1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
/**************************************************************************/
/* */
/* The Why platform for program certification */
/* */
/* Copyright (C) 2002-2011 */
/* */
/* Jean-Christophe FILLIATRE, CNRS & Univ. Paris-sud 11 */
/* Claude MARCHE, INRIA & Univ. Paris-sud 11 */
/* Yannick MOY, Univ. Paris-sud 11 */
/* Romain BARDOU, Univ. Paris-sud 11 */
/* */
/* Secondary contributors: */
/* */
/* Thierry HUBERT, Univ. Paris-sud 11 (former Caduceus front-end) */
/* Nicolas ROUSSET, Univ. Paris-sud 11 (on Jessie & Krakatoa) */
/* Ali AYAD, CNRS & CEA Saclay (floating-point support) */
/* Sylvie BOLDO, INRIA (floating-point support) */
/* Jean-Francois COUCHOT, INRIA (sort encodings, hyps pruning) */
/* Mehdi DOGGUY, Univ. Paris-sud 11 (Why GUI) */
/* */
/* This software is free software; you can redistribute it and/or */
/* modify it under the terms of the GNU Lesser General Public */
/* License version 2.1, with the special exception on linking */
/* described in file LICENSE. */
/* */
/* This software is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */
/* */
/**************************************************************************/
// RUNSIMPLIFY this tells regtests to run Simplify in this example
//+ CheckArithOverflow = yes
/* lemma mean_property1 :
@ \forall integer x y; x <= y ==> x <= (x+y)/2 <= y;
@*/
/* lemma mean_property2 :
@ \forall integer x y; x <= y ==> x <= x+(y-x)/2 <= y;
@*/
/* lemma div2_property :
@ \forall integer x; 0 <= x ==> 0 <= x/2 <= x;
@*/
/*@ predicate is_sorted{L}(int[] t) =
@ t != null &&
@ \forall integer i j;
@ 0 <= i && i <= j && j < t.length ==> t[i] <= t[j] ;
@*/
class BinarySearch {
/* binary_search(t,v) search for element v in array t
between index 0 and t.length-1
array t is assumed to be sorted in increasing order
returns an index i between 0 and t.length-1 where t[i] equals v,
or -1 if no element in t is equal to v
*/
/*@ requires t != null;
@ ensures -1 <= \result < t.length;
@ behavior success:
@ ensures \result >= 0 ==> t[\result] == v;
@ behavior failure:
@ assumes is_sorted(t);
@ // assumes
@ // \forall integer k1 k2;
@ // 0 <= k1 <= k2 <= t.length-1 ==> t[k1] <= t[k2];
@ ensures \result == -1 ==>
@ \forall integer k; 0 <= k < t.length ==> t[k] != v;
@*/
static int binary_search(int t[], int v) {
int l = 0, u = t.length - 1;
/*@ loop_invariant
@ 0 <= l && u <= t.length - 1;
@ for failure:
@ loop_invariant
@ \forall integer k; 0 <= k < t.length ==> t[k] == v ==> l <= k <= u;
@ loop_variant
@ u-l ;
@*/
while (l <= u ) {
int m;
m = (u + l) / 2;
// fix: m = l + (u - l) / 2;
// the following assertion helps provers
//@ assert l <= m <= u;
if (t[m] < v) l = m + 1;
else if (t[m] > v) u = m - 1;
else return m;
}
return -1;
}
}
/*
Local Variables:
compile-command: "make BinarySearch.why3ml"
End:
*/
|