File: syntaxref.rst

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (1916 lines) | stat: -rw-r--r-- 74,937 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
The WhyML Language Reference
============================

In this chapter, we describe the syntax and semantics of WhyML.

Lexical Conventions
-------------------

Blank characters are space, horizontal tab, carriage return, and line
feed. Blanks separate lexemes but are otherwise ignored. Comments are
enclosed by ``(*`` and ``*)`` and can be nested. Note that ``(*)`` does
not start a comment.

Strings are enclosed in double quotes (``"``). The backslash character
``\``, is used for escaping purposes. The following
escape sequences are allowed:

- ``\`` followed by a *new line* allows for
  multi-line strings. The leading spaces immediately after the new
  line are ignored.
- ``\\`` and ``\"`` for the backslash and double quote respectively.
- ``\n``, ``\r``, and
  ``\t`` for the new line feed, carriage return,
  and horizontal tab character.
- ``\DDD``, ``\oOOO``, and
  ``\xXX``, where ``DDD`` is a decimal value
  in the interval 0-255, ``OOO`` an octal value in the
  interval 0-377, and ``XX`` an hexadecimal value.
  Sequences of this form can be used to encode Unicode characters, in
  particular non printable ASCII characters.
- any other escape sequence results in a parsing error.

The syntax for numerical constants is given by the following rules:

.. productionlist::
    digit: "0" - "9"
    hex_digit: "0" - "9" | "a" - "f" | "A" - "F"
    oct_digit: "0" - "7"
    bin_digit: "0" | "1"
    integer: `digit` (`digit` | "_")*
      : | ("0x" | "0X") `hex_digit` (`hex_digit` | "_")*
      : | ("0o" | "0O") `oct_digit` (`oct_digit` | "_")*
      : | ("0b" | "0B") `bin_digit` (`bin_digit` | "_")*
    real: `digit`+ `exponent`
      : | `digit`+ "." `digit`* `exponent`?
      : | `digit`* "." `digit`+ `exponent`?
      : | ("0x" | "0X") `hex_digit`+ `h_exponent`
      : | ("0x" | "0X") `hex_digit`+ "." `hex_digit`* `h_exponent`?
      : | ("0x" | "0X") `hex_digit`* "." `hex_digit`+ `h_exponent`?
    exponent: ("e" | "E") ("-" | "+")? `digit`+
    h_exponent: ("p" | "P") ("-" | "+")? `digit`+
    char: "a" - "z" | "A" - "Z" | "0" - "9"
      : | " " | "!" | "#" | "$" | "%" | "&" | "'" | "("
      : | ")" | "*" | "+" | "," | "-" | "." | "/" | ":"
      : | ";" | "<" | "=" | ">" | "?" | "@" | "[" | "]"
      : | "^" | "_" | "`" | "\\" | "\n" | "\r" | "\t" | '\"'
      : | "\" ("0" | "1") `digit` `digit`
      : | "\" "2" ("0" - "4") `digit`
      : | "\" "2" "5" ("0" - "5")
      : | "\x" `hex_digit` `hex_digit`
      : | "\o" ("0" - "3" ) `oct_digit` `oct_digit`
    string: '"' `char`* '"'


Integer and real constants have arbitrary precision. Integer constants
can be given in base 10, 16, 8 or 2. Real constants can be given in
base 10 or 16. Notice that the exponent in hexadecimal real constants
is written in base 10.

Identifiers are composed of letters, digits, underscores, and primes.
The syntax distinguishes identifiers that start with a lowercase letter
or an underscore (:token:`lident_nq`), identifiers that start with an
uppercase letter (:token:`uident_nq`), and identifiers that start with
a prime (:token:`qident`, used exclusively for type variables):

.. productionlist::
    alpha: "a" - "z" | "A" - "Z"
    suffix: (`alpha` | "'"* ("0" - "9" | "_")*)* "'"*
    lident_nq: ("a" - "z") `suffix`* | "_" `suffix`+
    uident_nq: ("A" - "Z") `suffix`*
    ident_nq: `lident_nq` | `uident_nq`
    qident: "'" ("a" - "z") `suffix`*


Identifiers that contain a prime followed by a letter, such as
``int32'max``, are reserved for symbols introduced by Why3 and cannot be
used for user-defined symbols.

.. productionlist::
    lident: `lident_nq` ("'" `alpha` `suffix`)*
    uident: `lident_nq` ("'" `alpha` `suffix`)*
    ident: `lident` | `uident`

In order to refer to symbols introduced in different namespaces
(*scopes*), we can put a dot-separated “qualifier prefix” in front of an
identifier (e.g., ``Map.S.get``). This allows us to use the symbol
``get`` from the scope ``Map.S`` without importing it in the current
namespace:

.. productionlist::
    qualifier: (`uident` ".")+
    lqualid: `qualifier`? `lident`
    uqualid: `qualifier`? `uident`


All parenthesised expressions in WhyML (types, patterns, logical terms,
program expressions) admit a qualifier before the opening parenthesis,
e.g., ``Map.S.(get m i)``. This imports the indicated scope into the
current namespace during the parsing of the expression under the
qualifier. For the sake of convenience, the parentheses can be omitted
when the expression itself is enclosed in parentheses, square brackets
or curly braces.

Prefix and infix operators are built from characters organized in four
precedence groups (:token:`op_char_1` to :token:`op_char_4`), with optional primes at
the end:

.. productionlist::
    op_char_1: "=" | "<" | ">" | "~"
    op_char_2: "+" | "-"
    op_char_3: "*" | "/" | "\" | "%"
    op_char_4: "!" | "$" | "&" | "?" | "@" | "^" | "." | ":" | "|" | "#"
    op_char_1234: `op_char_1` | `op_char_2` | `op_char_3` | `op_char_4`
    op_char_234: `op_char_2` | `op_char_3` | `op_char_4`
    op_char_34: `op_char_3` | `op_char_4`
    infix_op_1: `op_char_1234`* `op_char_1` `op_char_1234`* "'"*
    infix_op_2: `op_char_234`* `op_char_2` `op_char_234`* "'"*
    infix_op_3: `op_char_34`* `op_char_3` `op_char_34`* "'"*
    infix_op_4: `op_char_4`+ "'"*
    prefix_op: `op_char_1234`+ "'"*
    tight_op: ("!" | "?") `op_char_4`* "'"*


Infix operators from a high-numbered group bind stronger than the infix
operators from a low-numbered group. For example, infix operator ``.*.``
from group 3 would have a higher precedence than infix operator ``->-``
from group 1. Prefix operators always bind stronger than infix
operators. The so-called “tight operators” are prefix operators that
have even higher precedence than the juxtaposition (application)
operator, allowing us to write expressions like ``inv !x`` without
parentheses.

Finally, any identifier, term, formula, or expression in a
WhyML source can be tagged either with a string :token:`attribute` or a
location:

.. productionlist::
    attribute: "[@" ... "]"
             : | "[#" `string` `digit`+ `digit`+ `digit`+ "]"


An attribute cannot contain newlines or closing square brackets; leading
and trailing spaces are ignored. A location consists of a file name in
double quotes, a line number, and starting and ending character
positions.

Type Expressions
----------------

WhyML features an ML-style type system with polymorphic types, variants
(sum types), and records that can have mutable fields. The syntax for
type expressions is the following:

.. productionlist::
    type: `lqualid` `type_arg`+   ; polymorphic type symbol
        : | `type` "->" `type`   ; mapping type (right-associative)
        : | `type_arg`
    type_arg: `lqualid`   ; monomorphic type symbol (sort)
            : | `qident`   ; type variable
            : | "()"   ; unit type
            : | "(" `type` ("," `type`)+ ")"   ; tuple type
            : | "{" `type` "}"   ; snapshot type
            : | `qualifier`? "(" `type` ")"   ; type in a scope

.. index:: mapping type

Built-in types are ``int`` (arbitrary precision integers), ``real``
(real numbers), ``bool``, the arrow type (also called the *mapping
type*), and the tuple types. The empty tuple type is also called the
*unit type* and can be written as ``unit``.

Note that the syntax for type expressions notably differs from the usual
ML syntax. In particular, the type of polymorphic lists is written
``list 'a``, and not ``'a list``.

.. index:: snapshot type

*Snapshot types* are specific to WhyML, they denote the types of ghost
values produced by pure logical functions in WhyML programs. A snapshot
of an immutable type is the type itself; thus, ``{int}`` is the same as
``int`` and ``{list 'a}`` is the same as ``list 'a``. A snapshot of a
mutable type, however, represents a snapshot value which cannot be
modified anymore. Thus, a snapshot array ``a`` of type ``{array int}``
can be read from (``a[42]`` is accepted) but not written into
(``a[42] <- 0`` is rejected). Generally speaking, a program function
that expects an argument of a mutable type will accept an argument of
the corresponding snapshot type as long as it is not modified by the
function.

