expression:
* <p><pre>(long)Math.floor(a + 0.5d)</pre>
* <p>
* Special cases:
* <ul><li>If the argument is NaN, the result is 0.
* <li>If the argument is negative infinity or any value less than or
* equal to the value of <code>Long.MIN_VALUE</code>, the result is
* equal to the value of <code>Long.MIN_VALUE</code>.
* <li>If the argument is positive infinity or any value greater than or
* equal to the value of <code>Long.MAX_VALUE</code>, the result is
* equal to the value of <code>Long.MAX_VALUE</code>.</ul>
*
* @param a a floating-point value to be rounded to a
* <code>long</code>.
* @return the value of the argument rounded to the nearest
* <code>long</code> value.
* @see java.lang.Long#MAX_VALUE
* @see java.lang.Long#MIN_VALUE
*/
public static long round(double a) {
return (long)floor(a + 0.5d);
}
//KML private static Random randomNumberGenerator;
private static synchronized void initRNG() {
/*KML
if (randomNumberGenerator == null)
randomNumberGenerator = new Random();
*/
}
/**
* Returns a <code>double</code> value with a positive sign, greater
* than or equal to <code>0.0</code> and less than <code>1.0</code>.
* Returned values are chosen pseudorandomly with (approximately)
* uniform distribution from that range.
* <p>
* When this method is first called, it creates a single new
* pseudorandom-number generator, exactly as if by the expression
* <blockquote><pre>new java.util.Random</pre></blockquote>
* This new pseudorandom-number generator is used thereafter for all
* calls to this method and is used nowhere else.
* <p>
* This method is properly synchronized to allow correct use by more
* than one thread. However, if many threads need to generate
* pseudorandom numbers at a great rate, it may reduce contention for
* each thread to have its own pseudorandom-number generator.
*
* @return a pseudorandom <code>double</code> greater than or equal
* to <code>0.0</code> and less than <code>1.0</code>.
* @see java.util.Random#nextDouble()
*/
public static double random() {
/*KML
if (randomNumberGenerator == null) initRNG();
return randomNumberGenerator.nextDouble();
*/
}
/**
* Returns the absolute value of an <code>int</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
* <p>
* Note that if the argument is equal to the value of
* <code>Integer.MIN_VALUE</code>, the most negative representable
* <code>int</code> value, the result is that same value, which is
* negative.
*
* @param a the argument whose absolute value is to be determined
* @return the absolute value of the argument.
* @see java.lang.Integer#MIN_VALUE
*/
public static int abs(int a) {
return (a < 0) ? -a : a;
}
/**
* Returns the absolute value of a <code>long</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
* <p>
* Note that if the argument is equal to the value of
* <code>Long.MIN_VALUE</code>, the most negative representable
* <code>long</code> value, the result is that same value, which is
* negative.
*
* @param a the argument whose absolute value is to be determined
* @return the absolute value of the argument.
* @see java.lang.Long#MIN_VALUE
*/
public static long abs(long a) {
return (a < 0) ? -a : a;
}
/**
* Returns the absolute value of a <code>float</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
* Special cases:
* <ul><li>If the argument is positive zero or negative zero, the
* result is positive zero.
* <li>If the argument is infinite, the result is positive infinity.
* <li>If the argument is NaN, the result is NaN.</ul>
* In other words, the result is the same as the value of the expression:
* <p><pre>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</pre>
*
* @param a the argument whose absolute value is to be determined
* @return the absolute value of the argument.
*/
public static float abs(float a) {
return (a <= 0.0F) ? 0.0F - a : a;
}
/**
* Returns the absolute value of a <code>double</code> value.
* If the argument is not negative, the argument is returned.
* If the argument is negative, the negation of the argument is returned.
* Special cases:
* <ul><li>If the argument is positive zero or negative zero, the result
* is positive zero.
* <li>If the argument is infinite, the result is positive infinity.
* <li>If the argument is NaN, the result is NaN.</ul>
* In other words, the result is the same as the value of the expression:
* <p><code>Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)</code>
*
* @param a the argument whose absolute value is to be determined
* @return the absolute value of the argument.
*/
/*@ ensures \result == \real_abs(a);
@*/
public static double abs(double a) {
return (a <= 0.0D) ? 0.0D - a : a;
}
/**
* Returns the greater of two <code>int</code> values. That is, the
* result is the argument closer to the value of
* <code>Integer.MAX_VALUE</code>. If the arguments have the same value,
* the result is that same value.
*
* @param a an argument.
* @param b another argument.
* @return the larger of <code>a</code> and <code>b</code>.
* @see java.lang.Long#MAX_VALUE
*/
/*@ ensures \result == \int_max(a,b);
@*/
public static int max(int a, int b) {
return (a >= b) ? a : b;
}
/**
* Returns the greater of two <code>long</code> values. That is, the
* result is the argument closer to the value of
* <code>Long.MAX_VALUE</code>. If the arguments have the same value,
* the result is that same value.
