1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
(********************************************************************)
(* *)
(* The Why3 Verification Platform / The Why3 Development Team *)
(* Copyright 2010-2025 -- Inria - CNRS - Paris-Saclay University *)
(* *)
(* This software is distributed under the terms of the GNU Lesser *)
(* General Public License version 2.1, with the special exception *)
(* on linking described in file LICENSE. *)
(********************************************************************)
%{
open Why3
open Ptree
open Mc_ast
exception Unsupported of string
let () = Exn_printer.register (fun fmt exn -> match exn with
| Error -> Format.pp_print_string fmt "syntax error"
| Unsupported s -> Format.fprintf fmt "unsupported feature: %s" s
| _ -> raise exn)
let floc s e = Loc.extract (s,e)
let mk_id id s e = { id_str = id; id_ats = []; id_loc = floc s e }
let mk_pat d s e = { pat_desc = d; pat_loc = floc s e }
let mk_term d s e = { term_desc = d; term_loc = floc s e }
let mk_expr loc d = { expr_desc = d; expr_loc = loc }
let mk_stmt loc d = { stmt_desc = d; stmt_loc = loc }
let postop op loc = { id_str = "__post" ^ op; id_ats = []; id_loc = loc }
let preop op loc = { id_str = "__pre" ^ op; id_ats = []; id_loc = loc }
let arrpostop op loc = { id_str = "__arrpost" ^ op; id_ats=[]; id_loc = loc }
let arrpreop op loc = { id_str = "__arrpre" ^ op; id_ats=[]; id_loc = loc }
let assignop loc op =
{ id_str = Ident.op_infix op; id_ats = []; id_loc = loc }
let arr_assignop loc op =
let s = match op with
| "+=" -> "__array_add"
| "-=" -> "__array_sub"
| "*=" -> "__array_mul"
| "/=" -> "__array_div"
| s -> raise (Unsupported ("no such operator " ^ s)) in
{ id_str = s; id_ats = []; id_loc = loc }
let variant_union v1 v2 = match v1, v2 with
| _, [] -> v1
| [], _ -> v2
| _, ({term_loc = loc},_)::_ -> Loc.errorm ~loc
"multiple `variant' clauses are not allowed"
let get_op s e = Qident (mk_id (Ident.op_get "") s e)
let upd_op s e = Qident (mk_id (Ident.op_update "") s e)
let empty_spec = {
sp_pre = []; sp_post = []; sp_xpost = [];
sp_reads = []; sp_writes = []; sp_alias = [];
sp_variant = [];
sp_checkrw = false; sp_diverge = false; sp_partial = false;
}
let spec_union s1 s2 = {
sp_pre = s1.sp_pre @ s2.sp_pre;
sp_post = s1.sp_post @ s2.sp_post;
sp_xpost = s1.sp_xpost @ s2.sp_xpost;
sp_reads = s1.sp_reads @ s2.sp_reads;
sp_writes = s1.sp_writes @ s2.sp_writes;
sp_alias = s1.sp_alias @ s2.sp_alias;
sp_variant = variant_union s1.sp_variant s2.sp_variant;
sp_checkrw = s1.sp_checkrw || s2.sp_checkrw;
sp_diverge = s1.sp_diverge || s2.sp_diverge;
sp_partial = s1.sp_partial || s2.sp_partial;
}
let type_int s e = PTtyapp (Qident (mk_id "int" s e), [])
let type_array s e =
let array = Qdot (Qident (mk_id "Array" s e), mk_id "array" s e) in
PTtyapp (array, [type_int s e])
%}
%token <string> INCLUDE
%token <string> INTEGER
%token <string> STRING
%token <Mc_ast.binop> CMP
%token <string> IDENT
%token IF ELSE RETURN WHILE FOR AND OR NOT
%token BREAK
%token EOF
%token LEFTPAR RIGHTPAR LEFTSQ RIGHTSQ COMMA EQUAL SEMICOLON LBRC RBRC
%token PLUS MINUS TIMES DIV MOD
%token VOID INT
%token PLUSPLUS MINUSMINUS PLUSEQUAL MINUSEQUAL TIMESEQUAL DIVEQUAL
