1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
(**************************************************************************)
(* *)
(* The Why platform for program certification *)
(* *)
(* Copyright (C) 2002-2011 *)
(* *)
(* Jean-Christophe FILLIATRE, CNRS & Univ. Paris-sud 11 *)
(* Claude MARCHE, INRIA & Univ. Paris-sud 11 *)
(* Yannick MOY, Univ. Paris-sud 11 *)
(* Romain BARDOU, Univ. Paris-sud 11 *)
(* *)
(* Secondary contributors: *)
(* *)
(* Thierry HUBERT, Univ. Paris-sud 11 (former Caduceus front-end) *)
(* Nicolas ROUSSET, Univ. Paris-sud 11 (on Jessie & Krakatoa) *)
(* Ali AYAD, CNRS & CEA Saclay (floating-point support) *)
(* Sylvie BOLDO, INRIA (floating-point support) *)
(* Jean-Francois COUCHOT, INRIA (sort encodings, hyps pruning) *)
(* Mehdi DOGGUY, Univ. Paris-sud 11 (Why GUI) *)
(* *)
(* This software is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public *)
(* License version 2.1, with the special exception on linking *)
(* described in file LICENSE. *)
(* *)
(* This software is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *)
(* *)
(**************************************************************************)
open Format
(*
t : name of the float type
p : precision
e : minimal exponent (2^e is the smallest subnormal number
eg:
t = "double", p = 53, e = -1074
t = "single", p = 24, e = -149
*)
let rec hex_of_precision p =
match p with
| 0 -> ""
| 1 -> "8"
| 2 -> "C"
| 3 -> "E"
| _ -> "F" ^ hex_of_precision (p-4)
let output_common_part fmt t p e =
fprintf fmt "include \"real.why\"@.@.";
fprintf fmt "(* the different rounding modes *)
type mode
logic nearest_even, to_zero, up, down, nearest_away : mode
axiom no_other_mode : forall m:mode.
m = nearest_even or m = to_zero or m = up or m = down or m = nearest_away
axiom mode_distinct :
nearest_even <> to_zero and nearest_even <> up and nearest_even <> down
and nearest_even <> nearest_away and to_zero <> up and to_zero <> down
and to_zero <> nearest_away and up <> down and up <> nearest_away and
down <> nearest_away
parameter current_rounding_mode : mode ref
@.@.";
fprintf fmt "(* About the %s format *)
type %s@.@." t t;
fprintf fmt "logic round_%s : mode, real -> real@.@." t;
fprintf fmt "logic round_%s_logic : mode, real -> %s@.@." t t;
fprintf fmt "logic %s_value : %s -> real
logic %s_exact : %s -> real
logic %s_model : %s -> real@.@." t t t t t t;
fprintf fmt "function %s_round_error(x:%s) : real =
abs_real(%s_value(x) - %s_exact(x))
function %s_total_error(x:%s) : real =
abs_real(%s_value(x) - %s_model(x))@.@." t t t t t t t t;
fprintf fmt "parameter %s_set_model : x:%s ref -> y:real ->
{ }
unit writes x
{ %s_value(x) = %s_value(x@@)
and %s_exact(x) = %s_exact(x@@)
and %s_model(x) = y }@.@." t t t t t t t;
fprintf fmt "function max_%s() : real = 0x1.%sp%d@.@." t (hex_of_precision (p-1)) (-p-e+2) ;
fprintf fmt "predicate no_overflow_%s(m:mode,x:real) =
abs_real(round_%s(m,x)) <= max_%s@.@." t t t;
fprintf fmt "(* About rounding *)@.";
fprintf fmt "axiom bounded_real_no_overflow_%s : forall m:mode. forall x:real.
abs_real(x) <= max_%s -> no_overflow_%s(m,x)@." t t t;
fprintf fmt "axiom round_%s_down_le: forall x:real.
round_%s(down,x) <= x
axiom round_up_%s_ge: forall x:real.
round_%s(up,x) >= x
axiom round_down_%s_neg: forall x:real.
round_%s(down,-x) = -round_%s(up,x)
axiom round_up_%s_neg: forall x:real.
round_%s(up,-x) = -round_%s(down,x)
axiom round_%s_idempotent:
forall m1:mode. forall m2:mode. forall x:real.
