1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
|
/*
* @(#)Throwable.java 1.51 03/01/23
*
* Copyright 2003 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/
package java.lang;
import java.io.*;
/**
* The <code>Throwable</code> class is the superclass of all errors and
* exceptions in the Java language. Only objects that are instances of this
* class (or one of its subclasses) are thrown by the Java Virtual Machine or
* can be thrown by the Java <code>throw</code> statement. Similarly, only
* this class or one of its subclasses can be the argument type in a
* <code>catch</code> clause.
*
* <p>Instances of two subclasses, {@link java.lang.Error} and
* {@link java.lang.Exception}, are conventionally used to indicate
* that exceptional situations have occurred. Typically, these instances
* are freshly created in the context of the exceptional situation so
* as to include relevant information (such as stack trace data).
*
* <p>A throwable contains a snapshot of the execution stack of its thread at
* the time it was created. It can also contain a message string that gives
* more information about the error. Finally, it can contain a <i>cause</i>:
* another throwable that caused this throwable to get thrown. The cause
* facility is new in release 1.4. It is also known as the <i>chained
* exception</i> facility, as the cause can, itself, have a cause, and so on,
* leading to a "chain" of exceptions, each caused by another.
*
* <p>One reason that a throwable may have a cause is that the class that
* throws it is built atop a lower layered abstraction, and an operation on
* the upper layer fails due to a failure in the lower layer. It would be bad
* design to let the throwable thrown by the lower layer propagate outward, as
* it is generally unrelated to the abstraction provided by the upper layer.
* Further, doing so would tie the API of the upper layer to the details of
* its implementation, assuming the lower layer's exception was a checked
* exception. Throwing a "wrapped exception" (i.e., an exception containing a
* cause) allows the upper layer to communicate the details of the failure to
* its caller without incurring either of these shortcomings. It preserves
* the flexibility to change the implementation of the upper layer without
* changing its API (in particular, the set of exceptions thrown by its
* methods).
*
* <p>A second reason that a throwable may have a cause is that the method
* that throws it must conform to a general-purpose interface that does not
* permit the method to throw the cause directly. For example, suppose
* a persistent collection conforms to the {@link java.util.Collection
* Collection} interface, and that its persistence is implemented atop
* <tt>java.io</tt>. Suppose the internals of the <tt>put</tt> method
* can throw an {@link java.io.IOException IOException}. The implementation
* can communicate the details of the <tt>IOException</tt> to its caller
* while conforming to the <tt>Collection</tt> interface by wrapping the
* <tt>IOException</tt> in an appropriate unchecked exception. (The
* specification for the persistent collection should indicate that it is
* capable of throwing such exceptions.)
*
* <p>A cause can be associated with a throwable in two ways: via a
* constructor that takes the cause as an argument, or via the
* {@link #initCause(Throwable)} method. New throwable classes that
* wish to allow causes to be associated with them should provide constructors
* that take a cause and delegate (perhaps indirectly) to one of the
* <tt>Throwable</tt> constructors that takes a cause. For example:
* <pre>
* try {
* lowLevelOp();
* } catch (LowLevelException le) {
* throw new HighLevelException(le); // Chaining-aware constructor
* }
* </pre>
* Because the <tt>initCause</tt> method is public, it allows a cause to be
* associated with any throwable, even a "legacy throwable" whose
* implementation predates the addition of the exception chaining mechanism to
* <tt>Throwable</tt>. For example:
* <pre>
* try {
* lowLevelOp();
* } catch (LowLevelException le) {
* throw (HighLevelException)
new HighLevelException().initCause(le); // Legacy constructor
* }
* </pre>
*
* <p>Prior to release 1.4, there were many throwables that had their own
* non-standard exception chaining mechanisms (
* {@link ExceptionInInitializerError}, {@link ClassNotFoundException},
* {@link java.lang.reflect.UndeclaredThrowableException},
* {@link java.lang.reflect.InvocationTargetException},
* {@link java.io.WriteAbortedException},
* {@link java.security.PrivilegedActionException},
* {@link java.awt.print.PrinterIOException} and
* {@link java.rmi.RemoteException}).
* As of release 1.4, all of these throwables have been retrofitted to
* use the standard exception chaining mechanism, while continuing to
* implement their "legacy" chaining mechanisms for compatibility.
