1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
|
(********************************************************************)
(* *)
(* The Why3 Verification Platform / The Why3 Development Team *)
(* Copyright 2010-2025 -- Inria - CNRS - Paris-Saclay University *)
(* *)
(* This software is distributed under the terms of the GNU Lesser *)
(* General Public License version 2.1, with the special exception *)
(* on linking described in file LICENSE. *)
(********************************************************************)
open Why3
open Wstdlib
open Ident
open Ty
open Term
(* First-order logic *)
let case_split = create_attribute "case_split"
let coma_solid = create_attribute "coma:solid"
let coma_weird = create_attribute "coma:weird"
let add_case_split t = t_attr_add case_split t
let add_stop_split t = t_attr_add stop_split t
let debug_slow = Debug.register_info_flag "coma_no_merge"
~desc:"Disable@ subgoal@ factorization."
let debug_triv = Debug.register_info_flag "coma_no_trivial"
~desc:"Discard@ trivial@ proof@ obligations."
let debug_recipe = Debug.register_info_flag "coma_print_recipes"
~desc:"Print@ intermediate@ verification@ conditions."
let is_true f = match f.t_node with
| Ttrue -> true | _ -> false
let t_and_simp f1 f2 = match f1.t_node, f2.t_node with
| _, Ttrue | Tfalse, _ -> t_attr_remove asym_split f1
| Ttrue, _ | _, Tfalse -> f2
| _, _ -> t_and f1 f2
let t_and_asym_simp f1 f2 = t_and_simp (t_attr_add asym_split f1) f2
let t_implies_simp f1 f2 = match f1.t_node, f2.t_node with
| Ttrue, _ | _, Ttrue -> f2
| Tfalse, _ | _, Tfalse -> t_not_simp f1
| _, _ -> t_implies f1 f2
let t_if_simp f1 f2 f3 = match f1.t_node, f2.t_node, f3.t_node with
| Ttrue, _, _ -> f2
| Tfalse, _, _ -> f3
| _, Ttrue, _ -> t_implies_simp (t_not_simp f1) f3
| _, Tfalse, _ -> t_and_asym_simp (t_not_simp f1) f3
| _, _, Ttrue -> t_implies_simp f1 f2
| _, _, Tfalse -> t_and_asym_simp f1 f2
| _, _, _ -> t_if f1 f2 f3
let rec t_equ_simp t1 t2 = match t1.t_node, t2.t_node with
| Tvar v1, Tvar v2 when vs_equal v1 v2 -> t_true
| Tapp (s1,[]), Tapp (s2,[]) when ls_equal s1 s2 -> t_true
| Tapp (s1,l1), Tapp (s2,l2) when s1.ls_constr > 0 && s2.ls_constr > 0 ->
if ls_equal s1 s2 then List.fold_right2 (fun t1 t2 f ->
t_and_simp (t_equ_simp t1 t2) f) l1 l2 t_true else t_false
| Tconst c1, Tconst c2 when Constant.compare_const c1 c2 = 0 -> t_true
| Tif (c,t1,e1), _ -> t_if_simp c (t_equ_simp t1 t2) (t_equ_simp e1 t2)
| _, Tif (c,t2,e2) -> t_if_simp c (t_equ_simp t1 t2) (t_equ_simp t1 e2)
| _, _ -> if Term.t_equal t1 t2 then t_true else Term.t_equ t1 t2
let rec t_simp_equ f = match f.t_node with
| Tapp (s,[t1;t2]) when ls_equal s ps_equ ->
t_attr_copy f (t_equ_simp t1 t2)
| Tnot g ->
t_attr_copy f (t_not_simp (t_simp_equ g))
| Tbinop (Tand,g,h) ->
t_attr_copy f (t_and_simp (t_simp_equ g) (t_simp_equ h))
| Tbinop (Tor,g,h) ->
t_attr_copy f (t_or_simp (t_simp_equ g) (t_simp_equ h))
| Tbinop (Timplies,g,h) ->
t_attr_copy f (t_implies_simp (t_simp_equ g) (t_simp_equ h))
| Tquant (q,b) -> let vl,tl,g = t_open_quant b in
t_attr_copy f (t_quant_close_simp q vl tl (t_simp_equ g))
| _ -> t_map t_simp_equ f
let rec t_solid p f =
Sattr.mem stop_split f.t_attrs ||
match f.t_node with
| Tbinop (Tor,_,_) -> p
| Tbinop (Tand,g,h) when p ->
Sattr.mem asym_split g.t_attrs && t_solid p h
| Tbinop (Timplies,_,h) when p -> t_solid p h
| Tquant _ -> Sattr.mem coma_solid f.t_attrs
| Tnot g -> t_solid (not p) g
| _ -> true
let t_coma_quant q vl f =
let g = t_quant_close_simp q vl [] f in
if t_solid (q = Tforall) f then t_attr_add coma_solid g else g
let rec t_neg f =
if Sattr.mem stop_split f.t_attrs then t_not_simp f
else let tac = t_attr_copy f in match f.t_node with
| Tnot g -> tac g
| Tbinop (Tand,g,h) when Sattr.mem asym_split g.t_attrs ->
tac @@ t_implies g (t_neg h)
| Tbinop (Tand,g,h) -> tac @@ t_or (t_neg g) (t_neg h)
| Tbinop (Tor,g,h) -> tac @@ t_and (t_neg g) (t_neg h)
| Tbinop (Timplies,g,h) -> tac @@ t_and g (t_neg h)
| Tquant (q,b) ->