Logical Expressions
-------------------

A significant part of a typical WhyML source file is occupied by
non-executable logical content intended for specification and proof:
function contracts, assertions, definitions of logical functions and
predicates, axioms, lemmas, etc.


Terms and formulas
^^^^^^^^^^^^^^^^^^

Logical expressions are called *terms*. Boolean terms are called
*formulas*. Internally, Why3 distinguishes the proper formulas (produced
by predicate symbols, propositional connectives and quantifiers) and the
terms of type ``bool`` (produced by Boolean variables and logical
functions that return ``bool``). However, this distinction is not
enforced on the syntactical level, and Why3 will perform the necessary
conversions behind the scenes.

The syntax of WhyML terms is given in :token:`term`.


.. productionlist::
    term0: `integer`   ; integer constant
        : | `real`   ; real constant
        : | "true" | "false"   ; Boolean constant
        : | "()"   ; empty tuple
        : | `string` ; string constant
        : | `qualid`   ; qualified identifier
        : | `qualifier`? "(" `term` ")"   ; term in a scope
        : | `qualifier`? "begin" `term` "end"   ; idem
        : | `tight_op` `term`   ; tight operator
        : | "{" `term_field`+ "}"   ; record
        : | "{" `term` "with" `term_field`+ "}"   ; record update
        : | `term` "." `lqualid`   ; record field access
        : | `term` "[" `term` "]" "'"*   ; collection access
        : | `term` "[" `term` "<-" `term` "]" "'"*   ; collection update
        : | `term` "[" `term` ".." `term` "]" "'"*   ; collection slice
        : | `term` "[" `term` ".." "]" "'"*   ; right-open slice
        : | `term` "[" ".." `term` "]" "'"*   ; left-open slice
        : | "[|" (`term` "=>" `term` ";")* ("_" "=>" `term`)? "|]" ; function literal
        : | "[|" (`term` ";")+ "|]" ; function literal (domain over nat)
        : | `term` `term`+   ; application
        : | `prefix_op` `term`   ; prefix operator
        : | `term` `infix_op_4` `term`   ; infix operator 4
        : | `term` `infix_op_3` `term`   ; infix operator 3
        : | `term` `infix_op_2` `term`   ; infix operator 2
        : | `term` "at" `uident`   ; past value
        : | "old" `term`   ; initial value
        : | `term` `infix_op_1` `term`   ; infix operator 1
        : | "not" `term`   ; negation
        : | `term` "/\" `term`   ; conjunction
        : | `term` "&&" `term`   ; asymmetric conjunction
        : | `term` "\/" `term`   ; disjunction
        : | `term` "||" `term`   ; asymmetric disjunction
        : | `term` "by" `term`   ; proof indication
        : | `term` "so" `term`   ; consequence indication
        : | `term` "->" `term`   ; implication
        : | `term` "<->" `term`   ; equivalence
        : | `term` ":" `type`   ; type cast
        : | `attribute`+ `term`   ; attributes
        : | `term` ("," `term`)+   ; tuple
        : | `quantifier` `quant_vars` `triggers`? "." `term`   ; quantifier
        : | ...   ; (to be continued in `term`)
    formula: `term`   ; no distinction as far as syntax is concerned
    term_field: `lqualid` "=" `term` ";"   ; field = value
    qualid: `qualifier`? (`lident_ext` | `uident`)   ; qualified identifier
    lident_ext: `lident`   ; lowercase identifier
              : | "(" `ident_op` ")"   ; operator identifier
              : | "(" `ident_op` ")" ("_" | "'") alpha suffix*   ; associated identifier
    ident_op:  `infix_op_1`   ; infix operator 1
            : | `infix_op_2`   ; infix operator 2
            : | `infix_op_3`   ; infix operator 3
            : | `infix_op_4`   ; infix operator 4
            : | `prefix_op` "_"   ; prefix operator
            : | `tight_op` "_"?   ; tight operator
            : | "[" "]" "'" *   ; collection access
            : | "[" "<-" "]" "'"*   ; collection update
            : | "[" "]" "'"* "<-"   ; in-place update
            : | "[" ".." "]" "'"*   ; collection slice
            : | "[" "_" ".." "]" "'"*   ; right-open slice
            : | "[" ".." "_" "]" "'"*   ; left-open slice
    quantifier: "forall" | "exists"
    quant_vars: `quant_cast` ("," `quant_cast`)*
    quant_cast: `binder`+ (":" `type`)?
    binder: "_" | `bound_var`
    bound_var: `lident` `attribute`*
    triggers: "[" `trigger` ("|" `trigger`)* "]"
    trigger: `term` ("," `term`)*


The various
constructs have the following priorities and associativities, from
lowest to greatest priority:

+------------------------------------+-----------------+
| construct                          | associativity   |
+====================================+=================+
| ``if then else`` / ``let in``      | –               |
+------------------------------------+-----------------+
| attribute                          | –               |
+------------------------------------+-----------------+
| cast                               | –               |
+------------------------------------+-----------------+
| ``->`` / ``<->`` / ``by`` / ``so`` | right           |
+------------------------------------+-----------------+
| ``\/`` / ``||``                    | right           |
+------------------------------------+-----------------+
| ``/\`` / ``&&``                    | right           |
+------------------------------------+-----------------+
| ``not``                            | –               |
+------------------------------------+-----------------+
| infix-op level 1                   | right           |
+------------------------------------+-----------------+
| ``at`` / ``old``                   | –               |
+------------------------------------+-----------------+
| infix-op level 2                   | left            |
+------------------------------------+-----------------+
| infix-op level 3                   | left            |
+------------------------------------+-----------------+
| infix-op level 4                   | left            |
+------------------------------------+-----------------+
| prefix-op                          | –               |
+------------------------------------+-----------------+
| function application               | left            |
+------------------------------------+-----------------+
| brackets / ternary brackets        | –               |
+------------------------------------+-----------------+
| bang-op                            | –               |
+------------------------------------+-----------------+

For example, as was mentioned above,
tight operators have the highest precedence of all operators, so that
``-p.x`` denotes the negation of the record field ``p.x``, whereas
``!p.x`` denotes the field ``x`` of a record stored in the reference
``p``.

Infix operators from groups 2-4 are left-associative. Infix operators
from group 1 are right-associative and can be chained. For example, the
term ``0 <= i < j < length a`` is parsed as the conjunction of three
inequalities ``0 <= i``, ``i < j``, and ``j < length a``.
Note that infix symbols of level 1 include equality (``=``) and
disequality (``<>``).

An operator in parentheses acts as an identifier referring to that
operator, for example, in a definition. To distinguish between prefix
and infix operators, an underscore symbol is appended at the end: for
example, ``(-)`` refers to the binary subtraction and ``(-_)`` to the
unary negation. Tight operators cannot be used as infix operators, and
thus do not require disambiguation.

As with normal identifiers, we can put a qualifier over a parenthesised
operator, e.g., ``Map.S.([]) m i``. Also, as noted above, a qualifier
can be put over a parenthesised term, and the parentheses can be omitted
if the term is a record or a record update.

Note the curryfied syntax for function application, though partial
application is not allowed (rejected at typing).

.. _rubric.collections_syntax:

.. index:: bracket
.. index:: collections
.. index:: function literals

Specific syntax for collections
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In addition to prefix and infix operators, WhyML supports several mixfix
bracket operators to manipulate various collection types: dictionaries,
arrays, sequences, etc.

Bracket operators do not have any predefined
meaning and may be used to denote access and update operations for
various user-defined collection types. We can introduce multiple bracket
operations in the same scope by disambiguating them with primes after
the closing bracket: for example, ``a[i]`` may denote array access and
``s[i]'`` sequence access. Notice that the in-place update operator
``a[i] <- v`` cannot be used inside logical terms: all effectful
operations are restricted to program expressions. To represent the
result of a collection update, we should use a pure logical update
operator ``a[i <- v]`` instead. WhyML supports “associated” names for
operators, obtained by adding a suffix after the parenthesised operator
name. For example, an axiom that represents the specification of the
infix operator ``(+)`` may be called ``(+)'spec`` or ``(+)_spec``. As
with normal identifiers, names with a letter after a prime, such as
``(+)'spec``, can only be introduced by Why3, and not by the user in a
WhyML source.

WhyML provides a special syntax for `function literals`. The term
``[|t1 => u1; ...; tn => un; _ => default|]``, where ``t1, ..., tn``
have some type ``t`` and ``u1, ..., un, default`` some type ``u``,
represents a total function of the form ``fun x -> if x = t1 then u1
else if ... else if x = tn then un else default``. The default value
can be omitted in which case the last value will be taken as the
default value. For instance, the function literal ``[|t1 => u1|]``
represents the term ``fun x -> if x = t1 then u1 else u1``. When the
domain of the function ranges over an initial sequence of the natural
numbers it is possible to write ``[|t1;t2;t3|]`` as a shortcut for
``[|0 => t1; 1 => t2; 2 => t3|]``.  Function literals cannot be empty.