*
* <p>Further, as of release 1.4, many general purpose <tt>Throwable</tt>
* classes (for example {@link Exception}, {@link RuntimeException},
* {@link Error}) have been retrofitted with constructors that take
* a cause. This was not strictly necessary, due to the existence of the
* <tt>initCause</tt> method, but it is more convenient and expressive to
* delegate to a constructor that takes a cause.
*
* <p>By convention, class <code>Throwable</code> and its subclasses have two
* constructors, one that takes no arguments and one that takes a
* <code>String</code> argument that can be used to produce a detail message.
* Further, those subclasses that might likely have a cause associated with
* them should have two more constructors, one that takes a
* <code>Throwable</code> (the cause), and one that takes a
* <code>String</code> (the detail message) and a <code>Throwable</code> (the
* cause).
*
* <p>Also introduced in release 1.4 is the {@link #getStackTrace()} method,
* which allows programmatic access to the stack trace information that was
* previously available only in text form, via the various forms of the
* {@link #printStackTrace()} method. This information has been added to the
* <i>serialized representation</i> of this class so <tt>getStackTrace</tt>
* and <tt>printStackTrace</tt> will operate properly on a throwable that
* was obtained by deserialization.
*
* @author unascribed
* @author Josh Bloch (Added exception chaining and programmatic access to
* stack trace in 1.4.)
* @version 1.51, 01/23/03
* @since JDK1.0
*/
public class Throwable implements Serializable {
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = -3042686055658047285L;
/**
* Native code saves some indication of the stack backtrace in this slot.
*/
private transient Object backtrace;
/**
* Specific details about the Throwable. For example, for
* <tt>FileNotFoundException</tt>, this contains the name of
* the file that could not be found.
*
* @serial
*/
private String detailMessage;
/**
* The throwable that caused this throwable to get thrown, or null if this
* throwable was not caused by another throwable, or if the causative
* throwable is unknown. If this field is equal to this throwable itself,
* it indicates that the cause of this throwable has not yet been
* initialized.
*
* @serial
* @since 1.4
*/
private Throwable cause = this;
/**
* The stack trace, as returned by {@link #getStackTrace()}.
*
* @serial
* @since 1.4
*/
//*KML private StackTraceElement[] stackTrace;
/*
* This field is lazily initialized on first use or serialization and
* nulled out when fillInStackTrace is called.
*/
/**
* Constructs a new throwable with <code>null</code> as its detail message.
* The cause is not initialized, and may subsequently be initialized by a
* call to {@link #initCause}.
*
* <p>The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*/
public Throwable() {
fillInStackTrace();
}
/**
* Constructs a new throwable with the specified detail message. The
* cause is not initialized, and may subsequently be initialized by
* a call to {@link #initCause}.
*
* <p>The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*
* @param message the detail message. The detail message is saved for
* later retrieval by the {@link #getMessage()} method.
*/
public Throwable(String message) {
fillInStackTrace();
detailMessage = message;
}
/**
* Constructs a new throwable with the specified detail message and
* cause. <p>Note that the detail message associated with
* <code>cause</code> is <i>not</i> automatically incorporated in
* this throwable's detail message.
*
* <p>The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*
* @param message the detail message (which is saved for later retrieval
* by the {@link #getMessage()} method).
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A <tt>null</tt> value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public Throwable(String message, Throwable cause) {
fillInStackTrace();
detailMessage = message;
this.cause = cause;
}
/**
* Constructs a new throwable with the specified cause and a detail
* message of <tt>(cause==null ? null : cause.toString())</tt> (which
* typically contains the class and detail message of <tt>cause</tt>).
* This constructor is useful for throwables that are little more than
* wrappers for other throwables (for example, {@link
* java.security.PrivilegedActionException}).
*
* <p>The {@link #fillInStackTrace()} method is called to initialize
* the stack trace data in the newly created throwable.
*
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A <tt>null</tt> value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @since 1.4
*/
public Throwable(Throwable cause) {
fillInStackTrace();
detailMessage = (cause==null ? null : cause.toString());
this.cause = cause;
}
/**
* Returns the detail message string of this throwable.
*
* @return the detail message string of this <tt>Throwable</tt> instance
* (which may be <tt>null</tt>).