let q = if q = Texists then Tforall else Texists in
let vl,tl,g = t_open_quant b in
tac @@ t_quant_close q vl tl (t_neg g)
| _ -> t_not_simp f
let t_level vsl t =
Mvs.fold (fun v _ m -> max m (Mvs.find v vsl)) (t_vars t) 0
let sbs_merge vsl m1 m2 = Mvs.union (fun _ t1 t2 ->
Some (if t_level vsl t2 < t_level vsl t1 then t2 else t1)) m1 m2
let add_vl vl t m = List.fold_left (fun m v -> Mvs.add v t m) m vl
let rec propagate lvl vsl pvs nvs f = match f.t_node with
| Tapp (s,[{t_node = Tvar v};t])
when ls_equal s ps_equ && Svs.mem v pvs &&
Mvs.find v vsl > t_level vsl t ->
f, Mvs.singleton v t
| Tapp (s,[t;{t_node = Tvar v}])
when ls_equal s ps_equ && Svs.mem v pvs &&
Mvs.find v vsl > t_level vsl t ->
f, Mvs.singleton v t
| Tnot g ->
let g, sbs = propagate lvl vsl nvs pvs g in
t_attr_copy f (t_not g), sbs
| Tbinop (Tand,g,h) ->
let g, sbg = propagate lvl vsl pvs Svs.empty g in
let h, sbh = propagate lvl vsl pvs Svs.empty h in
t_attr_copy f (t_and g h), sbs_merge vsl sbg sbh
| Tbinop (Tor,g,h) ->
let g, sbg = propagate lvl vsl Svs.empty nvs g in
let h, sbh = propagate lvl vsl Svs.empty nvs h in
t_attr_copy f (t_or g h), sbs_merge vsl sbg sbh
| Tbinop (Timplies,g,h) ->
let g, sbg = propagate lvl vsl nvs Svs.empty g in
let h, sbh = propagate lvl vsl Svs.empty nvs h in
t_attr_copy f (t_implies g h), sbs_merge vsl sbg sbh
| Tquant (q,b) ->
let vl,tl,g = t_open_quant b in
let vsl = add_vl vl lvl vsl in
let avs = add_vl vl () Svs.empty in
let pvs = if q = Texists then Svs.union pvs avs else pvs in
let nvs = if q = Texists then nvs else Svs.union nvs avs in
let g, sbs = propagate (succ lvl) vsl pvs nvs g in
let inst = t_subst (Mvs.set_inter sbs avs) in
let g = inst g and tl = List.map (List.map inst) tl in
let f = t_attr_remove coma_solid f (* no more useful *) in
t_attr_copy f (t_quant_close q vl tl g), Mvs.set_diff sbs avs
| _ ->
f, Mvs.empty
let vc_simp f =
t_simp_equ f
|> propagate 0 Mvs.empty Svs.empty Svs.empty |> fst
|> t_simp_equ
let spec_simp vl f =
t_simp_equ f
|> propagate 1 (add_vl vl 0 Mvs.empty) Svs.empty Svs.empty |> fst
|> t_simp_equ
(* Coma logic *)
type hsymbol = {
hs_name : ident;
}
module Hsym = MakeMSHW (struct
type t = hsymbol
let tag hs = hs.hs_name.id_tag
end)
module Shs = Hsym.S
module Mhs = Hsym.M
module Hhs = Hsym.H
module Whs = Hsym.W
let hs_equal : hsymbol -> hsymbol -> bool = (==)
let hs_hash hs = id_hash hs.hs_name
let hs_compare hs1 hs2 = id_compare hs1.hs_name hs2.hs_name
let create_hsymbol id = { hs_name = Ident.id_register id }
let hs_tagged a h = Sattr.mem a h.hs_name.id_attrs
type wpsp = {
wp: term;
sp: term Mhs.t;
}
let w_true = { wp = t_true; sp = Mhs.empty }
let sp_or _ sp1 sp2 = Some (
match sp1.t_node, sp2.t_node with
| Ttrue, _ | _, Tfalse -> sp1
| _, Ttrue | Tfalse, _ -> sp2
| _ -> add_case_split (t_or sp1 sp2))
let w_and w1 w2 = {
wp = t_and_simp w1.wp w2.wp;
sp = Mhs.union sp_or w1.sp w2.sp
}
let rec w_and_l u = function [] -> u
| w::wl -> w_and u (w_and_l w wl)
let w_and_l_rev = function [] -> w_true | [w] -> w
| w::wl -> List.fold_left (fun a b -> w_and b a) w wl
let w_and_asym f w = {
wp = t_and_asym_simp f w.wp;
sp = Mhs.map (t_and_simp f) w.sp;
}
let w_implies f w = {
wp = t_implies_simp f w.wp;
sp = Mhs.map (t_and_simp f) w.sp;
}
let w_forall vl w = {
wp = t_coma_quant Tforall vl w.wp;
sp = Mhs.map (t_coma_quant Texists vl) w.sp
}
let w_forall vl w =
if vl = [] then w else w_forall (List.rev vl) w
let w_subst s w = {
wp = t_subst s w.wp;
sp = Mhs.map (t_subst s) w.sp
}
let w_solid w =
t_solid true w.wp &&
Mhs.for_all (fun _ f -> t_solid false f) w.sp
(* Record splitting *)
let record_fields : (vsymbol list * vsymbol Mls.t) Wvs.t = Wvs.create 63
let rec complete_fields kn v =
try let ts = match v.vs_ty.ty_node with
| Tyapp (ts,_) -> ts | _ -> raise Exit in
let cs,fl = match Decl.find_constructors kn ts
with [c] -> c | _ -> raise Exit in
let fl = List.map (Opt.get_exn Exit) fl in
let sb = ty_match_args v.vs_ty in
let mk_vs f ty =