.. index:: pair: keyword; at
.. index:: pair: keyword; old
.. index:: pair: keyword; label

The "at" and "old" operators
^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The ``at`` and ``old`` operators are used inside postconditions and
assertions to refer to the value of a mutable program variable at some
past moment of execution. These
operators have higher precedence than the infix operators from group 1
(:token:`infix_op_1`): ``old i > j`` is parsed as ``(old i) > j`` and not as
``old (i > j)``.

Within a postcondition, ``old t`` refers to
the value of term ``t`` in the pre-state. Within the scope of a code label
``L``, introduced with ``label L in ...``, the term ``t at L`` refers to the
value of term ``t`` at the program point corresponding to ``L``.

Note that ``old`` can be used in annotations contained in the function
body as well (assertions, loop invariants), with the exact same meaning: it
refers to the pre-state of the function. In particular, ``old t`` in
a loop invariant does not refer to the program point right before the
loop but to the function entry.

Whenever ``old t`` or ``t at L`` refers to a program point at which
none of the variables in ``t`` is defined, Why3 emits a warning "this
\`at'/\`old' operator is never used" and the operator is
ignored. For instance, the following code

.. code-block:: whyml

    let x = ref 0 in assert { old !x = !x }

emits a warning and is provable, as it amounts to proving `0=0`.
Similarly, if ``old t`` or ``t at L`` refers to a term ``t`` that is
immutable, Why3 emits the same warning and ignores the operator.

Caveat: Whenever the term ``t`` contains several variables, some of
them being meaningful at the corresponding program point but others
not being in scope or being immutable, there is *no warning* and the
operator ``old``/``at`` is applied where it is defined and ignored
elsewhere. This is convenient when writing terms such as ``old a[i]``
where ``a`` makes sense in the pre-state but ``i`` does not.

.. index:: &&, ||
.. index:: pair: keyword; by
.. index:: pair: keyword; so

Non-standard connectives
^^^^^^^^^^^^^^^^^^^^^^^^

The propositional connectives in WhyML formulas are listed in
:token:`term`. The non-standard connectives — asymmetric
conjunction (``&&``), asymmetric disjunction (``||``), proof indication
(``by``), and consequence indication (``so``) — are used to control the
goal-splitting transformations of Why3 and provide integrated proofs for
WhyML assertions, postconditions, lemmas, etc. The semantics of these
connectives follows the rules below:

-  A proof task for ``A && B`` is split into separate tasks for ``A``
   and ``A -> B``. If ``A && B`` occurs as a premise, it behaves as a
   normal conjunction.

-  A case analysis over ``A || B`` is split into disjoint cases ``A``
   and ``not A /\ B``. If ``A || B`` occurs as a goal, it behaves as a
   normal disjunction.

-  An occurrence of ``A by B`` generates a side condition ``B -> A``
   (the proof justifies the affirmation). When ``A by B`` occurs as a
   premise, it is reduced to ``A`` (the proof is discarded). When
   ``A by B`` occurs as a goal, it is reduced to ``B`` (the proof is
   verified).

-  An occurrence of ``A so B`` generates a side condition ``A -> B``
   (the premise justifies the conclusion). When ``A so B`` occurs as a
   premise, it is reduced to the conjunction (we use both the premise
   and the conclusion). When ``A so B`` occurs as a goal, it is reduced
   to ``A`` (the premise is verified).

For example, full splitting of the goal
``(A by (exists x. B so C)) && D`` produces four subgoals:
``exists x. B`` (the premise is verified), ``forall x. B -> C`` (the
premise justifies the conclusion), ``(exists x. B /\ C) -> A`` (the
proof justifies the affirmation), and finally, ``A -> D`` (the proof of
``A`` is discarded and ``A`` is used to prove ``D``).

The behavior of the splitting transformations is further controlled by
attributes :why3:attribute:`[@stop_split]` and :why3:attribute:`[@case_split]`.
Consult the documentation
of transformation :why3:transform:`split_goal` in
:numref:`sec.transformations` for details.

Among the propositional connectives, ``not`` has the highest precedence,
``&&`` has the same precedence as ``/\`` (weaker than negation), ``||``
has the same precedence as ``\/`` (weaker than conjunction), ``by``,
``so``, ``->``, and ``<->`` all have the same precedence (weaker than
disjunction). All binary connectives except equivalence are
right-associative. Equivalence is non-associative and is chained
instead: ``A <-> B <-> C`` is transformed into a conjunction of
``A <-> B`` and ``B <-> C``. To reduce ambiguity, WhyML forbids to place
a non-parenthesised implication at the right-hand side of an
equivalence: ``A <-> B -> C`` is rejected.

.. index:: conditional
.. index:: pair: keyword; if
.. index:: pair: keyword; then
.. index:: pair: keyword; else
.. index:: pair: keyword; let
.. index:: pattern-matching

Conditionals, "let" bindings and pattern-matching
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. productionlist::
  term: `term0`
      : | "if" `term` "then" `term` "else" `term`   ; conditional
      : | "match" `term` "with" `term_case`+ "end"   ; pattern matching
      : | "let" `pattern` "=" `term` "in" `term`   ; let-binding
      : | "let" `symbol` `param`+ "=" `term` "in" `term`   ; mapping definition
      : | "fun" `param`+ "->" `term`   ; unnamed mapping
  term_case: "|" `pattern` "->" `term`
  pattern: `binder`   ; variable or "_"
         : | "()"   ; empty tuple
         : | "{" (`lqualid` "=" `pattern` ";")+ "}"   ; record pattern
         : | `uqualid` `pattern`*   ; constructor
         : | "ghost" `pattern`   ; ghost sub-pattern
         : | `pattern` "as" "ghost"? `bound_var`   ; named sub-pattern
         : | `pattern` "," `pattern`   ; tuple pattern
         : | `pattern` "|" `pattern`   ; "or" pattern
         : | `qualifier`? "(" `pattern` ")"   ; pattern in a scope
  symbol: `lident_ext` `attribute`*   ; user-defined symbol
  param: `type_arg`   ; unnamed typed
       : | `binder`   ; (un)named untyped
       : | "(" "ghost"? `type` ")"   ; unnamed typed
       : | "(" "ghost"? `binder` ")"   ; (un)named untyped
       : | "(" "ghost"? `binder`+ ":" `type` ")"   ; multi-variable typed

Above, we find the more advanced term constructions:
conditionals, let-bindings, pattern matching, and local function
definitions, either via the ``let-in`` construction or the ``fun``
keyword. The pure logical functions defined in this way are called
*mappings*; they are first-class values of “arrow” type
``t -> u``.

The patterns are similar to those of OCaml, though the ``when`` clauses
and numerical constants are not supported. Unlike in OCaml, ``as`` binds
stronger than the comma: in the pattern ``(p,q as x)``, variable
``x`` is bound to the value matched by pattern ``q``. Also notice
the closing ``end`` after the ``match with`` term. A ``let in``
construction with a non-trivial pattern is translated as a
``match with`` term with a single branch.

Inside logical terms, pattern matching must be exhaustive: WhyML rejects
a term like ``let Some x = o in e``, where ``o`` is a variable of an
option type. In program expressions, non-exhaustive pattern matching is
accepted and a proof obligation is generated to show that the values not
covered cannot occur in execution.

The syntax of parameters in user-defined operations—first-class
mappings, top-level logical functions and predicates, and program
functions—is rather flexible in WhyML. Like in OCaml, the user can
specify the name of a parameter without its type and let the type be
inferred from the definition. Unlike in OCaml, the user can also specify
the type of the parameter without giving its name. This is convenient
when the symbol declaration does not provide the actual definition or
specification of the symbol, and thus only the type signature is of
relevance. For example, one can declare an abstract binary function that
adds an element to a set simply by writing
``function add 'a (set 'a): set 'a``. A standalone non-qualified
lowercase identifier without attributes is treated as a type name when
the definition is not provided, and as a parameter name otherwise.

Ghost patterns, ghost variables after ``as``, and ghost parameters in
function definitions are only used in program code, and not allowed in
logical terms.

Program Expressions
-------------------

The syntax of program expressions is given below. As before, the constructions
are listed in the order of decreasing precedence. The rules for tight,
prefix, infix, and bracket operators are the same as for logical terms.
In particular, the infix operators from group 1 (:token:`infix_op_1`) can be chained. Notice
that binary operators ``&&`` and ``||`` denote here the usual lazy
conjunction and disjunction, respectively.