*/
public String getMessage() {
return detailMessage;
}
/**
* Creates a localized description of this throwable.
* Subclasses may override this method in order to produce a
* locale-specific message. For subclasses that do not override this
* method, the default implementation returns the same result as
* <code>getMessage()</code>.
*
* @return The localized description of this throwable.
* @since JDK1.1
*/
public String getLocalizedMessage() {
return getMessage();
}
/**
* Returns the cause of this throwable or <code>null</code> if the
* cause is nonexistent or unknown. (The cause is the throwable that
* caused this throwable to get thrown.)
*
* <p>This implementation returns the cause that was supplied via one of
* the constructors requiring a <tt>Throwable</tt>, or that was set after
* creation with the {@link #initCause(Throwable)} method. While it is
* typically unnecessary to override this method, a subclass can override
* it to return a cause set by some other means. This is appropriate for
* a "legacy chained throwable" that predates the addition of chained
* exceptions to <tt>Throwable</tt>. Note that it is <i>not</i>
* necessary to override any of the <tt>PrintStackTrace</tt> methods,
* all of which invoke the <tt>getCause</tt> method to determine the
* cause of a throwable.
*
* @return the cause of this throwable or <code>null</code> if the
* cause is nonexistent or unknown.
* @since 1.4
*/
public Throwable getCause() {
return (cause==this ? null : cause);
}
/**
* Initializes the <i>cause</i> of this throwable to the specified value.
* (The cause is the throwable that caused this throwable to get thrown.)
*
* <p>This method can be called at most once. It is generally called from
* within the constructor, or immediately after creating the
* throwable. If this throwable was created
* with {@link #Throwable(Throwable)} or
* {@link #Throwable(String,Throwable)}, this method cannot be called
* even once.
*
* @param cause the cause (which is saved for later retrieval by the
* {@link #getCause()} method). (A <tt>null</tt> value is
* permitted, and indicates that the cause is nonexistent or
* unknown.)
* @return a reference to this <code>Throwable</code> instance.
* @throws IllegalArgumentException if <code>cause</code> is this
* throwable. (A throwable cannot be its own cause.)
* @throws IllegalStateException if this throwable was
* created with {@link #Throwable(Throwable)} or
* {@link #Throwable(String,Throwable)}, or this method has already
* been called on this throwable.
* @since 1.4
*/
public synchronized Throwable initCause(Throwable cause) {
if (this.cause != this)
throw new IllegalStateException("Can't overwrite cause");
if (cause == this)
throw new IllegalArgumentException("Self-causation not permitted");
this.cause = cause;
return this;
}
/**
* Returns a short description of this throwable.
* If this <code>Throwable</code> object was created with a non-null detail
* message string, then the result is the concatenation of three strings:
* <ul>
* <li>The name of the actual class of this object
* <li>": " (a colon and a space)
* <li>The result of the {@link #getMessage} method for this object
* </ul>
* If this <code>Throwable</code> object was created with a <tt>null</tt>
* detail message string, then the name of the actual class of this object
* is returned.
*
* @return a string representation of this throwable.
*/
public String toString() {
String s = getClass().getName();
String message = getLocalizedMessage();
return (message != null) ? (s + ": " + message) : s;
}
/**
* Prints this throwable and its backtrace to the
* standard error stream. This method prints a stack trace for this
* <code>Throwable</code> object on the error output stream that is
* the value of the field <code>System.err</code>. The first line of
* output contains the result of the {@link #toString()} method for
* this object. Remaining lines represent data previously recorded by
* the method {@link #fillInStackTrace()}. The format of this
* information depends on the implementation, but the following
* example may be regarded as typical:
* <blockquote><pre>
* java.lang.NullPointerException
* at MyClass.mash(MyClass.java:9)
* at MyClass.crunch(MyClass.java:6)
* at MyClass.main(MyClass.java:3)
* </pre></blockquote>
* This example was produced by running the program:
* <pre>
* class MyClass {
* public static void main(String[] args) {
* crunch(null);
* }
* static void crunch(int[] a) {
* mash(a);
* }
* static void mash(int[] b) {
* System.out.println(b[0]);
* }
* }
* </pre>
* The backtrace for a throwable with an initialized, non-null cause
* should generally include the backtrace for the cause. The format
* of this information depends on the implementation, but the following
* example may be regarded as typical:
* <pre>
* HighLevelException: MidLevelException: LowLevelException
* at Junk.a(Junk.java:13)
* at Junk.main(Junk.java:4)
* Caused by: MidLevelException: LowLevelException
* at Junk.c(Junk.java:23)
* at Junk.b(Junk.java:17)
* at Junk.a(Junk.java:11)
* ... 1 more
* Caused by: LowLevelException
* at Junk.e(Junk.java:30)
* at Junk.d(Junk.java:27)
* at Junk.c(Junk.java:21)
* ... 3 more
* </pre>
* Note the presence of lines containing the characters <tt>"..."</tt>.