let nm = v.vs_name.id_string ^ "'" ^ f.ls_name.id_string in
let vs = create_vsymbol (id_fresh nm) (ty_inst sb ty) in
complete_fields kn vs; vs in
let vl = List.map2 mk_vs fl cs.ls_args in
let fm = List.fold_right2 Mls.add fl vl Mls.empty in
Wvs.set record_fields v (vl,fm)
with Exit | Not_found -> ()
let complete_fields kn v =
if not (Wvs.mem record_fields v) then complete_fields kn v
let inline_projections f =
let rec simp lm f = match f.t_node with
| Tapp (ls,[t]) when ls.ls_value <> None ->
let t = simp lm t in
t_attr_copy f (match t.t_node with
| Tvar v ->
(try t_var @@ Mls.find ls (try Mvs.find v lm
with Not_found -> snd (Wvs.find record_fields v))
with Not_found -> t_app ls [t] f.t_ty)
| _ -> t_app ls [t] f.t_ty)
| Tlet (t,b) ->
let t = simp lm t in
let u,s = t_open_bound b in
let lm = match t.t_node with
| Tvar v ->
(try Mvs.add u (try Mvs.find v lm
with Not_found -> snd (Wvs.find record_fields v)) lm
with Not_found -> lm)
| _ -> lm in
t_attr_copy f (t_let_close_simp u t (simp lm s))
| _ -> t_map (simp lm) f in
simp Mvs.empty f
let split_record v s cvs =
let rec fields ll lm cvs vl vfm s = match s.t_node with
| Tapp (cs,tl) when cs.ls_constr = 1 ->
List.fold_left2 (add_vt ll lm) cvs vl tl
| Tvar u when Wvs.mem record_fields u ->
let add cvs v u = add_vt ll lm cvs v (t_var u) in
List.fold_left2 add cvs vl (fst (Wvs.find record_fields u))
| Tvar u when Mvs.mem u lm ->
fields ll lm cvs vl vfm (Mvs.find u lm)
| Tlet (t,b) ->
let u,f = t_open_bound b in
fields ((s,u,t)::ll) (Mvs.add u t lm) cvs vl vfm f
| _ ->
let add f v cvs = add_vt ll lm cvs v (t_app_infer f [s]) in
Mls.fold add vfm cvs
and add_vt ll lm cvs v s =
let relet s (f,u,t) = t_attr_copy f (t_let_close_simp u t s) in
let cvs = Mvs.add v (List.fold_left relet s ll) cvs in
try let vl,vfm = Wvs.find record_fields v in
fields ll lm cvs vl vfm s
with Not_found -> cvs
in
add_vt [] Mvs.empty cvs v s
(* Coma expressions *)
type param =
| Pt of tvsymbol
| Pv of vsymbol
| Pr of vsymbol
| Pc of hsymbol * vsymbol list * param list
type expr =
| Esym of hsymbol
| Eapp of expr * argument
| Elam of param list * expr
| Edef of expr * bool * defn list
| Eset of expr * (vsymbol * term) list
| Elet of expr * (vsymbol * term * bool) list
| Ecut of term * bool * expr
| Ebox of expr
| Ewox of expr
| Eany
and argument =
| At of ty
| Av of term
| Ar of vsymbol
| Ac of expr
and defn = hsymbol * vsymbol list * param list * expr
(* VC formulas *)
type formula =
| Fsym of hsymbol
| Fagt of formula * ty
| Fagv of formula * term
| Fagr of formula * vsymbol
| Fagc of formula * formula
| Fand of formula * formula
| Fcut of term * bool * formula
| Flam of param list * Shs.t * formula
| Fall of param list * formula
| Fneu of formula * Shs.t
| Fany
type cache = {
c_tv : ty Mtv.t;
c_vs : term Mvs.t;
c_hs : handler Mhs.t;
c_ph : Shs.t;
c_go : bool;
}
and handler = bool -> binding list -> wpsp
and binding =
| Bt of ty
| Bv of term
| Bc of handler
| Bu
let c_empty = {
c_tv = Mtv.empty;
c_vs = Mvs.empty;
c_hs = Mhs.empty;
c_ph = Shs.empty;
c_go = true;
}
let c_find_vs c v = Mvs.find v c.c_vs
let c_inst_ty c t = ty_inst c.c_tv t
let c_inst_t c s = t_ty_subst c.c_tv c.c_vs s
let c_clone_tv u = create_tvsymbol (id_clone u.tv_name)
let c_clone_vs c v =
create_vsymbol (id_clone v.vs_name) (c_inst_ty c v.vs_ty)
let c_add_tv c u t = { c with c_tv = Mtv.add u t c.c_tv }
let c_add_vs c v s = { c with c_vs = split_record v s c.c_vs }
let c_add_hs c h d =
let ph = if c.c_go then Shs.empty else Shs.add h c.c_ph in
{ c with c_hs = Mhs.add h d c.c_hs; c_ph = ph }
let c_neutralize c ph =
let ph = if c.c_go then ph else Shs.inter c.c_ph ph in
{ c with c_go = false; c_ph = ph }
let c_call_hs c h go bl =
Mhs.find h c.c_hs (go && (c.c_go || Shs.mem h c.c_ph)) bl
let no_bc bl = List.for_all (function
| Bc _ -> false | Bt _ | Bv _ | Bu -> true) bl
let nasty check pl = List.exists (function
| Pv _ | Pr _ -> false | Pt _ -> true
| Pc (_,_,pl) -> check pl) pl
let unmergeable = nasty Util.ttrue