.. productionlist::
    expr: `integer`   ; integer constant
        : | `real`   ; real constant
        : | "true" | "false"   ; Boolean constant
        : | "()"   ; empty tuple
        : | `string` ; string constant
        : | `qualid`   ; identifier in a scope
        : | `qualifier`? "(" `expr` ")"   ; expression in a scope
        : | `qualifier`? "begin" `expr` "end"   ; idem
        : | `tight_op` `expr`   ; tight operator
        : | "{" (`lqualid` "=" `expr` ";")+ "}"   ; record
        : | "{" `expr` "with" (`lqualid` "=" `expr` ";")+ "}"   ; record update
        : | `expr` "." `lqualid`   ; record field access
        : | `expr` "[" `expr` "]" "'"*   ; collection access
        : | `expr` "[" `expr` "<-" `expr` "]" "'"*   ; collection update
        : | `expr` "[" `expr` ".." `expr` "]" "'"*   ; collection slice
        : | `expr` "[" `expr` ".." "]" "'"*   ; right-open slice
        : | `expr` "[" ".." `expr` "]" "'"*   ; left-open slice
        : | "[|" (`expr` "=>" `expr` ";")* ("_" "=>" `expr`)? "|]" ; function literal
        : | "[|" (`expr` ";")+ "|]" ; function literal (domain over nat)
        : | `expr` `expr`+   ; application
        : | `prefix_op` `expr`   ; prefix operator
        : | `expr` `infix_op_4` `expr`   ; infix operator 4
        : | `expr` `infix_op_3` `expr`   ; infix operator 3
        : | `expr` `infix_op_2` `expr`   ; infix operator 2
        : | `expr` `infix_op_1` `expr`   ; infix operator 1
        : | "not" `expr`   ; negation
        : | `expr` "&&" `expr`   ; lazy conjunction
        : | `expr` "||" `expr`   ; lazy disjunction
        : | `expr` ":" `type`   ; type cast
        : | `attribute`+ `expr`   ; attributes
        : | "ghost" `expr`   ; ghost expression
        : | `expr` ("," `expr`)+   ; tuple
        : | `expr` "<-" `expr`   ; assignment
        : | `expr` `spec`+   ; added specification
        : | "if" `expr` "then" `expr` ("else" `expr`)?   ; conditional
        : | "match" `expr` "with" ("|" `pattern` "->" `expr`)+ "end"   ; pattern matching
        : | `qualifier`? "begin" `spec`+ `expr` "end"   ; abstract block
        : | `expr` ";" `expr`   ; sequence
        : | "let" `pattern` "=" `expr` "in" `expr`   ; let-binding
        : | "let" `fun_defn` "in" `expr`   ; local function
        : | "let" "rec" `fun_defn` ("with" `fun_defn`)* "in" `expr`   ; recursive function
        : | "fun" `param`+ `spec`* "->" `spec`* `expr`   ; unnamed function
        : | "any" `result` `spec`*   ; arbitrary value
        : | "while" `expr` "do" `invariant`* `variant`? `expr` "done"   ; while loop
        : | "for" `lident` "=" `expr` ("to" | "downto") `expr` "do" `invariant`* `expr` "done"   ; for loop
        : | "for" `pattern` "in" `expr` "with" `uident` ("as" `lident_nq`)? "do"  `invariant`* `variant`? `expr` "done" ; for each loop
        : | "break" `lident`?   ; loop break
        : | "continue" `lident`?   ; loop continue
        : | ("assert" | "assume" | "check") "{" `term` "}"   ; assertion
        : | "raise" `uqualid` `expr`?   ; exception raising
        : | "raise" "(" `uqualid` `expr`? ")"
        : | "try" `expr` "with" ("|" `handler`)+ "end"   ; exception catching
        : | "(" `expr` ")"   ; parentheses
        : | "label" `uident` "in" `expr`   ; label
    handler: `uqualid` `pattern`? "->" `expr`   ; exception handler
    fun_defn: `fun_head` `spec`* "=" `spec`* `expr`   ; function definition
    fun_head: "ghost"? `kind`? `symbol` `param`+ (":" `result`)?   ; function header
    kind: "function" | "predicate" | "lemma"   ; function kind
    result: `ret_type`
      : | "(" `ret_type` ("," `ret_type`)* ")"
      : | "(" `ret_name` ("," `ret_name`)* ")"
    ret_type: "ghost"? `type`   ; unnamed result
    ret_name: "ghost"? `binder` ":" `type`   ; named result
    spec: "requires" ident? "{" `term` "}"   ; pre-condition
      : | "ensures" ident? "{" `term` "}"   ; post-condition
      : | "returns" "{" ("|" `pattern` "->" `term`)+ "}"   ; post-condition
      : | "raises" "{" ("|" `pattern` "->" `term`)+ "}"   ; exceptional post-c.
      : | "raises" "{" `uqualid` ("," `uqualid`)* "}"   ; raised exceptions
      : | "reads" "{" `lqualid` ("," `lqualid`)* "}"   ; external reads
      : | "writes" "{" `path` ("," `path`)* "}"   ; memory writes
      : | "alias" "{" `alias` ("," `alias`)* "}"   ; memory aliases
      : | `variant`
      : | "diverges"   ; may not terminate
      : | ("reads" | "writes" | "alias") "{" "}"   ; empty effect
    path: `lqualid` ("." `lqualid`)*   ; v.field1.field2
    alias: `path` "with" `path`   ; arg1 with result
    invariant: "invariant" ident? "{" `term` "}"   ; loop and type invariant
    variant: "variant" ident? "{" `variant_term` ("," `variant_term`)* "}"   ; termination variant
    variant_term: `term` ("with" `lqualid`)?   ; variant term + WF-order

.. index:: pair: keyword; ghost

Ghost expressions
^^^^^^^^^^^^^^^^^

Keyword ``ghost`` marks the expression as ghost code added for
verification purposes. Ghost code is removed from the final code
intended for execution, and thus cannot affect the computation of the
program results nor the content of the observable memory.

.. index:: assignment expressions

Assignment expressions
^^^^^^^^^^^^^^^^^^^^^^

Assignment updates in place a mutable record field or an element of a
collection. The former can be done simultaneously on a tuple of values:
``x.f, y.g <- a, b``. The latter form, ``a[i] <- v``, amounts to a call
of the ternary bracket operator ``([]<-)`` and cannot be used in a
multiple assignment.

.. index:: auto-dereference
.. index:: reference
.. index:: pair: keyword; ref
.. index:: &

Auto-dereference: simplified usage of mutable variables
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Some syntactic sugar is provided to ease the use of mutable variables
(aka references), in such a way that the bang character is no more
needed to access the value of a reference, in both logic and programs.
This syntactic sugar summarized in the following table.

+-------------------------+-------------------------------+
| auto-dereference syntax | desugared to                  |
+=========================+===============================+
| ``let &x = ... in``     | ``let (x: ref ...) = ... in`` |
+-------------------------+-------------------------------+
| ``f x``                 | ``f x.contents``              |
+-------------------------+-------------------------------+
| ``x <- ...``            | ``x.contents <- ...``         |
+-------------------------+-------------------------------+
| ``let ref x = ...``     | ``let &x = ref ...``          |
+-------------------------+-------------------------------+

Notice that

- the ``&`` marker adds the typing constraint ``(x: ref ...)``;
- top-level ``let/val ref`` and ``let/val &`` are allowed;
- auto-dereferencing works in logic, but such variables
  cannot be introduced inside logical terms.

Here is an example:

.. code-block:: whyml

    let ref x = 0 in while x < 100 do invariant { 0 <= x <= 100 } x <- x + 1 done

That syntactic sugar is further extended to pattern matching, function
parameters, and reference passing, as follows.

+----------------------------------+-----------------------------------------------------+
| auto-dereference syntax          | desugared to                                        |
+==================================+=====================================================+
| ``match e with (x,&y) -> y end`` | ``match e with (x,(y: ref ...)) -> y.contents end`` |
+----------------------------------+-----------------------------------------------------+
| .. code-block:: whyml            | .. code-block:: whyml                               |
|                                  |                                                     |
|    let incr (&x: ref int) =      |    let incr (x: ref int) =                          |
|      x <- x + 1                  |      x.contents <- x.contents + 1                   |
|                                  |                                                     |
|    let f () =                    |    let f () =                                       |
|      let ref x = 0 in            |      let x = ref 0 in                               |
|      incr x;                     |      incr x;                                        |
|      x                           |      x.contents                                     |
+----------------------------------+-----------------------------------------------------+
| ``let incr (ref x: int) ...``    | ``let incr (&x: ref int) ...``                      |
+----------------------------------+-----------------------------------------------------+

The type annotation is not required. Let-functions with such formal
parameters also prevent the actual argument from auto-dereferencing when
used in logic. Pure logical symbols cannot be declared with such
parameters.

Auto-dereference suppression does not work in the middle of a relation
chain: in ``0 < x :< 17``, ``x`` will be dereferenced even if ``(:<)``
expects a ref-parameter on the left.

Finally, that syntactic sugar applies to the caller side:

+-------------------------+-----------------------+
| auto-dereference syntax | desugared to          |
+=========================+=======================+
| .. code-block:: whyml   | .. code-block:: whyml |
|                         |                       |
|    let f () =           |    let f () =         |
|      let ref x = 0 in   |      let x = ref 0 in |
|      g &x               |      g x              |
+-------------------------+-----------------------+

The ``&`` marker can only be attached to a variable. Works in logic.