%token AMPERSAND SCANF
(* annotations *)
%token LEMMA AXIOM GOAL COLON
%token INVARIANT VARIANT ASSUME ASSERT CHECK REQUIRES ENSURES LABEL
%token FUNCTION PREDICATE TRUE FALSE
%token ARROW LARROW LRARROW FORALL EXISTS DOT THEN LET IN OLD AT
(* precedences *)
%nonassoc IN
%nonassoc no_else
%nonassoc DOT ELSE
%right ARROW LRARROW
%right OR
%right AND
%nonassoc NOT
%right CMP
%left PLUS MINUS
%left TIMES DIV MOD
%nonassoc unary_minus prec_prefix_op
%start file
(* Transformations entries *)
%start <Why3.Ptree.term> term_eof
%start <Why3.Ptree.term list> term_comma_list_eof
%start <Why3.Ptree.ident list> ident_comma_list_eof
%type <Mc_ast.file> file
%type <Mc_ast.stmt> stmt
%%
file:
| dl=decl* EOF
{ dl }
;
decl:
| include_ { $1 }
| def { $1 }
| func { $1 }
| prop { $1 }
include_:
| f=INCLUDE
{ Dinclude (mk_id f $startpos $endpos) }
func:
| FUNCTION INT id=ident LEFTPAR l=separated_list(COMMA, param) RIGHTPAR
SEMICOLON
{ Dlogic (Some Tint, id, l, None) }
| FUNCTION INT id=ident LEFTPAR l=separated_list(COMMA, param) RIGHTPAR
EQUAL t=term SEMICOLON
{ Dlogic (Some Tint, id, l, Some t) }
| PREDICATE id=ident LEFTPAR l=separated_list(COMMA, param) RIGHTPAR
SEMICOLON
{ Dlogic (None, id, l, None) }
| PREDICATE id=ident LEFTPAR l=separated_list(COMMA, param) RIGHTPAR
EQUAL t=term SEMICOLON
{ Dlogic (None, id, l, Some t) }
prop:
| LEMMA id=ident COLON t=term SEMICOLON
{ Dprop (Decl.Plemma, id, t) }
| AXIOM id=ident COLON t=term SEMICOLON
{ Dprop (Decl.Paxiom, id, t) }
| GOAL id=ident COLON t=term SEMICOLON
{ Dprop (Decl.Pgoal, id, t) }
def:
| ty=return_type f=ident LEFTPAR x=separated_list(COMMA, param) RIGHTPAR
sbl=block_with_spec
{ let s, bl = sbl in Dfun (ty, f, x, s, bl) }
;
block_with_spec:
| s=non_empty_spec bl=block
{ s, bl }
| LBRC s=spec l=list(stmt) RBRC
{ s, mk_stmt (floc $startpos $endpos) (Sblock l) }
;
return_type:
| VOID { Tvoid }
| INT { Tint }
;
param:
| INT id=ident
{ Tint, id }
| INT id=ident LEFTSQ RIGHTSQ
{ Tarray, id }
;
spec:
| (* epsilon *) { empty_spec }
| non_empty_spec { $1 }
;
non_empty_spec:
| single_spec { $1 }
| single_spec non_empty_spec { spec_union $1 $2 }
;
single_spec:
| REQUIRES t=term SEMICOLON
{ { empty_spec with sp_pre = [t] } }
| ENSURES e=ensures SEMICOLON
{ { empty_spec with sp_post = [floc $startpos(e) $endpos(e), e] } }
| variant
{ { empty_spec with sp_variant = $1 } }
ensures:
| term
{ let id = mk_id "result" $startpos $endpos in
[mk_pat (Pvar id) $startpos $endpos, $1] }
expr:
| d = expr_desc
{ mk_expr (floc $startpos $endpos) d }
;
expr_desc:
| c = INTEGER
{ Eint c }
| s = STRING
{ Estring s }
| id = ident
{ Eident id }
| id=ident op=incdec
{ let loc = floc $startpos $endpos in
Ecall (postop op loc, [mk_expr loc (Eaddr id)]) }
| op=incdec id=ident
{ let loc = floc $startpos $endpos in
Ecall (preop op loc, [mk_expr loc (Eaddr id)]) }
| id=ident LEFTSQ e2 = expr RIGHTSQ
{ Eget (mk_expr (floc $startpos(id) $endpos(id)) (Eident id), e2) }
| id=ident LEFTSQ e2 = expr RIGHTSQ op=incdec
{ let loc = floc $startpos $endpos in
let e1 = mk_expr (floc $startpos(id) $endpos(id)) (Eident id) in
Ecall (arrpostop op loc, [e1; e2]) }
| op=incdec id=ident LEFTSQ e2 = expr RIGHTSQ