let unspeccable = nasty unmergeable
let wr_to_pl wr pl = List.fold_right (fun r pl -> Pr r :: pl) wr pl
let fold_on_pc fn acc pl = List.fold_left (fun acc -> function
| Pc (h,wr,pl) -> fn acc h wr pl | Pt _ | Pv _ | Pr _ -> acc) acc pl
let hc_of_pl hc pl =
fold_on_pc (fun hc h wr pl -> Mhs.add h (wr,pl) hc) hc pl
let lh_of_pl pl =
fold_on_pc (fun lh h _ _ -> Shs.add h lh) Shs.empty pl
let mm_of_pl pl = fold_on_pc (fun mm h _ pl ->
if unmergeable pl then mm else Shs.add h mm) Shs.empty pl
let rec f_and_l f = function [] -> f
| g::gl -> Fand (f, f_and_l g gl)
let f_lambda ?(mm=Shs.empty) pl f =
if pl = [] then f else match f with
| Flam (ql,nm,f) -> Flam (pl @ ql, Shs.union mm nm, f)
| _ -> Flam (pl,mm,f)
let f_all pl f =
if pl = [] then f else match f with (* all pl . top <=> top *)
| Fneu (f,ss) when Shs.is_empty ss -> Fneu (Fall (pl,f), ss)
| Fall (ql,f) -> Fall (pl @ ql, f)
| _ -> Fall (pl,f)
(* Pretty-printing (debug only) *)
let print_formula fmt e =
let pp_p fmt = function
| Pt tv -> Format.pp_print_char fmt '\''; Format.pp_print_string fmt tv.tv_name.id_string
| Pv vs -> Format.pp_print_string fmt vs.vs_name.id_string
| Pr vs -> Format.pp_print_char fmt '&'; Format.pp_print_string fmt vs.vs_name.id_string
| Pc (hs,_,_) -> Format.pp_print_string fmt hs.hs_name.id_string in
let rec pp fmt = function
| Fsym h -> Format.pp_print_string fmt h.hs_name.id_string
| Flam (pl,_,f) -> Format.fprintf fmt "@[<hov 2>(lambda %a .@ %a)@]"
(Pp.print_list Pp.space pp_p) pl pp f
| Fcut (s,true,f) -> Format.fprintf fmt "@[<hov 2>{ %a }@ %a@]"
Pretty.print_term s pp f
| Fcut (s,false,f) -> Format.fprintf fmt "@[<hov 2>-{ %a }-@ %a@]"
Pretty.print_term s pp f
| Fall (pl,f) -> Format.fprintf fmt "@[<hov 2>(forall %a .@ %a)@]"
(Pp.print_list Pp.space pp_p) pl pp f
| Fagt (f,t) -> Format.fprintf fmt "%a@ [%a]" pp f Pretty.print_ty t
| Fagv (f,s) -> Format.fprintf fmt "%a@ [%a]" pp f Pretty.print_term s
| Fagr (f,r) -> Format.fprintf fmt "%a@ [&%s]" pp f r.vs_name.id_string
| Fagc (f,g) -> Format.fprintf fmt "%a@ (%a)" pp f pp g
| Fand (f,g) -> Format.fprintf fmt "%a@ AND@ %a" pp f pp g
| Fneu (f,ss) when Shs.is_empty ss -> Format.fprintf fmt "# (%a)" pp f
| Fneu (f,ss) -> Format.fprintf fmt "#{%a} (%a)"
(Pp.print_list Pp.space Format.pp_print_string)
(List.map (fun hs -> hs.hs_name.id_string) (Shs.elements ss)) pp f
| Fany -> Format.pp_print_string fmt "TOP" in
pp fmt e
(* Formula evaluation *)
exception BadUndef of hsymbol
let rec joker h pl og go bl =
if og && go then raise (BadUndef h);
(* we only care about Pc and Bc *)
let rec link wl pl bl = match pl,bl with
| (Pt _ | Pv _ | Pr _) :: pl, bl
| pl, (Bt _ | Bv _ | Bu) :: bl ->
link wl pl bl
| Pc (_,rl,ql)::pl, Bc k::bl ->
let jj = jack false rl ql in
link (k true jj :: wl) pl bl
| _ -> w_and_l_rev wl in
link [] pl bl
and jack go rl pl =
let bl = List.map (function
| Pt u -> Bt (ty_var (c_clone_tv u))
| Pc (h,_,pl) -> Bc (joker h pl go)
| Pv _ | Pr _ -> Bu) pl in
List.fold_left (fun l _ -> Bu::l) bl rl
let rec consume mm c pl bl =
let link (c,vl,hl) p b = match p,b with
| Pt u, Bt t -> c_add_tv c u t, vl, hl
| (Pv v | Pr v), Bv s -> c_add_vs c v s, vl, hl
| (Pv v | Pr v), Bu -> let u = c_clone_vs c v in
c_add_vs c v (t_var u), u::vl, hl
| Pc (h,wr,pl), Bc kk ->
let hl,kk = factorize mm c hl h wr pl kk in
c_add_hs c h kk, vl, hl
| _ -> assert false in
let rec fold (c,vl,hl as acc) pl bl = match pl,bl with
| p::pl, b::bl -> fold (link acc p b) pl bl
| [], bl -> c, vl, hl, bl
| _ -> assert false in
fold (c,[],[]) pl bl
and factorize mm c hl h wr pl kk =
if Debug.test_flag debug_slow || unmergeable pl then hl,kk else
let lz = lazy (prefact (Shs.mem h mm) c h (wr_to_pl wr pl) kk) in
lz::hl, fun go bl -> if go then let lazy (_,_,_,zk) = lz in zk bl
else w_true
and prefact mh c h pl kk =
let rec fields v (vz,zl,zv,vt) =
let z = c_clone_vs c v in
let zl,zv,vt = if mh then zl,zv,vt else try
let ul,um = Wvs.find record_fields v in
let vz,zl,zv,vt = List.fold_right fields ul (Mvs.empty,zl,zv,vt) in