Ref-binders and ``&``-binders in variable declarations, patterns, and
function parameters do not require importing ``ref.Ref``. Any example
that does not use references inside data structures can be rewritten by
using ref-binders, without importing ``ref.Ref``.

Explicit use of type symbol ``ref``, program function ``ref``, or field
``contents`` requires importing ``ref.Ref`` or ``why3.Ref.Ref``.
Operations ``(:=)`` and ``(!)`` require importing ``ref.Ref``.
Note that operation ``(:=)`` is fully subsumed by direct assignment ``(<-)``.

.. index:: evaluation order

Evaluation order
^^^^^^^^^^^^^^^^

In applications, arguments are evaluated from right to left. This
includes applications of infix operators, with the only exception of
lazy operators ``&&`` and ``||`` which evaluate from left to right,
lazily.

.. index:: pair: keyword; for
.. index:: pair: keyword; downto
.. index:: pair: keyword; invariant
.. index:: invariant; for loop

The “for” loop
^^^^^^^^^^^^^^

The “for” loop of Why3 has the following general form:

.. code-block:: whyml

    for v=e1 to e2 do invariant { i } e3 done

Here, ``v`` is a variable identifier, that is bound by the loop
statement and of type ``int`` ; ``e1`` and ``e2`` are program
expressions of type ``int``, and ``e3`` is an expression of type
``unit``. The variable ``v`` may occur both in ``i`` and ``e3``, and
is not mutable. The execution of such a loop amounts to first evaluate
``e1`` and ``e2`` to values ``n1`` and ``n2``. If ``n1 >= n2`` then
the loop is not executed at all, otherwise it is executed iteratively
for ``v`` taking all the values between ``n1`` and ``n2`` included.

Regarding verification conditions, one must prove that ``i[v <- n1]``
holds (invariant initialization) ; and that ``forall n. n1 <= n <= n2
/\ i[v <- n] -> i[v <- n+1]`` (invariant preservation). At loop exit,
the property which is known is ``i[v <- n2+1]`` (notice the index
``n2+1``). A special case occurs when the initial value ``n1`` is
larger than ``n2+1``: in that case the VC generator does not produce
any VC to prove, the loop just acts as a no-op instruction. Yet in the
case when ``n1 = n2+1``, the formula ``i[v <- n2+1]`` is asserted and
thus need to be proved as a VC.

The variant with keyword ``downto`` instead of ``to`` iterates
backwards.

It is also possible for ``v`` to be an integer range type (see
:numref:`sec.range_types`) instead of an integer.

.. index:: pair: keyword; for
.. index:: pair: keyword; variant
.. index:: pair: keyword; invariant
.. index:: for each loop, invariant; for each loop

The “for each” loop
^^^^^^^^^^^^^^^^^^^

The “for each” loop of Why3 has the following syntax:

.. code-block:: whyml

    for p in e1 with S do invariant/variant... e2 done

Here, ``p`` is a pattern, ``S`` is a namespace, and ``e1`` and ``e2``
are program expressions. Such a for each loop is syntactic sugar for
the following:

.. code-block:: whyml

    let it = S.create e1 in
    try
      while true do
        invariant/variant...
        let p = S.next it in
        e2
      done
    with S.Done -> ()

That is, namespace ``S`` is assumed to declare at least a function
``create`` and a function ``next``, and an exception ``Done``. The
latter is used to signal the end of the iteration.
As shown above, the iterator is named ``it``. It can be referred to
within annotations. A different name can be specified, using syntax
``with S as x do``.

.. index:: pair: keyword; while
.. index:: pair: keyword; break
.. index:: pair: keyword; continue

Break & Continue
^^^^^^^^^^^^^^^^

The ``break`` and ``continue`` statements can be used in ``while``,
``for`` and ``for-each`` loops, with the expected semantics. The
statements take an optional identifier which can be used to break
out of nested loops. This identifier can be defined using ``label``
like in the following example:

.. code-block:: whyml

    label A in
    while true do
      variant...
      while true do
        variant...
        break A (* abort the outer loop *)
      done
    done

.. index:: collections
.. index:: function literals
.. _sec.functionliterals:

Function literals
^^^^^^^^^^^^^^^^^

Function literals can be written in expressions the same way as they
are in terms but there are a few subtleties that one must bear in
mind. First of all, if the domain of the literal is of type ``t`` then
an equality infix operator ``=`` should exist. For instance, the
literal ``[|t1 => u1|]`` with ``t1`` of type ``t``, is only considered
well typed if the infix operator ``=`` of type ``t -> t -> bool`` is
visible in the current scope. This problem does not exist in terms
because the equality in terms is polymorphic.

Second, the function literal expression ``[|t1 => u1; t2 => u2; _ =>
u3|]`` will be translated into the following expression:

.. code-block:: whyml

    let def'e = u3 in
    let d'i1 = t2 in
    let r'i1 = u2 in
    let d'i0 = t1 in
    let r'i0 = u1 in
    fun x'x -> if x'x = d'i0 then r'i0 else
               if x'x = d'i1 then r'i1 else
               def'e

.. index:: pair: keyword; any

The ``any`` expression
^^^^^^^^^^^^^^^^^^^^^^

The general form of the ``any`` expression is the following.

.. code-block:: whyml

  any <type> <contract>

This expression non-deterministically evaluates to a value of the
given type that satisfies the contract. For example, the code

.. code-block:: whyml

  let x = any int ensures { 0 <= result < 100 } in
  ...

will give to ``x`` any non-negative integer value smaller than 100.

As for contracts on functions, it is allowed to name the result or
even give a pattern for it. For example the following expression
returns a pair of integers which first component is smaller than the
second.

.. code-block:: whyml

  any (int,int) returns { (a,b) -> a <= b }

Notice that an ``any`` expression is not supposed to have side effects
nor raise exceptions, hence its contract cannot include any
``writes`` or ``raises`` clauses.

To ensure that this construction is safe, it is mandatory to show that
there is always at least one possible value to return. It means that
the VC generator produces a proof obligation of form

.. code-block:: whyml

   exists result:<type>. <post-condition>

In that respect, notice the difference with the construct

.. code-block:: whyml

  val x:<type> <contract> in x

which will not generate any proof obligation, meaning that the
existence of the value ``x`` is taken for granted.



Modules
-------

A WhyML input file is a (possibly empty) list of modules

.. productionlist::
    file: `module`*
    module: "module" `uident_nq` `attribute`* (":" tqualid)? `decl`* "end"
    decl: "type" `type_decl` ("with" `type_decl`)*
      : | "constant" `constant_decl`
      : | "function" `function_decl` ("with" `logic_decl`)*
      : | "predicate" `predicate_decl` ("with" `logic_decl`)*
      : | "inductive" `inductive_decl` ("with" `inductive_decl`)*
      : | "coinductive" `inductive_decl` ("with" `inductive_decl`)*
      : | "axiom" `ident_nq` ":" `formula`
      : | "lemma" `ident_nq` ":" `formula`
      : | "goal"  `ident_nq` ":" `formula`
      : | "use" `imp_exp` `tqualid` ("as" `uident`)?
      : | "clone" `imp_exp` `tqualid` ("as" `uident`)? `subst`?
      : | "scope" "import"? `uident_nq` `decl`* "end"
      : | "import" `uident`
      : | "let" "ghost"? `lident_nq` `attribute`* `fun_defn`
      : | "let" "rec" `fun_defn`
      : | "val" "ghost"? `lident_nq` `attribute`* `pgm_decl`
      : | "exception" `lident_nq` `attribute`* `type`?
    type_decl: `lident_nq` `attribute`* ("'" `lident_nq` `attribute`*)* `type_defn`
    type_defn:   ; abstract type
      : | "=" `type`   ; alias type
      : | "=" "|"? `type_case` ("|" `type_case`)*   ; algebraic type
      : | "=" `vis_mut` "{" `record_field` (";" `record_field`)* "}" `invariant`* `type_witness`  ; record type
      : | "<" "range" `integer` `integer` ">"   ; range type
      : | "<" "float" `integer` `integer` ">"   ; float type
    type_case: `uident` `attribute`* `type_param`*
    record_field: "ghost"? "mutable"? `lident_nq` `attribute`* ":" `type`
    type_witness: "by" `expr`
    vis_mut: ("abstract" | "private")? "mutable"?
    pgm_decl: ":" `type`   ; global variable
      : | `param` (`spec`* `param`)+ ":" `type` `spec`*   ; abstract function
    logic_decl: `function_decl`
      : | `predicate_decl`
    constant_decl: `lident_nq` `attribute`* ":" `type`
      : | `lident_nq` `attribute`* ":" `type` "=" `term`
    function_decl: `lident_nq` `attribute`* `type_param`* ":" `type`
      : | `lident_nq` `attribute`* `type_param`* ":" `type` "=" `term`
    predicate_decl: `lident_nq` `attribute`* `type_param`*
      : | `lident_nq` `attribute`* `type_param`* "=" `formula`
    inductive_decl: `lident_nq` `attribute`* `type_param`* "=" "|"? `ind_case` ("|" `ind_case`)*
    ind_case: `ident_nq` `attribute`* ":" `formula`
    imp_exp: ("import" | "export")?
    subst: "with" ("," `subst_elt`)+
    subst_elt: "type" `lqualid` "=" `lqualid`
      : | "function" `lqualid` "=" `lqualid`
      : | "predicate" `lqualid` "=" `lqualid`
      : | "scope" (`uqualid` | ".") "=" (`uqualid` | ".")
      : | "lemma" `qualid`
      : | "goal"  `qualid`
    tqualid: `uident` | `ident` ("." `ident`)* "." `uident`
    type_param: "'" `lident`
     : | `lqualid`
     : | "(" `lident`+ ":" `type` ")"
     : | "(" `type` ("," `type`)* ")"
     : | "()"