*
* @param a an argument.
* @param b another argument.
* @return the larger of <code>a</code> and <code>b</code>.
* @see java.lang.Long#MAX_VALUE
*/
/*@ ensures \result == \int_max(a,b);
@*/
public static long max(long a, long b) {
return (a >= b) ? a : b;
}
//KML private static long negativeZeroFloatBits = Float.floatToIntBits(-0.0f);
//KML private static long negativeZeroDoubleBits = Double.doubleToLongBits(-0.0d);
/**
* Returns the greater of two <code>float</code> values. That is,
* the result is the argument closer to positive infinity. If the
* arguments have the same value, the result is that same
* value. If either value is NaN, then the result is NaN. Unlike
* the the numerical comparison operators, this method considers
* negative zero to be strictly smaller than positive zero. If one
* argument is positive zero and the other negative zero, the
* result is positive zero.
*
* @param a an argument.
* @param b another argument.
* @return the larger of <code>a</code> and <code>b</code>.
*/
/*@ ensures \result == \real_max(a,b);
@*/
public static float max(float a, float b) {
if (a != a) return a; // a is NaN
/*KML
if ((a == 0.0f) && (b == 0.0f)
&& (Float.floatToIntBits(a) == negativeZeroFloatBits)) {
return b;
}
*/
return (a >= b) ? a : b;
}
/**
* Returns the greater of two <code>double</code> values. That
* is, the result is the argument closer to positive infinity. If
* the arguments have the same value, the result is that same
* value. If either value is NaN, then the result is NaN. Unlike
* the the numerical comparison operators, this method considers
* negative zero to be strictly smaller than positive zero. If one
* argument is positive zero and the other negative zero, the
* result is positive zero.
*
* @param a an argument.
* @param b another argument.
* @return the larger of <code>a</code> and <code>b</code>.
*/
/*@ ensures \result == \real_max(a,b);
@*/
public static double max(double a, double b) {
if (a != a) return a; // a is NaN
/*KML
if ((a == 0.0d) && (b == 0.0d)
&& (Double.doubleToLongBits(a) == negativeZeroDoubleBits)) {
return b;
}
*/
return (a >= b) ? a : b;
}
/**
* Returns the smaller of two <code>int</code> values. That is,
* the result the argument closer to the value of
* <code>Integer.MIN_VALUE</code>. If the arguments have the same
* value, the result is that same value.
*
* @param a an argument.
* @param b another argument.
* @return the smaller of <code>a</code> and <code>b</code>.
* @see java.lang.Long#MIN_VALUE
*/
/*@ ensures \result == \int_min(a,b);
@*/
public static int min(int a, int b) {
return (a <= b) ? a : b;
}
/**
* Returns the smaller of two <code>long</code> values. That is,
* the result is the argument closer to the value of
* <code>Long.MIN_VALUE</code>. If the arguments have the same
* value, the result is that same value.
*
* @param a an argument.
* @param b another argument.
* @return the smaller of <code>a</code> and <code>b</code>.
* @see java.lang.Long#MIN_VALUE
*/
/*@ ensures \result == \int_min(a,b);
@*/
public static long min(long a, long b) {
return (a <= b) ? a : b;
}
/**
* Returns the smaller of two <code>float</code> values. That is,
* the result is the value closer to negative infinity. If the
* arguments have the same value, the result is that same
* value. If either value is NaN, then the result is NaN. Unlike
* the the numerical comparison operators, this method considers
* negative zero to be strictly smaller than positive zero. If
* one argument is positive zero and the other is negative zero,
* the result is negative zero.
*
* @param a an argument.
* @param b another argument.
* @return the smaller of <code>a</code> and <code>b.</code>
*/
/*@ ensures \result == \real_min(a,b);
@*/
public static float min(float a, float b) {
if (a != a) return a; // a is NaN
/*KML
if ((a == 0.0f) && (b == 0.0f)
&& (Float.floatToIntBits(b) == negativeZeroFloatBits)) {
return b;
}
*/
return (a <= b) ? a : b;
}
/**
* Returns the smaller of two <code>double</code> values. That
* is, the result is the value closer to negative infinity. If the
* arguments have the same value, the result is that same
* value. If either value is NaN, then the result is NaN. Unlike
* the the numerical comparison operators, this method considers
* negative zero to be strictly smaller than positive zero. If one
* argument is positive zero and the other is negative zero, the
* result is negative zero.
*
* @param a an argument.
* @param b another argument.
* @return the smaller of <code>a</code> and <code>b</code>.
*/
/*@ ensures \result == \real_min(a,b);
@*/
public static double min(double a, double b) {
if (a != a) return a; // a is NaN
/*KML
if ((a == 0.0d) && (b == 0.0d)
&& (Double.doubleToLongBits(b) == negativeZeroDoubleBits)) {
return b;
}
*/
return (a <= b) ? a : b;
}
}
|