let vtoz u = try Mvs.find u vz with Not_found -> assert false in
Wvs.set record_fields z (List.map vtoz ul, Mls.map vtoz um); zl,zv,vt
with Not_found -> zl,zv,vt in
Mvs.add v z vz, z::zl, Mvs.add z v zv, (v, t_var z)::vt in
let [@warning "-8"] dup (Pv v|Pr v) (zl,zv,vt,bl) =
let _,zl,zv,vt = fields v (Mvs.empty,zl,zv,vt) in
zl, zv, vt, Bv (snd (List.hd vt))::bl in
let zl,zv,vt,bl = List.fold_right dup pl ([],Mvs.empty,[],[]) in
let zw = kk true bl in
let abort_mh = mh && w_solid zw in let mh = mh && not abort_mh in
let [@warning "-8"] ripe (Pv v|Pr v) = Wvs.mem record_fields v in
if abort_mh && List.exists ripe pl then prefact mh c h pl kk else
let h = if mh then create_hsymbol (id_clone h.hs_name) else h in
h, zl, zw, fun bl ->
let sph f = {wp = t_true; sp = Mhs.singleton h f} in
if pl = [] then if mh then sph t_true else zw else
let c,ul,_,_ = consume Shs.empty c pl bl in
let link (v,t) = t_equ t (c_find_vs c v) in
w_forall ul (if mh then sph (t_and_l (List.map link vt))
else w_subst (Mvs.map (c_find_vs c) zv) zw)
let close vl hl {wp;sp} =
let pile (vl,wl,sh) (lazy (h,zl,zw,_)) = match Mhs.find h sp with
| f -> List.rev_append zl vl, w_implies f zw :: wl, Shs.add h sh
| exception Not_found -> vl,wl,sh in
let pile a lz = if Lazy.is_val lz then pile a lz else a in
let vl,wl,sh = List.fold_left pile (vl,[],Shs.empty) hl in
w_forall vl @@ w_and_l {wp; sp = Mhs.set_diff sp sh} wl
let rec f_eval c o bl = match o with
| Fsym h -> c_call_hs c h true bl
| Flam (pl, mm, f) ->
let c,vl,hl,bl = consume mm c pl bl in
close vl hl (f_eval c f bl)
| Fcut (s, pp, f) ->
(if pp && c.c_go then w_and_asym else w_implies)
(add_stop_split (c_inst_t c s)) (f_eval c f bl)
| Fall (pl,f) -> f_eval c (f_lambda pl f) (jack c.c_go [] pl)
| Fand (f, g) -> w_and (f_eval c f bl) (f_eval c g bl)
| Fagt (f, t) -> f_eval c f (Bt (c_inst_ty c t) :: bl)
| Fagv (f, s) -> f_eval c f (Bv (c_inst_t c s) :: bl)
| Fagr (f, r) -> f_eval c f (Bv (c_find_vs c r) :: bl)
| Fagc (f, g) -> f_eval c f (Bc (f_handler c g) :: bl)
| Fneu (f,ss) -> f_pass (c_neutralize c ss) f bl
| Fany -> w_true
and f_pass ({c_go = go; c_ph = ph} as c) o bl =
if not go && Shs.is_empty ph && no_bc bl then w_true
else f_eval c o bl
and f_handler c o go bl =
f_pass (if go then c else c_neutralize c Shs.empty) o bl
let rec fill_mm lh = function
| Fsym h as f ->
(try incr (Mhs.find h lh) with Not_found -> ()); f
| Flam (pl, mm, f) ->
let mm = Shs.inter mm (lh_of_pl pl) in
let mm = Mhs.map (fun _ -> ref 0) mm in
let f = fill_mm (Mhs.set_union mm lh) f in
let check r = if !r > 1 then Some () else None in
Flam (pl, Mhs.map_filter check mm, f)
| Fcut (s, pp, f) -> Fcut (s, pp, fill_mm lh f)
| Fall (pl,f) -> Fall (pl, fill_mm lh f)
| Fagt (f, t) -> Fagt (fill_mm lh f, t)
| Fagv (f, s) -> Fagv (fill_mm lh f, s)
| Fagr (f, r) -> Fagr (fill_mm lh f, r)
| Fagc (f, g) -> Fagc (fill_mm lh f, fill_mm lh g)
| Fand (f, g) -> Fand (fill_mm lh f, fill_mm lh g)
| Fneu (f,ss) -> Fneu (fill_mm (Mhs.set_inter lh ss) f, ss)
| Fany -> Fany
let rec scan_fields kn pl = List.iter (function
| Pc (_,wr,pl) -> List.iter (complete_fields kn) wr;
scan_fields kn pl
| Pv v | Pr v -> complete_fields kn v
| Pt _ -> ()) pl
let rec quick_fields kn = function
| Fsym _ as f -> f
| Flam (pl, mm, f) -> scan_fields kn pl; Flam (pl, mm, quick_fields kn f)
| Fcut (s, pp, f) -> Fcut (inline_projections s, pp, quick_fields kn f)
| Fall (pl,f) -> scan_fields kn pl; Fall (pl, quick_fields kn f)
| Fagt (f, t) -> Fagt (quick_fields kn f, t)
| Fagv (f, s) -> Fagv (quick_fields kn f, inline_projections s)
| Fagr (f, r) -> Fagr (quick_fields kn f, r)
| Fagc (f, g) -> Fagc (quick_fields kn f, quick_fields kn g)
| Fand (f, g) -> Fand (quick_fields kn f, quick_fields kn g)
| Fneu (f,ss) -> Fneu (quick_fields kn f, ss)
| Fany -> Fany
let top_eval kn c f =
let f = fill_mm Mhs.empty f in
Debug.dprintf debug_recipe "@[%a@]@." print_formula f;
vc_simp (f_eval c (quick_fields kn f) []).wp