* These lines indicate that the remainder of the stack trace for this
* exception matches the indicated number of frames from the bottom of the
* stack trace of the exception that was caused by this exception (the
* "enclosing" exception). This shorthand can greatly reduce the length
* of the output in the common case where a wrapped exception is thrown
* from same method as the "causative exception" is caught. The above
* example was produced by running the program:
* <pre>
* public class Junk {
* public static void main(String args[]) {
* try {
* a();
* } catch(HighLevelException e) {
* e.printStackTrace();
* }
* }
* static void a() throws HighLevelException {
* try {
* b();
* } catch(MidLevelException e) {
* throw new HighLevelException(e);
* }
* }
* static void b() throws MidLevelException {
* c();
* }
* static void c() throws MidLevelException {
* try {
* d();
* } catch(LowLevelException e) {
* throw new MidLevelException(e);
* }
* }
* static void d() throws LowLevelException {
* e();
* }
* static void e() throws LowLevelException {
* throw new LowLevelException();
* }
* }
*
* class HighLevelException extends Exception {
* HighLevelException(Throwable cause) { super(cause); }
* }
*
* class MidLevelException extends Exception {
* MidLevelException(Throwable cause) { super(cause); }
* }
*
* class LowLevelException extends Exception {
* }
* </pre>
*/
public void printStackTrace() {
printStackTrace(System.err);
}
/**
* Prints this throwable and its backtrace to the specified print stream.
*
* @param s <code>PrintStream</code> to use for output
*/
public void printStackTrace(PrintStream s) {
synchronized (s) {
s.println(this);
StackTraceElement[] trace = getOurStackTrace();
for (int i=0; i < trace.length; i++)
s.println("\tat " + trace[i]);
Throwable ourCause = getCause();
if (ourCause != null)
ourCause.printStackTraceAsCause(s, trace);
}
}
/**
* Print our stack trace as a cause for the specified stack trace.
*/
/*KML
private void printStackTraceAsCause(PrintStream s,
StackTraceElement[] causedTrace)
{
// assert Thread.holdsLock(s);
// Compute number of frames in common between this and caused
StackTraceElement[] trace = getOurStackTrace();
int m = trace.length-1, n = causedTrace.length-1;
while (m >= 0 && n >=0 && trace[m].equals(causedTrace[n])) {
m--; n--;
}
int framesInCommon = trace.length - 1 - m;
s.println("Caused by: " + this);
for (int i=0; i <= m; i++)
s.println("\tat " + trace[i]);
if (framesInCommon != 0)
s.println("\t... " + framesInCommon + " more");
// Recurse if we have a cause
Throwable ourCause = getCause();
if (ourCause != null)
ourCause.printStackTraceAsCause(s, trace);
}
KML*/
/**
* Prints this throwable and its backtrace to the specified
* print writer.
*
* @param s <code>PrintWriter</code> to use for output
* @since JDK1.1
*/
/*KML
public void printStackTrace(PrintWriter s) {
synchronized (s) {
s.println(this);
StackTraceElement[] trace = getOurStackTrace();
for (int i=0; i < trace.length; i++)
s.println("\tat " + trace[i]);
Throwable ourCause = getCause();
if (ourCause != null)
ourCause.printStackTraceAsCause(s, trace);
}
}
KML*/
/**
* Print our stack trace as a cause for the specified stack trace.