.. index:: record type
.. _Record Types:

Record types
^^^^^^^^^^^^

A record type declaration introduces a new type, with named and typed
fields, as follows:

.. code-block:: whyml

    type t = { a: int; b: bool }

Such a type can be used both in logic and programs.
A new record is built using curly braces and a value for each field,
such as ``{ a = 42; b = true }``. If ``x`` is a value of type ``t``,
its fields are accessed using the dot notation, such as ``x.a``.
Each field happens to be a projection function, so that we can also
write ``a x``.
A field can be declared ``mutable``, as follows:

.. code-block:: whyml

    type t = { mutable a: int; b: bool }

A mutable field can be modified using notation ``x.a <- 42``.
The ``writes`` clause of a function contract can list mutable fields,
e.g., ``writes { x.a }``.

.. index:: pair: keyword; invariant
.. index:: type invariant, invariant; type

.. rubric:: Type invariants

Invariants can be attached to record types, as follows:

.. code-block:: whyml

    type t = { mutable a: int; b: bool }
      invariant { b = true -> a >= 0 }

The semantics of type invariants is as follows. In the logic, a type
invariant always holds.
Consequently, it is no more possible
to build a value using the curly braces (in the logic).
To prevent the introduction of a logical
inconsistency, Why3 generates a VC to show the existence of at least
one record instance satisfying the invariant. It is named ``t'vc``
and has the form ``exists a:int, b:bool. b = true -> a >= 0``. To ease the
verification of this VC, one can provide an explicit witness using the
keyword ``by``, as follows:

.. code-block:: whyml

    type t = { mutable a: int; b: bool }
      invariant { b = true -> a >= 0 }
      by { a = 42; b = true }

It generates a simpler VC, where fields are instantiated accordingly.

For more complicated case, the witness can be more general than just a record, but
the record can be used only as the resulting expression. Indeed the record does
not exists yet, so the witness is in fact a tuple with the fields in the same
order than in the definition. The record is just syntaxic sugar.

In programs, a type invariant is assumed to
hold at function entry and must be restored at function exit.
In the middle, the invariant can be temporarily broken. For instance,
the following function can be verified:

.. code-block:: whyml

    let f (x: t) = x.a <- x.a - 1; x.a <- 0

After the first assignment, the invariant does not necessarily hold
anymore. But it is restored before function exit with the second
assignment.

If the record is passed to another function, then the invariant
must be reestablished (so as to honor the contract of the callee).
For instance, the following function cannot be verified:

.. code-block:: whyml

    let f1 (x: t) = x.a <- x.a - 1; f x; x.a <- 0

Indeed, passing ``x`` to function ``f`` requires checking the
invariant first, which does not hold in this example. Similarly, the
invariant must be reestablished if the record is passed to a logical
function or predicate. For instance, the following function cannot be
verified:

.. code-block:: whyml

    predicate p (x: t) = x.b

    let f2 (x: t) = x.a <- x.a - 1; assert { p x }; x.a <- 0

Accessing the record fields, however, does not require restoring the
invariant, both in logic and programs.
For instance, the following function can be verified:

.. code-block:: whyml

    let f2 (x: t) = x.a <- x.a - 1; assert { x.a < old x.a }; x.a <- 0

Indeed, the invariant may not hold after the first assignment, but the
assertion is only making use of field access, so there is no need to
reestablish the invariant.

.. index:: private type
.. index:: pair: keyword; private
.. rubric:: Private types

A record type can be declared ``private``, as follows:

.. code-block:: whyml

    type t = private { mutable a: int; b: bool }

The meaning of such a declaration is that one cannot build a record
instance, neither in the logic, nor in programs.
For instance, the following function cannot be defined:

.. code-block:: whyml

    let create () = { a = 42; b = true }

One cannot modify mutable fields of private types either.
One may wonder what is the purpose of private types, if one cannot
build values in those types. The purpose is to build
interfaces, to be later refined with actual implementations (see
section :ref:`Module cloning` below). Indeed, if we cannot build
record instances, we can still *declare* operations that
return such records. For instance, we can declare the following two
functions:

.. code-block:: whyml

    val create (n: int) : t
      ensures { result.a = n }

    val incr (x: t) : unit
      writes  { x.a }
      ensures { x.a = old x.a + 1 }

Later, we can *refine* type ``t`` with a type that is not private
anymore, and then implement operations ``create`` and ``incr``.

Private types are often used in conjunction with ghost fields, that
are used to model the contents of data structures. For instance, we
can conveniently model a queue containing integers as follows:

.. code-block:: whyml

    type queue = private { mutable ghost s: seq int }

If needed, we could even add invariants (e.g., the sequence ``s`` is
sorted in a priority queue).

.. index:: abstract type
.. index:: pair: keyword; abstract

When a private record type only has ghost fields, one can use
``abstract`` as a convenient shortcut:

.. code-block:: whyml

    type queue = abstract { mutable s: seq int }

This is equivalent to the previous declaration.

.. rubric:: Recursive record types

Record types can be recursive, e.g,

.. code-block:: whyml

    type t = { a: int; next: option t }

Recursive record types cannot have invariants, cannot have mutable
fields, and cannot be private.

.. rubric:: Record injectivity

Records should be identified by their fields, which is a kind of injectivity
property: provided ``a.f = b.f`` for all fields, then ``a = b``. Plain record
types without invariant are encoded as algebraic data types with a unique
constructor (see below), hence the injectivity property automatically holds.
However, for records with invariant, there is no such constructor.

Actually, record injectivity only holds for non-private types, since all fields
in the record must be statically known. Hence, for any non-private record ``r``
with invariants, the following declarations are automatically generated:

.. code-block:: whyml

    predicate r'eq (a b : r) = a.f = b.f /\ ...
    axiom r'inj: forall a b : r. r'eq a b -> a = b

The recommended way to trigger the injectivity property in your proofs is to introduce an extra ``by r'eq a b`` on a formula, or an ``assert { r'eq a b }`` statement in a program.

.. index:: algebraic data type

Algebraic data types
^^^^^^^^^^^^^^^^^^^^

Algebraic data types combine sum and product types.
A simple example of a sum type is that of an option type:

.. code-block:: whyml

    type maybe = No | Yes int

Such a declaration introduces a new type ``maybe``, with two
constructors ``No`` and ``Yes``. Constructor ``No`` has no argument
and thus can be used as a constant value. Constructor ``Yes`` has an
argument of type ``int`` and thus can be used to build values such as
``Yes 42``. Algebraic data types can be polymorphic, e.g.,

.. code-block:: whyml

    type option 'a = None | Some 'a

(This type is already part of Why3 standard library, in module
`option.Option <https://www.why3.org/stdlib/option.html>`_.)

A data type can be recursive. The archetypal example is the type of
polymorphic lists:

.. code-block:: whyml

    type list 'a = Nil | Cons 'a (list 'a)

(This type is already part of Why3 standard library, in module
`list.List <https://www.why3.org/stdlib/list.html>`_.)

Mutually recursive type definitions are supported.

.. code-block:: whyml

    type tree   = Node elt forest
    with forest = Empty | Cons tree forest

When a field is common to all constructors, with the same type, it can
be named:

.. code-block:: whyml

    type t =
      | MayBe (size: int) (option int)
      | Many  (size: int) (list int)

Such a named field introduces a projection function. Here, we get a
function ``size`` of type ``t -> int``.

Constructor arguments can be ghost, e.g.,

.. code-block:: whyml

    type answer =
      | Yes (ghost int)
      | No

Non-uniform data types are allowed, such as the following type for
`random access lists <http://toccata.lri.fr/gallery/random_access_list.fr.html>`_:

.. code-block:: whyml

    type ral 'a =
      | Empty
      | Zero    (ral ('a, 'a))
      | One  'a (ral ('a, 'a))

Why3 supports polymorphic recursion, both in logic and programs, so
that we can define and verify operations on such types.