{ let loc = floc $startpos $endpos in
let e1 = mk_expr (floc $startpos(id) $endpos(id)) (Eident id) in
Ecall (arrpreop op loc, [e1; e2]) }
| MINUS e1 = expr %prec unary_minus
{ Eunop (Uneg, e1) }
| NOT e1 = expr
{ Eunop (Unot, e1) }
| e1 = expr o = binop e2 = expr
{ Ebinop (o, e1, e2) }
| f = ident LEFTPAR e = separated_list(COMMA, expr) RIGHTPAR
{ Ecall (f, e) }
| SCANF LEFTPAR s=STRING COMMA AMPERSAND id=ident RIGHTPAR
{ if s <> "%d" then raise (Unsupported "scanf is limited to \"%d\"");
let id = mk_expr (floc $startpos $endpos) (Eaddr id) in
Ecall (mk_id "scanf" $startpos $endpos, [id]) }
| LEFTPAR e = expr RIGHTPAR
{ e.expr_desc }
;
incdec:
| PLUSPLUS { "inc" }
| MINUSMINUS { "dec" }
;
%inline binop:
| PLUS { Badd }
| MINUS { Bsub }
| TIMES { Bmul }
| DIV { Bdiv }
| MOD { Bmod }
| c=CMP { c }
| AND { Band }
| OR { Bor }
;
located(X):
| X { mk_stmt (floc $startpos $endpos) $1 }
;
stmt:
| simple_stmt { $1 }
| block { $1 }
;
block:
| located(block_desc) { $1 }
;
block_desc:
| LBRC l = list(stmt) RBRC { Sblock l }
;
loop_body:
| a=loop_annotation s=simple_stmt
{ a, s }
| LBRC a=loop_annotation l=list(stmt) RBRC
{ a, mk_stmt (floc $startpos $endpos) (Sblock l) }
| a=non_empty_loop_annotation LBRC l=list(stmt) RBRC
{ a, mk_stmt (floc $startpos $endpos) (Sblock l) }
loop_annotation:
| (* epsilon *)
{ [], [] }
| non_empty_loop_annotation
{ $1 }
;
non_empty_loop_annotation:
| invariant loop_annotation
{ let (i, v) = $2 in ($1::i, v) }
| variant loop_annotation
{ let (i, v) = $2 in (i, variant_union $1 v) }
invariant:
| INVARIANT i=term SEMICOLON { i }
variant:
| VARIANT l=comma_list1(term) SEMICOLON { List.map (fun t -> t, None) l }
simple_stmt: located(simple_stmt_desc) { $1 };
simple_stmt_desc:
| SEMICOLON
{ Sskip }
| RETURN e = expr SEMICOLON
{ Sreturn e }
| INT id=ident SEMICOLON
{ let any_int = mk_id "any_int" $startpos $endpos in
let loc = floc $startpos $endpos in
let e = mk_expr loc (Ecall (any_int, [mk_expr loc Eunit])) in
Svar (Tint, id, e) }
| INT id=ident LEFTSQ e=expr RIGHTSQ SEMICOLON
{ let alloc_array = mk_id "alloc_array" $startpos $endpos in
let loc = floc $startpos $endpos in
let e = mk_expr loc (Ecall (alloc_array, [e])) in
Svar (Tarray, id, e) }
| k=assertion_kind t = term SEMICOLON
{ Sassert (k, t) }
| BREAK SEMICOLON
{ Sbreak }
| LABEL id=ident SEMICOLON
{ Slabel id }
| IF LEFTPAR c = expr RIGHTPAR s1 = stmt %prec no_else
{ Sif (c, s1, mk_stmt (floc $startpos $endpos) Sskip) }
| IF LEFTPAR c = expr RIGHTPAR s1 = stmt ELSE s2=stmt
{ Sif (c, s1, s2) }
| WHILE LEFTPAR e=expr RIGHTPAR b=loop_body
{ let iv, l = b in Swhile (e, iv, l) }
| FOR LEFTPAR e1=expr_stmt SEMICOLON e=expr SEMICOLON e2=expr_stmt
RIGHTPAR b=loop_body
{ let loc = floc $startpos $endpos in
let iv, l = b in
Sblock [e1;
mk_stmt loc (Swhile (e, iv, mk_stmt loc (Sblock [l; e2])))]
}
| s=expr_stmt_desc SEMICOLON
{ s }
;
expr_stmt: located(expr_stmt_desc) { $1 };
expr_stmt_desc:
| INT id=ident EQUAL e = expr
{ Svar (Tint, id, e) }
| id = ident EQUAL e = expr
{ Sassign (id, e) }
| id = ident op=assignop e = expr
{ let loc = floc $startpos $endpos in
let id = mk_expr loc (Eaddr id) in
Seval (mk_expr loc (Ecall (assignop loc op, [id; e]))) }