let top_handler kn c f =
let f = fill_mm Mhs.empty f in
Debug.dprintf debug_recipe "@[%a@]@." print_formula f;
f_handler c (quick_fields kn f)
let rec drop_attr at = function
| Fcut (s,pp,f) -> let s = if pp then t_attr_remove at s else s in
Fcut (s, pp, drop_attr at f)
| Flam (pl,mm,f) -> Flam (pl, mm, drop_attr at f)
| o -> o
(* VC generation *)
type vc = TT of formula | TB of formula * formula
let of_tt = function
| TT f -> f | TB _ -> invalid_arg "of_tt"
let of_tb = function
| TT _ -> invalid_arg "of_tb" | TB (f,g) -> f,g
let vc_map fn = function
| TT f -> TT (fn f) | TB (f,g) -> TB (fn f, fn g)
let vc_map2 fn v w = match v,w with
| TT vf, TT wf -> TT (fn vf wf)
| TB (vf,vg), TB(wf,wg) -> TB (fn vf wf, fn vg wg)
| _ -> invalid_arg "vc_map2"
let dl_split flat pl dl =
if flat || List.length dl = 1 then [pl,dl] else
let [@warning "-8"] head (Pc (h,_,_),_) = h in
let iter fn (_,g) =
let rec inspect sh = function
| Fsym h -> if not (Shs.mem h sh) then fn h
| Flam (pl,_,f) | Fall (pl,f) ->
inspect (Shs.union sh (lh_of_pl pl)) f
| Fcut (_,_,f) | Fneu (f,_) | Fagt (f,_)
| Fagv (f,_) | Fagr (f,_) -> inspect sh f
| Fagc (f,g) | Fand (f,g) -> inspect sh f; inspect sh g
| Fany -> () in
inspect Shs.empty g in
let module SCC = MakeSCC(Hhs) in
List.map (fun (_,dl) -> List.split dl) @@
SCC.scc head iter @@ List.combine pl dl
let rec vc tt hc o al =
let rec apply w mr pl al = match pl,al with
| (Pt _)::pl, (At t)::al ->
apply (vc_map (fun f -> Fagt (f,t)) w) mr pl al
| (Pv _)::pl, (Av s)::al ->
apply (vc_map (fun f -> Fagv (f,s)) w) mr pl al
| (Pr p)::pl, (Ar r)::al ->
let mr = Mvs.add p r mr in
apply (vc_map (fun f -> Fagr (f,r)) w) mr pl al
| (Pc (_,wr,_))::pl, (Ac d)::al ->
let param r = Pr (Mvs.find_def r r mr) in
let wr = List.map param wr in
let alam f g = Fagc (f, f_lambda wr g) in
apply (vc_map2 alam w (vc tt hc d [])) mr pl al
| _, [] -> w | _ -> assert false in
match o with
| Eapp (e,a) ->
vc tt hc e (a::al)
| Esym h ->
let (wr,pl) = Mhs.find h hc in
let f = List.fold_left (fun f r -> Fagr (f,r)) (Fsym h) wr in
let w = if tt then TT f else TB (f, Fneu (f, Shs.empty)) in
apply w Mvs.empty pl al
| Elam (pl,e) ->
let lh = lh_of_pl pl and mm = mm_of_pl pl in
let w = match vc tt (hc_of_pl hc pl) e [] with
| TB (f,g) when not (Shs.is_empty lh) ->
TB (Fand(f,Fneu(g,lh)), Fand(Fneu(f,lh),g))
| w -> w in
apply (vc_map (f_lambda ~mm pl) w) Mvs.empty pl al
| Edef (e,flat,dfl) ->
let agc f g = Fagc (f, g) in
let agc_init f g = Fagc (f, drop_attr Vc.expl_loop_keep g) in
let agc_keep f g = Fagc (f, drop_attr Vc.expl_loop_init g) in
let pl,ll,fl,gl = vc_defn tt hc flat dfl in
let loop = not (flat || unspeccable pl) in
let mm = if flat then mm_of_pl pl else
if loop then lh_of_pl pl else Shs.empty in
let bind agc f = List.fold_left (fun f (pl,gl) ->
List.fold_left agc (f_lambda ~mm pl f) gl) f ll in
let make f fl = match fl with
| h::hl when loop ->
let ip = bind agc_keep (f_and_l h hl) in
f_all pl (Fand (bind agc_init f, ip))
| _ when flat -> f_and_l (bind agc f) fl
| _ -> f_all pl (bind agc (f_and_l f fl)) in
(match vc tt (hc_of_pl hc pl) e [] with
| TB (f,g) -> TB (make f fl, make g gl)
| TT f -> TT (make f fl))
| Eset (e,vtl) ->
let agv f (_,s) = Fagv (f, s) in
let pl = List.map (fun (v,_) -> Pv v) vtl in
let agv f = List.fold_left agv (f_lambda pl f) vtl in
vc_map agv (vc tt hc e [])
| Elet (e,vtl) ->
let agv f (_,s,_) = Fagv (f,s) in
let pl = List.map (fun (v,_,_) -> Pv v) vtl in
let agv f = List.fold_left agv (f_lambda pl f) vtl in
vc_map agv (vc tt hc e [])
| Ecut (f,b,e) ->
(match vc tt hc e [] with TT g -> TT (Fcut (f,b,g))
| TB (g,h) -> TB (Fcut (f,b,g), Fcut (f,false,h)))
| (Ebox e | Ewox e) when tt -> vc true hc e []
| Ebox e -> TB (Fany, of_tt (vc true hc e []))
| Ewox e -> TB (of_tt (vc true hc e []), Fany)
| Eany -> if tt then TT Fany else TB (Fany, Fany)
and vc_defn tt hc flat dfl =
let pl = List.map (fun (h,wr,pl,_) -> Pc (h,wr,pl)) dfl in
let hc = if flat then hc else hc_of_pl hc pl in