.. index:: tuples
.. rubric:: Tuples

A tuple type is a particular case of algebraic data types, with a
single constructor. A tuple type need not be declared by the user; it
is generated on the fly. The syntax for a tuple type is ``(type1,
type2, ...)``.

Note: Record types, introduced in the previous section, also
constitute a particular case of algebraic data types with a single
constructor. There are differences, though. Record types may have
mutable fields, invariants, or private status, while algebraic data
types cannot.


.. index:: range type
.. index:: pair: keyword; range
.. _sec.range_types:

Range types
^^^^^^^^^^^

A declaration of the form ``type r = <range a b>`` defines a type that
projects into the integer range ``[a,b]``. Note that in order to make
such a declaration the theory ``int.Int`` must be imported.

Why3 let you cast an integer literal in a range type (e.g., ``(42:r)``)
and will check at typing that the literal is in range. Defining such a
range type :math:`r` automatically introduces the following:

.. code-block:: whyml

    function r'int r : int
    constant r'maxInt : int
    constant r'minInt : int

The function ``r'int`` projects a term of type ``r`` to its integer
value. The two constants represent the high bound and low bound of the
range respectively.

Projection ``r'int`` is also defined to be injective, thanks to the following
definitions automatically introduced by Why3:

.. code-block:: whyml

    predicate r'eq (x y : r) = (r'int x = r'int y)
    axiom r'inj: forall x y : r. r'eq x y -> x = y

Unless specified otherwise with the meta :why3:meta:`keep:literal` on ``r``, the
transformation :why3:transform:`eliminate_literal` introduces an axiom

.. code-block:: whyml

    axiom r'axiom : forall i:r. r'minInt <= r'int i <= r'maxInt

and replaces all casts of the form ``(42:r)`` with a constant and an
axiom as in:

.. code-block:: whyml

    constant rliteral7 : r
    axiom rliteral7_axiom : r'int rliteral7 = 42

This type is used in the standard library in the theories ``bv.BV8``,
``bv.BV16``, ``bv.BV32``, ``bv.BV64``.

.. index:: pair: keyword; float

Floating-point types
^^^^^^^^^^^^^^^^^^^^

A declaration of the form ``type f = <float eb sb>`` defines a type of
floating-point numbers as specified by the IEEE-754
standard :cite:`ieee754-2008`. Here the literal ``eb``
represents the number of bits in the exponent and the literal ``sb`` the
number of bits in the significand (including the hidden bit). Note that
in order to make such a declaration the theory ``real.Real`` must be
imported.

Why3 let you cast a real literal in a float type (e.g., ``(0.5:f)``) and
will check at typing that the literal is representable in the format.
Note that Why3 do not implicitly round a real literal when casting to a
float type, it refuses the cast if the literal is not representable.

Defining such a type ``f`` automatically introduces the following:

.. code-block:: whyml

    predicate f'isFinite f
    function  f'real f : real
    constant  f'eb : int
    constant  f'sb : int

As specified by the IEEE standard, float formats includes infinite
values and also a special NaN value (Not-a-Number) to represent results
of undefined operations such as :math:`0/0`. The predicate
``f'isFinite`` indicates whether its argument is neither infinite nor
NaN. The function ``f'real`` projects a finite term of type ``f`` to its
real value, its result is not specified for non finite terms.

Unless specified otherwise with the meta :why3:meta:`keep:literal` on ``f``, the
transformation :why3:transform:`eliminate_literal` will introduce an axiom

.. code-block:: whyml

    axiom f'axiom :
      forall x:f. f'isFinite x -> -. max_real <=. f'real x <=. max_real

where ``max_real`` is the value of the biggest finite float in the
specified format. The transformation also replaces all casts of the form
``(0.5:f)`` with a constant and an axiom as in:

.. code-block:: whyml

    constant fliteral42 : f
    axiom fliteral42_axiom : f'real fliteral42 = 0.5 /\ f'isFinite fliteral42

This type is used in the standard library in the theories
``ieee_float.Float32`` and ``ieee_float.Float64``.

Function declarations
^^^^^^^^^^^^^^^^^^^^^

.. index:: pair: keyword; let
.. index:: pair: keyword; val
.. index:: pair: keyword; function
.. index:: pair: keyword; predicate

``let``
   Definition of a program function, with prototype, contract, and body

``val``
   Declaration of a program function, with prototype and contract only

``let function``
   Definition of a pure (that is, side-effect free) program function
   which can also be used in specifications as a logical function
   symbol

``let predicate``
   Definition of a pure Boolean program function which can also be
   used in specifications as a logical predicate symbol

``val function``
   Declaration of a pure program function which can also be used in
   specifications as a logical function symbol

``val predicate``
   Declaration of a pure Boolean program function which can also be
   used in specifications as a logical predicate symbol

``function``
   Definition or declaration of a logical function symbol which can
   also be used as a program function in ghost code

``predicate``
   Definition or declaration of a logical predicate symbol which can
   also be used as a Boolean program function in ghost code

``let lemma``
   definition of a special pure program function which serves not as
   an actual code to execute but to prove the function's contract as a
   lemma: “for all values of parameters, the precondition implies the
   postcondition”. This lemma is then added to the logical context and
   is made available to provers. If this “lemma-function” produces a
   result, the lemma is “for all values of parameters, the
   precondition implies the existence of a result that satisfies the
   postcondition”. Lemma-functions are mostly used to prove some
   property by induction directly in Why3, without resorting to an
   external higher-order proof assistant.

.. index:: pair: keyword; ghost
.. index:: pair: keyword; partial

Program functions (defined with ``let`` or declared with ``val``) can
additionally be marked ``ghost``, meaning that they can only be used
in the ghost code and never translated into executable code ; or
``partial``, meaning that their execution can produce observable
effects unaccounted by their specification, and thus they cannot be
used in the ghost code.

The following table summarizes the various kinds of declarations and,
for each, indicates whether they can be used in programs, in ghost
code, and in logic:

+----------------------------------+----------+------------+--------+
| declaration                      | programs | ghost code | logic  |
+==================================+==========+============+========+
| ``let`` (pure)                   |    ✓     |      ✓     |        |
+----------------------------------+----------+------------+--------+
| ``let`` (with non-ghost effects) |    ✓     |            |        |
+----------------------------------+----------+------------+--------+
| ``let partial``                  |    ✓     |            |        |
+----------------------------------+----------+------------+--------+
| ``function``                     |          |      ✓     |    ✓   |
+----------------------------------+----------+------------+--------+
| ``let function``                 |    ✓     |      ✓     |    ✓   |
+----------------------------------+----------+------------+--------+
| ``let ghost/lemma``              |          |      ✓     |        |
+----------------------------------+----------+------------+--------+
| ``let ghost function``           |          |      ✓     |    ✓   |
+----------------------------------+----------+------------+--------+

The only combinations missing are that of a declaration

- only in the logic, since any logic declaration can be used in ghost code;
- in programs and in logic but not in ghost code, for the same reason.

.. index:: pair: keyword; rec

Recursive program functions must be defined using ``let rec``.

.. code-block:: whyml

    let rec size_tree (t: tree) : int =
      variant { t }
      match t with
      | Node _ f -> 1 + size_forest f
      end
    with size_forest (f: forest) : int =
      variant { f }
      match f with
      | Empty    -> 0
      | Cons t f -> size_tree t + size_forest f
      end

.. index:: pair: keyword; clone
.. index:: module cloning
.. _Module cloning:

Module cloning
^^^^^^^^^^^^^^

Why3 features a mechanism to make an instance of a module, by
substituting some of its declarations with other symbols. It is called
*module cloning*.

Let us consider the example of a module implementing
`exponentiation by squaring
<https://en.wikipedia.org/wiki/Exponentiation_by_squaring>`_.
We want to make it as general as possible, so that we can implement it
and verify it only once and then reuse it in various different
contexts, e.g., with integers, floating-point numbers, matrices, etc.
We start our module with the introduction of a monoid:

.. code-block:: whyml

   module Exp
     use int.Int
     use int.ComputerDivision

     type t

     val constant one : t

     val function mul t t : t

     axiom one_neutral: forall x. mul one x = x = mul x one

     axiom mul_assoc: forall x y z. mul x (mul y z) = mul (mul x y) z

Then we define a simple exponentiation function, mostly for the
purpose of specification:

.. code-block:: whyml
   :dedent: 0

     let rec function exp (x: t) (n: int) : t
       requires { n >= 0 }
       variant  { n }
     = if n = 0 then one else mul x (exp x (n - 1))

In anticipation of the forthcoming verification of exponentiation by
squaring, we prove two lemmas. As they require induction, we use lemma
functions:

.. code-block:: whyml
   :dedent: 0

     let rec lemma exp_add (x: t) (n m: int)
       requires { 0 <= n /\ 0 <= m }
       variant  { n }
       ensures  { exp x (n + m) = mul (exp x n) (exp x m) }
     = if n > 0 then exp_add x (n - 1) m

     let rec lemma exp_mul (x: t) (n m: int)
       requires { 0 <= n /\ 0 <= m }
       variant  { m }
       ensures  { exp x (n * m) = exp (exp x n) m }
     = if m > 0 then exp_mul x n (m - 1)

Finally, we implement and verify exponentiation by squaring, which
completes our module.