*/
/*KML
private void printStackTraceAsCause(PrintWriter s,
StackTraceElement[] causedTrace)
{
// assert Thread.holdsLock(s);
// Compute number of frames in common between this and caused
StackTraceElement[] trace = getOurStackTrace();
int m = trace.length-1, n = causedTrace.length-1;
while (m >= 0 && n >=0 && trace[m].equals(causedTrace[n])) {
m--; n--;
}
int framesInCommon = trace.length - 1 - m;
s.println("Caused by: " + this);
for (int i=0; i <= m; i++)
s.println("\tat " + trace[i]);
if (framesInCommon != 0)
s.println("\t... " + framesInCommon + " more");
// Recurse if we have a cause
Throwable ourCause = getCause();
if (ourCause != null)
ourCause.printStackTraceAsCause(s, trace);
}
KML*/
/**
* Fills in the execution stack trace. This method records within this
* <code>Throwable</code> object information about the current state of
* the stack frames for the current thread.
*
* @return a reference to this <code>Throwable</code> instance.
* @see java.lang.Throwable#printStackTrace()
*/
public synchronized native Throwable fillInStackTrace();
/**
* Provides programmatic access to the stack trace information printed by
* {@link #printStackTrace()}. Returns an array of stack trace elements,
* each representing one stack frame. The zeroth element of the array
* (assuming the array's length is non-zero) represents the top of the
* stack, which is the last method invocation in the sequence. Typically,
* this is the point at which this throwable was created and thrown.
* The last element of the array (assuming the array's length is non-zero)
* represents the bottom of the stack, which is the first method invocation
* in the sequence.
*
* <p>Some virtual machines may, under some circumstances, omit one
* or more stack frames from the stack trace. In the extreme case,
* a virtual machine that has no stack trace information concerning
* this throwable is permitted to return a zero-length array from this
* method. Generally speaking, the array returned by this method will
* contain one element for every frame that would be printed by
* <tt>printStackTrace</tt>.
*
* @return an array of stack trace elements representing the stack trace
* pertaining to this throwable.
* @since 1.4
*/
/*KML
public StackTraceElement[] getStackTrace() {
return (StackTraceElement[]) getOurStackTrace().clone();
}
KML*/
/*KML
private synchronized StackTraceElement[] getOurStackTrace() {
// Initialize stack trace if this is the first call to this method
if (stackTrace == null) {
int depth = getStackTraceDepth();
stackTrace = new StackTraceElement[depth];
for (int i=0; i < depth; i++)
stackTrace[i] = getStackTraceElement(i);
}
return stackTrace;
}
KML*/
/**
* Sets the stack trace elements that will be returned by
* {@link #getStackTrace()} and printed by {@link #printStackTrace()}
* and related methods.
*
* This method, which is designed for use by RPC frameworks and other
* advanced systems, allows the client to override the default
* stack trace that is either generated by {@link #fillInStackTrace()}
* when a throwable is constructed or deserialized when a throwable is
* read from a serialization stream.
*
* @param stackTrace the stack trace elements to be associated with
* this <code>Throwable</code>. The specified array is copied by this
* call; changes in the specified array after the method invocation
* returns will have no affect on this <code>Throwable</code>'s stack
* trace.
*
* @throws NullPointerException if <code>stackTrace</code> is
* <code>null</code>, or if any of the elements of
* <code>stackTrace</code> are <code>null</code>
*
* @since 1.4
*/
/*KML
public void setStackTrace(StackTraceElement[] stackTrace) {
StackTraceElement[] defensiveCopy =
(StackTraceElement[]) stackTrace.clone();
for (int i = 0; i < defensiveCopy.length; i++)
if (defensiveCopy[i] == null)
throw new NullPointerException("stackTrace[" + i + "]");
this.stackTrace = defensiveCopy;
}
KML*/
/**
* Returns the number of elements in the stack trace (or 0 if the stack
* trace is unavailable).
*/
private native int getStackTraceDepth();
/**
* Returns the specified element of the stack trace.
*
* @param index index of the element to return.
* @throws IndexOutOfBoundsException if <tt>index %lt; 0 ||
* index >= getStackTraceDepth() </tt>
*/
/*KML
private native StackTraceElement getStackTraceElement(int index);
KML*/
/*KML
private synchronized void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
getOurStackTrace(); // Ensure that stackTrace field is initialized.
s.defaultWriteObject();
}
KML*/
}
|