let ll,fl,gl = List.fold_right (fun (h,wr,pl,d) (ll,fl,gl) ->
let weird = not tt && hs_tagged coma_weird h in
let pl = wr_to_pl wr pl in let mm = mm_of_pl pl in
let tb,bt = of_tb (vc false (hc_of_pl hc pl) d []) in
let fl = if weird then fl else f_all pl bt :: fl in
let gl = if weird then f_all pl bt :: gl else gl in
f_lambda ~mm pl tb :: ll, fl, gl) dfl ([],[],[]) in
pl, dl_split flat pl ll, fl, gl
let rec fill_wox rb = function
| Esym _ | Eany as o -> o
| Elam (pl, e) -> Elam (pl, fill_wox rb e)
| Edef (e, flat, dfl) ->
let dfl = wox_defn dfl in
let wd = List.exists (fun (h,_,_,d) ->
hs_tagged coma_weird h && match d with
| Ewox _ -> false | _ -> true) dfl in
Edef ((if wd then (rb := true; wox_expr e)
else fill_wox rb e), flat, dfl)
| Eset (e, vtl) -> Eset (fill_wox rb e, vtl)
| Elet (e, vtl) -> Elet (fill_wox rb e, vtl)
| Ecut (f, b, e) -> Ecut (f, b, fill_wox rb e)
| Eapp (e, Ac d) -> Eapp (fill_wox rb e, Ac (fill_wox rb d))
| Eapp (e, (At _|Av _|Ar _ as a)) -> Eapp (fill_wox rb e, a)
| Ebox e -> rb := true; Ebox (fill_wox rb e)
| Ewox e -> Ewox (fill_wox (ref false) e)
and wox_defn dfl =
List.map (fun (h,wr,pl,d) -> h, wr, pl, wox_expr d) dfl
and wox_expr e =
let rb = ref false in
let e = fill_wox rb e in
if !rb then e else Ewox e
(* Effect inference *)
exception CollisionHs of hsymbol
exception CollisionRs of vsymbol
let rec fill_wr hc lh lr wm o al =
let join_writes wr wmd =
let wmd = if wr = [] then wmd else
Mhs.map (Svs.union (Svs.of_list wr)) wmd in
let add _ s1 s2 = Some (Svs.union s1 s2) in
wm := Mhs.union add !wm wmd in
let prewrite wr d =
let wmd = ref Mhs.empty in
let d = fill_wr hc lh lr wmd d [] in
join_writes wr !wmd; d in
let rec apply w mr pl al = match pl,al with
| (Pt _ | Pv _)::pl, (At _ | Av _ as a)::al ->
apply (Eapp (w, a)) mr pl al
| (Pr p)::pl, (Ar r as a)::al ->
apply (Eapp (w, a)) (Mvs.add p r mr) pl al
| (Pc (_,wr,_))::pl, (Ac d)::al ->
let inst r = Mvs.find_def r r mr in
let d = prewrite (List.map inst wr) d in
apply (Eapp (w, Ac d)) mr pl al
| _, [] -> w | _ -> assert false in
match o with
| Eapp (e,a) ->
fill_wr hc lh lr wm e (a::al)
| Esym h ->
let lc,(_,pl) = try true, Mhs.find h lh
with Not_found -> false, Mhs.find h hc in
if lc && not (Mhs.mem h !wm) then
wm := Mhs.add h Svs.empty !wm;
apply o Mvs.empty pl al
| Elam (pl, e) ->
let pl, e = wr_lambda hc lh lr wm pl e in
apply (Elam (pl, e)) Mvs.empty pl al
| Edef (e, flat, dfl) ->
let dwl = wr_defn hc lh lr flat dfl in
let mkp ((h,wr,ql,_), _) = Pc (h,wr,ql) in
let pl,e = wr_lambda hc lh lr wm (List.map mkp dwl) e in
let [@warning "-8"] move (Pc (_,wr,_)) ((h,_,ql,d), wmd) =
join_writes wr wmd; h,wr,ql,d in
let dfl = List.map2 move pl dwl in
let rec fixpoint dfl =
let same = ref true in
let on_def (h,ur,pl,d as df) (_,wmd) =
let wr = Svs.inter lr (Mhs.find_def Svs.empty h !wm)
and ur = Svs.of_list ur in
if Svs.subset wr ur then df else
let wr = Svs.elements (Svs.union wr ur) in
join_writes wr wmd; same := false; h,wr,pl,d in
let dfl = List.map2 on_def dfl dwl in
if not !same then fixpoint dfl else begin
wm := Mhs.set_diff !wm (lh_of_pl pl); dfl end in
Edef (e, flat, if flat then dfl else fixpoint dfl)
| Eset (e, vtl) ->
Eset (prewrite (List.map fst vtl) e, vtl)
| Elet (e, vtl) ->
let add lr (r,_,b) =
if b then Svs.add r lr else lr in
let lr = List.fold_left add lr vtl in
Elet (fill_wr hc lh lr wm e al, vtl)
| Ecut (phi, b, e) ->
Ecut (phi, b, fill_wr hc lh lr wm e al)
| Ebox e -> Ebox (fill_wr hc lh lr wm e al)
| Ewox e -> Ewox (fill_wr hc lh lr wm e al)
| Eany -> Eany
and wr_lambda hc lh lr wm pl e =
let llr = List.fold_left (fun lr -> function
| Pr r -> Svs.add_new (CollisionRs r) r lr
| Pt _ | Pv _ | Pc _ -> lr) lr pl in
let sh = List.fold_left (fun sh -> function
| Pc (h,_,ql) -> Mhs.add h ([],ql) sh
| Pt _ | Pv _ | Pr _ -> sh) Mhs.empty pl in
let die h _ _ = raise (CollisionHs h) in
let lh = Mhs.union die lh sh in
let e = fill_wr hc lh llr wm e [] in
let update lr = function
| Pt _ | Pv _ as p -> lr, p