.. code-block:: whyml
   :dedent: 0

     let fast_exp (x: t) (n: int) : t
       requires { n >= 0 }
       ensures  { result = exp x n }
     = let ref p = x in
       let ref q = n in
       let ref r = one in
       while q > 0 do
         invariant { 0 <= q }
         invariant { mul r (exp p q) = exp x n }
         variant   { q }
         if mod q 2 = 1 then r <- mul r p;
         p <- mul p p;
         q <- div q 2
       done;
       r

   end

Note that module ``Exp`` mixes declared symbols (type ``t``, constant
``one``, function ``mul``) and defined symbols (function ``exp``,
program function ``fast_exp``).

We can now make an instance of module ``Exp``, by substituting some of
its declared symbols (not necessarily all of them) with some other
symbols. For instance, we get exponentiation by squaring on integers
by substituting ``int`` for type ``t``, integer ``1`` for constant
``one``, and integer multiplication for function ``mul``.

.. code-block:: whyml

    module ExponentiationBySquaring
      use int.Int
      clone Exp with type t = int, val one = one, val mul = (*)
    end

In a substitution such as ``val one = one``,
the left-hand side refers to the namespace of
the module being cloned, while the right-hand side refers to the
current namespace (which here contains a constant ``one`` of type
``int``).

When a module is cloned, any axiom is automatically turned into a
lemma. Thus, the ``clone`` command above generates two VCs, one for
lemma ``one_neutral`` and another for lemma ``mul_assoc``.  If an
axiom should instead remain an axiom, it should be explicitly
indicated in the substitution (using ``axiom mul_assoc`` for
instance). Why3 cannot figure out by itself whether an axiom should be
turned into a lemma, so it goes for the safe path (all axioms are to
be proved) by default.

Lemmas that were proved in the module being cloned (such as
``exp_add`` and ``exp_mul`` here) are not reproved. They are part
of the resulting namespace, the substitution being applied to
their statements.
Similarly, functions that were defined in the module being cloned
(such as ``exp`` and ``fast_exp`` here) are not reproved and are part
of the resulting module, the substitution being applied to their
argument types, return type, and definition. For instance, we get a
fresh function ``fast_exp`` of type ``int->int->int``.

We can make plenty other instances of our module ``Exp``.Module
For instance, we get
`Russian multiplication
<https://en.wikipedia.org/wiki/Ancient_Egyptian_multiplication>`_ for free
by instantiating ``Exp`` with zero and addition instead.

.. code-block:: whyml

    module Multiplication
      use int.Int
      clone Exp with type t = int, val one = zero, val mul = (+)
      goal G: exp 2 3 = 6
    end

It is also possible to substitute certain types of defined symbols :
logical functions and predicates, (co)inductives, algebraic data types, immutable
records without invariants, range and floating-point types can all be substituted
by symbols with the exact same definition.

.. code-block:: whyml

    module A
      use int.Int

      predicate pos (n : int) =
        n >= 0

      function abs (n : int) =
        if pos n then n else -n

      type 'a list =
        | Nil
        | Cons 'a (list 'a)

      type r = { a : int; b : string; }
    end

    module B
      use int.Int

      (* logical functions and predicates must be syntactically equal. *)
      predicate pos (n : int) =
        n >= 0

      (* The substitution of pos is taken into account when checking
       * that the definitions are identical. *)
      function abs (n : int) =
        if pos n then n else -n

      (* For algebraic types, same definition means same constructors
       * in the same order. *)
      type 'a list =
        | Nil
        | Cons 'a (list 'a)

      (* Similarly records' fields must be in the exact same order. *)
      type r = { a : int; b : string; }

      clone A with
       predicate pos,
       function abs,
       type list,
       type r
    end

Module interface
^^^^^^^^^^^^^^^^

Module interfaces make it possible to use only a high-level view of a
module, the interface, during verification. This relies on the cloning
mechanism to check the correspondence between the implementation and
the interface. The actual implementation is still used during the
extraction.

Below is the example of a data structure implemented using an ordered
list. The interface models it as a finite set:

.. code-block:: whyml

    module Set

      use set.Fset

      type t = abstract { contents : fset int }

      meta coercion function contents

      val empty () : t
        ensures { result = empty }

      val add (x : int) (s : t) : t
        ensures { result = add x s }

      val mem (x : int) (s : t) : bool
        ensures { result <-> mem x s }

    end

    (* Implementation of integer sets using ordered lists *)

    module ListSet : Set

      use int.Int
      use set.Fset
      use list.List
      use list.Mem
      use list.SortedInt

      type elt = int

      type t = { ghost contents : fset elt; list : list elt }
      invariant { forall x. Fset.mem x contents <-> mem x list }
      invariant { sorted list }
      by { contents = empty; list = Nil }

      meta coercion function contents

      let empty () =
        { contents = empty; list = Nil }

      let rec add_list x ys
        requires { sorted ys }
        variant { ys }
        ensures { forall y. mem y result <-> mem y ys \/ y = x }
        ensures { sorted result }
      = ...

      let add x s
        ensures { result = add x s }
      =
        { contents = add x s.contents; list = add_list x s.list }

      let rec mem_list x ys
        requires { sorted ys }
        variant { ys }
        ensures { result <-> mem x ys }
      = ...

      let mem x s =
        mem_list x s.list

    end

    module Main

      use ListSet

      let main () =
        let s = empty () in
        let s = add 1 s in
        let s = add 2 s in
        let s = add 3 s in
        let b1 = mem 3 s in
        let b2 = mem 4 s in
        assert { b1 = true /\ b2 = false };
        (b1, b2)

    end

During the verification of the function ``main``, only the
specification defined in ``Set`` is present. As a consequence, the
generated verification conditions are not polluted with the invariants
of ``ListSet``. However, during extraction, the code of ``ListSet`` is
used.

.. index:: standard library

The Why3 Standard Library
-------------------------

The Why3 standard library provides general-purpose modules, to be used
in logic and/or programs. It can be browsed on-line at
https://www.why3.org/stdlib/. Each file contains one or several modules.
To ``use`` or ``clone`` a module ``M`` from file :file:`file.mlw`, use the
syntax ``file.M``, since :file:`file.mlw` is available in Why3’s default load
path. For instance, the module of integers and the module of arrays
indexed by integers are imported as follows:

.. code-block:: whyml

      use int.Int
      use array.Array

A sub-directory :file:`mach/` provides various modules to model machine
arithmetic. For instance, the module of 63-bit integers and the module
of arrays indexed by 63-bit integers are imported as follows:

.. code-block:: whyml

      use mach.int.Int63
      use mach.array.Array63

In particular, the types and operations from these modules are mapped to
native OCaml’s types and operations when Why3 code is extracted to OCaml
(see :numref:`sec.extract`).

Library ``int``: mathematical integers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The `int <https://www.why3.org/stdlib/int.html>`__ library
contains several modules whose dependencies are
displayed on Figure :numref:`fig.lib.int`.

.. graphviz:: generated/library-int.dot
   :caption: Module dependencies in library ``int``.
   :name: fig.lib.int

The main module is `int.Int <https://www.why3.org/stdlib/int.html#Int_>`__,
which provides basic operations like addition
and multiplication, and comparisons.

The division of modulo operations are defined in other modules. They
indeed come into two flavors: the module
`int.EuclideanDivision <https://www.why3.org/stdlib/int.html#EuclideanDivision_>`__ provides
a version where the result of the modulo is always non-negative, whereas
the module
`int.ComputerDivision <https://www.why3.org/stdlib/int.html#ComputerDivision_>`__ provides a version that matches the
standard definition available in programming languages like C, Java or
OCaml. Note that these modules do not provide any division or modulo
operations to be used in programs. For those, you must use the module
`mach.int.Int <https://www.why3.org/stdlib/mach.int.html#Int_>`__
instead, which provides these operations, including
proper preconditions, and with the usual infix syntax ``x / y`` and ``x
% y``.


Library ``array``: array data structure
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

The `array <https://www.why3.org/stdlib/array.html>`__ library contains
several modules whose dependencies are
displayed on Figure :numref:`fig.lib.array`.

.. graphviz:: generated/library-array.dot
   :caption: Module dependencies in library ``array``.
   :name: fig.lib.array

The main module is `array.Array <https://www.why3.org/stdlib/array.html#Array_>`__,
which provides the operations for accessing and
updating an array element, with respective syntax ``a[i]`` and ``a[i] <-
e``, and proper preconditions for the indexes. The length of an array is
denoted as ``a.length``. A fresh array can be created using ``make l v``
where ``l`` is the desired length and ``v`` is the initial value of each
cell.