round_%s(m1,round_%s(m2,x)) = round_%s(m2,x)@.@." t t t t t t t t t t t t t t;
fprintf fmt "(* Specification of operations (from the strict model) *)@.";
fprintf fmt "predicate %s_of_real_post(m:mode,x:real,res:%s) =
%s_value(res) = round_%s(m,x)
and
%s_exact(res) = x
and
%s_model(res) = x@.@." t t t t t t;
fprintf fmt "predicate add_%s_post(m:mode,x:%s,y:%s,res:%s) =
%s_value(res) = round_%s(m,%s_value(x) + %s_value(y))
and
%s_exact(res) = %s_exact(x) + %s_exact(y)
and
%s_model(res) = %s_model(x) + %s_model(y)@.@." t t t t t t t t t t t t t t;
fprintf fmt "predicate sub_%s_post(m:mode,x:%s,y:%s,res:%s) =
%s_value(res) = round_%s(m,%s_value(x) - %s_value(y))
and
%s_exact(res) = %s_exact(x) - %s_exact(y)
and
%s_model(res) = %s_model(x) - %s_model(y)@.@." t t t t t t t t t t t t t t;
fprintf fmt "predicate mul_%s_post(m:mode,x:%s,y:%s,res:%s) =
%s_value(res) = round_%s(m,%s_value(x) * %s_value(y))
and
%s_exact(res) = %s_exact(x) * %s_exact(y)
and
%s_model(res) = %s_model(x) * %s_model(y)@.@." t t t t t t t t t t t t t t;
fprintf fmt "predicate div_%s_post(m:mode,x:%s,y:%s,res:%s) =
%s_value(res) = round_%s(m,%s_value(x) / %s_value(y))
and
%s_exact(res) = %s_exact(x) / %s_exact(y)
and
%s_model(res) = %s_model(x) / %s_model(y)@.@." t t t t t t t t t t t t t t;
fprintf fmt "predicate sqrt_%s_post(m:mode,x:%s,res:%s) =
%s_value(res) = round_%s(m,sqrt_real(%s_value(x)))
and
%s_exact(res) = sqrt_real(%s_exact(x))
and
%s_model(res) = sqrt_real(%s_model(x))@.@." t t t t t t t t t t;
fprintf fmt "predicate neg_%s_post(x:%s,res:%s) =
%s_value(res) = -%s_value(x)
and
%s_exact(res) = -%s_exact(x)
and
%s_model(res) = -%s_model(x)@.@." t t t t t t t t t;
fprintf fmt "predicate abs_%s_post(x:%s,res:%s) =
%s_value(res) = abs_real(%s_value(x))
and
%s_exact(res) = abs_real(%s_exact(x))
and
%s_model(res) = abs_real(%s_model(x))@.@." t t t t t t t t t;
();;
(* Strict model *)
let output_strict_part fmt t _p _e =
fprintf fmt "include \"%s_model.why\"@.@." t;
fprintf fmt "(* Parameters for the strict model for %s format *)@.@." t;
fprintf fmt "parameter %s_of_real : m:mode -> x:real ->
{ no_overflow_%s(m,x) }
%s
{ %s_of_real_post(m,x,result) }@." t t t t;
fprintf fmt "parameter %s_of_real_safe : m:mode -> x:real ->
{ }
%s
{ no_overflow_%s(m,x) and
%s_of_real_post(m,x,result) }@.@." t t t t;
fprintf fmt "parameter add_%s : m:mode -> x:%s -> y:%s ->
{ no_overflow_%s(m,%s_value(x) + %s_value(y)) }
%s
{ add_%s_post(m,x,y,result) }@." t t t t t t t t;
fprintf fmt "parameter add_%s_safe : m:mode -> x:%s -> y:%s ->
{ }
%s
{ no_overflow_%s(m,%s_value(x) + %s_value(y)) and
add_%s_post(m,x,y,result) }@.@." t t t t t t t t;
fprintf fmt "parameter sub_%s : m:mode -> x:%s -> y:%s ->
{ no_overflow_%s(m,%s_value(x) - %s_value(y)) }
%s
{ sub_%s_post(m,x,y,result) }@." t t t t t t t t;
fprintf fmt "parameter sub_%s_safe : m:mode -> x:%s -> y:%s ->
{ }
%s
{ no_overflow_%s(m,%s_value(x) - %s_value(y)) and
sub_%s_post(m,x,y,result) }@.@." t t t t t t t t;