| Pr r as p -> Svs.add r lr, p
| Pc (h,_wr,ql) -> (* TODO: warning? *)
let wr = Mhs.find_def Svs.empty h !wm in
let wr = Svs.elements (Svs.inter wr lr) in
lr, Pc (h, wr, ql) in
let _,pl = Lists.map_fold_left update lr pl in
wm := Mhs.set_diff !wm sh;
pl, e
and wr_defn hc lh lr flat dfl =
let on_def lh (h,wr,pl,d) =
let pl = List.map (function
| Pt _ | Pv _ | Pr _ as p -> p
| Pc (h,_,l) -> Pc (h,[],l)) pl in
Mhs.add h (wr,pl) lh, (h,wr,pl,d) in
let lh, dfl = if flat then lh, dfl else
Lists.map_fold_left on_def lh dfl in
let same_p p q = match p,q with
| Pc (_,wr,_), Pc (_,vr,_) ->
Lists.equal vs_equal wr vr
| _, _ -> true in
let rec fixpoint lh dfl =
let same = ref true in
let on_def lh ((h,wr,ql,d),wmd) =
let wmd = ref wmd in
let pl, d = wr_lambda hc lh lr wmd ql d in
same := !same && List.for_all2 same_p pl ql;
Mhs.add h (wr,pl) lh, ((h,wr,pl,d),!wmd) in
let lh, dfl = Lists.map_fold_left on_def lh dfl in
if flat || !same then dfl else fixpoint lh dfl in
fixpoint lh (List.map (fun d -> d,Mhs.empty) dfl)
let wr_expr hc e =
fill_wr hc Mhs.empty Svs.empty (ref Mhs.empty) e []
let wr_defn hc flat dfl =
List.map fst (wr_defn hc Mhs.empty Svs.empty flat dfl)
(* Top-level Coma definitions *)
type context = Decl.known_map * (vsymbol list * param list) Mhs.t * cache
let c_empty = Mid.empty, Mhs.empty, c_empty
let c_merge (kno,hco,co) (knn,hcn,cn) =
Mid.set_union knn kno,
Mhs.set_union hcn hco,
{ c_tv = Mtv.set_union cn.c_tv co.c_tv;
c_vs = Mvs.set_union cn.c_vs co.c_vs;
c_hs = Mhs.set_union cn.c_hs co.c_hs;
c_ph = Shs.empty;
c_go = true }
let c_known (_,hc,c) kn = kn, hc, c
let vc_expr (kn,hc,c) e =
top_eval kn c @@ of_tt @@ vc true hc (wox_expr (wr_expr hc e)) []
let vc_defn (kn,hc,c) flat dfl =
let dfl = wox_defn (wr_defn hc flat dfl) in
let pl,ll,fl,_ = vc_defn true hc flat dfl in
let ctx c pl bl = let c,_,_,_ = consume Shs.empty c pl bl in c in
let bl_of_gl c gl = List.map (fun g -> Bc (top_handler kn c g)) gl in
let cc = if flat then c else ctx c pl (jack true [] pl) in
let add_dl (pl,gl) c = ctx c pl (bl_of_gl c gl) in
let c = List.fold_right add_dl ll cc in
let eval (h,_,_,_) f = h, top_eval kn (if flat then cc else c) f in
let keep (_,f) = not (Debug.test_flag debug_triv && is_true f) in
(kn, hc_of_pl hc pl, c), List.filter keep (List.map2 eval dfl fl)
let extspec_attr = create_attribute "coma:extspec"
let vc_spec (_,hc,c) h =
if not (hs_tagged extspec_attr h) then [] else
let wr, pl = Mhs.find h hc in
if unspeccable pl then [] else
let n = h.hs_name.id_string in
let id_pre = id_fresh (n ^ "'pre") in
let y = Bc (fun _ _ -> w_true) in
let param (ul,bl,outs) = function
| Pt _ -> assert false
| Pv v | Pr v -> let u = c_clone_vs c v in let b = Bv (t_var u) in
u::ul, b::bl, List.map (fun (id,ul,bl) -> id, u::ul, b::bl) outs
| Pc ({hs_name = {id_string = s}},wr,pl) ->
let pl = wr_to_pl wr pl in
let [@warning "-8"] add (zl,fl) (Pv v|Pr v) =
let z = c_clone_vs c v in
z::zl, t_equ (t_var z) (t_var v) :: fl in
let zl,fl = List.fold_left add (ul,[]) pl in
let f = t_not_simp (t_and_l (List.rev fl)) in
let kk go bl = if not go then w_true else
let c,_,_,_ = consume Shs.empty c pl bl in
{ wp = c_inst_t c f; sp = Mhs.empty } in
let oo = id_fresh (n ^ "'post'" ^ s), zl, Bc kk::bl in
ul, y::bl, oo :: List.map (fun (id,ul,bl) -> id, ul, y::bl) outs
in
let ul,bl,outs = List.fold_left param ([],[],[]) (wr_to_pl wr pl) in
let call go ul bl = spec_simp ul (c_call_hs c h go (List.rev bl)).wp in
(id_pre, List.rev ul, call true ul bl) :: List.rev_map (fun (id,ul,bl) ->
id, List.rev ul, t_neg (call false ul bl)) outs
let () = Exn_printer.register (fun fmt -> function
| BadUndef h -> Format.fprintf fmt
"Handler `%s' is used in an illegal position" h.hs_name.id_string
| CollisionHs h -> Format.fprintf fmt
"Handler `%s' is introduced twice in an expression" h.hs_name.id_string
| CollisionRs r -> Format.fprintf fmt
"Reference `%s' is introduced twice in an expression" r.vs_name.id_string
| exn -> raise exn)
|