| id=ident LEFTSQ e2 = expr RIGHTSQ EQUAL e3 = expr
{ let e1 = mk_expr (floc $startpos(id) $endpos(id)) (Eident id) in
Sset (e1, e2, e3) }
| id=ident LEFTSQ e2 = expr RIGHTSQ op=assignop e3 = expr
{ let loc = floc $startpos $endpos in
let e1 = mk_expr (floc $startpos(id) $endpos(id)) (Eident id) in
Seval (mk_expr loc (Ecall (arr_assignop loc op, [e1; e2; e3]))) }
| e = expr
{ Seval e }
;
assignop:
| PLUSEQUAL { "+=" }
| MINUSEQUAL { "-=" }
| TIMESEQUAL { "*=" }
| DIVEQUAL { "/=" }
;
assertion_kind:
| ASSERT { Expr.Assert }
| ASSUME { Expr.Assume }
| CHECK { Expr.Check }
ident:
id = IDENT { mk_id id $startpos $endpos }
;
/* logic */
mk_term(X): d = X { mk_term d $startpos $endpos }
term: t = mk_term(term_) { t }
term_:
| term_arg_
{ match $1 with (* break the infix relation chain *)
| Tinfix (l,o,r) -> Tinnfix (l,o,r)
| Tbinop (l,o,r) -> Tbinnop (l,o,r)
| d -> d }
| NOT term
{ Tnot $2 }
| OLD LEFTPAR t=term RIGHTPAR
{ Tat (t, mk_id Dexpr.old_label $startpos($1) $endpos($1)) }
| AT LEFTPAR t=term COMMA l=ident RIGHTPAR
{ Tat (t, l) }
| o = prefix_op ; t = term %prec prec_prefix_op
{ Tidapp (Qident o, [t]) }
| l = term ; o = bin_op ; r = term
{ Tbinop (l, o, r) }
| l = term ; o = infix_op_1 ; r = term
{ Tinfix (l, o, r) }
| l = term ; o = infix_op_234 ; r = term
{ Tidapp (Qident o, [l; r]) }
| IF term THEN term ELSE term
{ Tif ($2, $4, $6) }
| LET id=ident EQUAL t1=term IN t2=term
{ Tlet (id, t1, t2) }
| q=quant l=comma_list1(binder) DOT t=term
{ let var (id, ty) = id.id_loc, Some id, false, Some ty in
Tquant (q, List.map var l, [], t) }
| id=ident LEFTPAR l=separated_list(COMMA, term) RIGHTPAR
{ Tidapp (Qident id, l) }
quant:
| FORALL { Dterm.DTforall }
| EXISTS { Dterm.DTexists }
binder:
| id=ident { id, type_int $startpos $endpos }
| id=ident LEFTSQ RIGHTSQ { id, type_array $startpos $endpos }
term_arg: mk_term(term_arg_) { $1 }
term_arg_:
| ident { Tident (Qident $1) }
| INTEGER { Tconst (Constant.ConstInt Number.(int_literal ILitDec ~neg:false $1)) }
| TRUE { Ttrue }
| FALSE { Tfalse }
| term_sub_ { $1 }
term_sub_:
| LEFTPAR term RIGHTPAR { $2.term_desc }
| term_arg LEFTSQ term RIGHTSQ
{ Tidapp (get_op $startpos($2) $endpos($2), [$1;$3]) }
| term_arg LEFTSQ term LARROW term RIGHTSQ
{ Tidapp (upd_op $startpos($2) $endpos($2), [$1;$3;$5]) }
%inline bin_op:
| ARROW { Dterm.DTimplies }
| LRARROW { Dterm.DTiff }
| OR { Dterm.DTor }
| AND { Dterm.DTand }
%inline infix_op_1:
| c=CMP { let op = match c with
| Beq -> "="
| Bneq -> "<>"
| Blt -> "<"
| Ble -> "<="
| Bgt -> ">"
| Bge -> ">="
| Badd|Bsub|Bmul|Bdiv|Bmod|Band|Bor -> assert false in
mk_id (Ident.op_infix op) $startpos $endpos }
%inline prefix_op:
| MINUS { mk_id (Ident.op_prefix "-") $startpos $endpos }
%inline infix_op_234:
| DIV { mk_id "div" $startpos $endpos }
| MOD { mk_id "mod" $startpos $endpos }
| PLUS { mk_id (Ident.op_infix "+") $startpos $endpos }
| MINUS { mk_id (Ident.op_infix "-") $startpos $endpos }
| TIMES { mk_id (Ident.op_infix "*") $startpos $endpos }
comma_list1(X):
| separated_nonempty_list(COMMA, X) { $1 }
(* parsing of a single term *)
term_eof:
| term EOF { $1 }
ident_comma_list_eof:
| comma_list1(ident) EOF { $1 }
term_comma_list_eof:
| comma_list1(term) EOF { $1 }
|