fprintf fmt "parameter mul_%s : m:mode -> x:%s -> y:%s ->
{ no_overflow_%s(m,%s_value(x) * %s_value(y)) }
%s
{ mul_%s_post(m,x,y,result) }@." t t t t t t t t;
fprintf fmt "parameter mul_%s_safe : m:mode -> x:%s -> y:%s ->
{ }
%s
{ no_overflow_%s(m,%s_value(x) * %s_value(y)) and
mul_%s_post(m,x,y,result) }@.@." t t t t t t t t;
fprintf fmt "parameter div_%s : m:mode -> x:%s -> y:%s ->
{ %s_value(y) <> 0.0
and
no_overflow_%s(m,%s_value(x) / %s_value(y)) }
%s
{ div_%s_post(m,x,y,result) }@." t t t t t t t t t;
fprintf fmt "parameter div_%s_safe : m:mode -> x:%s -> y:%s ->
{ }
%s
{ %s_value(y) <> 0.0 and
no_overflow_%s(m,%s_value(x) / %s_value(y)) and
div_%s_post(m,x,y,result) }@.@." t t t t t t t t t;
fprintf fmt "parameter sqrt_%s : m:mode -> x:%s ->
{ %s_value(x) >= 0.0 }
%s
{ sqrt_%s_post(m,x,result) }@." t t t t t;
fprintf fmt "parameter sqrt_%s_safe : m:mode -> x:%s ->
{ }
%s
{ %s_value(x) >= 0.0 and
sqrt_%s_post(m,x,result) }@.@." t t t t t;
fprintf fmt "parameter neg_%s : x:%s ->
{ }
%s
{ neg_%s_post(x,result) }@." t t t t;
fprintf fmt "parameter abs_%s : x:%s ->
{ }
%s
{ abs_%s_post(x,result) }@." t t t t;
fprintf fmt "(* Comparisons for the strict model for %s format *)@.@." t;
fprintf fmt "parameter lt_%s : x:%s -> y:%s ->
{} bool { if result then %s_value(x) < %s_value(y)
else %s_value(x) >= %s_value(y) }@." t t t t t t t;
fprintf fmt "parameter le_%s : x:%s -> y:%s ->
{} bool { if result then %s_value(x) <= %s_value(y)
else %s_value(x) > %s_value(y) }@." t t t t t t t;
fprintf fmt "parameter gt_%s : x:%s -> y:%s ->
{} bool { if result then %s_value(x) > %s_value(y)
else %s_value(x) <= %s_value(y) }@." t t t t t t t;
fprintf fmt "parameter ge_%s : x:%s -> y:%s ->
{} bool { if result then %s_value(x) >= %s_value(y)
else %s_value(x) < %s_value(y) }@." t t t t t t t;
fprintf fmt "parameter eq_%s : x:%s -> y:%s ->
{} bool { if result then %s_value(x) = %s_value(y)
else %s_value(x) <> %s_value(y) }@." t t t t t t t;
fprintf fmt "parameter neq_%s : x:%s -> y:%s ->
{} bool { if result then %s_value(x) <> %s_value(y)
else %s_value(x) = %s_value(y) }@.@." t t t t t t t;
fprintf fmt "(* Any %s *)
parameter any_%s : { } %s { }" t t t;
();;
(* Coq model *)
let output_coq_model fmt t p e =
fprintf fmt "(* Coq model for float type '%s'
* with precision = %d and min exponent = %d
*)@.@." t p e;
();;
(* main program *)
let type_name = Sys.argv.(1)
let precision = int_of_string Sys.argv.(2)
let exponent = int_of_string Sys.argv.(3)
let main =
let f = "lib/why/" ^ type_name ^ "_model.why" in
let c = open_out f in
output_common_part (formatter_of_out_channel c) type_name precision exponent;
close_out c;
let f = "lib/why/" ^ type_name ^ "_strict.why" in
let c = open_out f in
output_strict_part (formatter_of_out_channel c) type_name precision exponent;
close_out c;
let f = "lib/coq/" ^ type_name ^ "_model.v" in
let c = open_out f in
output_coq_model (formatter_of_out_channel c) type_name precision exponent;
close_out c;
|