1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
|
(********************************************************************)
(* *)
(* The Why3 Verification Platform / The Why3 Development Team *)
(* Copyright 2010-2025 -- Inria - CNRS - Paris-Saclay University *)
(* *)
(* This software is distributed under the terms of the GNU Lesser *)
(* General Public License version 2.1, with the special exception *)
(* on linking described in file LICENSE. *)
(********************************************************************)
open Format
open Why3
open Pp
open Ident
open Ty
open Term
open Decl
open Printer
let bls = ["true";"false"]
let ident_printer =
let san = sanitizer char_to_alpha char_to_alnumus in
create_ident_printer bls ~sanitizer:san
let pr_printer =
let san = sanitizer char_to_lalpha char_to_alnumus in
create_ident_printer bls ~sanitizer:san
let print_symbol fmt id =
let san = Strings.uncapitalize in
pp_print_string fmt (id_unique ~sanitizer:san ident_printer id)
let print_tvar fmt {tv_name = id} =
let san = Strings.capitalize in
pp_print_string fmt (id_unique ~sanitizer:san ident_printer id)
let print_var fmt {vs_name = id} =
let san = Strings.capitalize in
pp_print_string fmt (id_unique ~sanitizer:san ident_printer id)
let print_pr fmt pr =
pp_print_string fmt (id_unique pr_printer pr.pr_name)
let forget_var v = forget_id ident_printer v.vs_name
let forget_tvar v = forget_id ident_printer v.tv_name
type tptp_format = FOF | TFF0 | TFF1
type tptp_number = TPTP | MetiTarski
type info = {
info_syn : syntax_map;
info_fmt : tptp_format;
info_num : tptp_number;
info_srt : ty Mty.t ref;
info_urg : string list ref;
info_rules : Decl.Spr.t;
}
let complex_type = Wty.memoize 3 (fun ty ->
let s = Pp.string_of_wnl Pretty.print_ty ty in
create_tysymbol (id_fresh s) [] NoDef)
let rec print_type info fmt ty = match ty.ty_node with
| Tyvar _ when info.info_fmt = TFF0 ->
unsupported "TFF0 does not support polymorphic types"
| Tyvar tv -> print_tvar fmt tv
| Tyapp (ts, tl) ->
begin match query_syntax info.info_syn ts.ts_name, tl with
| Some s, _ -> syntax_arguments s (print_type info) fmt tl
| None, [] -> print_symbol fmt ts.ts_name
| None, _ when info.info_fmt = TFF0 ->
begin match Mty.find_opt ty !(info.info_srt) with
| Some ty -> print_type info fmt ty
| None ->
let ts = complex_type ty in let cty = ty_app ts [] in
let us = Pp.sprintf "@[<hov 2>tff(%s, type,@ %a:@ $tType).@]@\n@\n"
(id_unique pr_printer ts.ts_name) print_symbol ts.ts_name in
info.info_srt := Mty.add ty cty !(info.info_srt);
info.info_urg := us :: !(info.info_urg);
print_type info fmt cty
end
| None, tl ->
fprintf fmt "@[%a(%a)@]" print_symbol ts.ts_name
(print_list comma (print_type info)) tl
end
let print_type info fmt ty = try print_type info fmt ty
with Unsupported s -> raise (UnsupportedType (ty,s))
let number_format = {
Number.long_int_support = `Default;
Number.negative_int_support =
`Custom (fun fmt f -> fprintf fmt "-%t" f);
Number.dec_int_support = `Default;
Number.hex_int_support = `Unsupported;
Number.oct_int_support = `Unsupported;
Number.bin_int_support = `Unsupported;
Number.negative_real_support = `Default;
Number.dec_real_support = `Default;
Number.hex_real_support = `Unsupported;
Number.frac_real_support =
`Custom
((fun fmt i -> fprintf fmt "$to_real(%s)" i),
(fun fmt i n -> fprintf fmt "$quotient($to_real(%s),$to_real(%s))" i n));
}
let number_format_metitarski = {
number_format with
Number.frac_real_support =
`Custom
((fun fmt i -> pp_print_string fmt i),
(fun fmt i n -> fprintf fmt "(%s / %s)" i n));
}
let print_const info fmt c =
let supported = match info.info_num with
| TPTP -> number_format
| MetiTarski -> number_format_metitarski in
Constant.(print supported unsupported_escape) fmt c
let rec print_app info fmt ls tl oty =
match query_syntax info.info_syn ls.ls_name with
| Some s -> syntax_arguments s (print_term info) fmt tl
| None ->
let sbs = ls_app_inst ls tl oty in
if Mtv.is_empty sbs && tl = [] then
print_symbol fmt ls.ls_name
else begin
let cm = if Mtv.is_empty sbs || tl = [] then "" else ", " in
fprintf fmt "%a(%a%s%a)"
print_symbol ls.ls_name
(print_iter2 Mtv.iter comma nothing nothing (print_type info)) sbs
cm
(print_list comma (print_term info)) tl
end
and print_term info fmt t = match t.t_node with
| Tvar v ->
print_var fmt v
| Tapp (ls, tl) ->
print_app info fmt ls tl t.t_ty
| Tconst c ->
print_const info fmt c
| Tlet (t1,tb) ->
let v,t2 = t_open_bound tb in
fprintf fmt "$let_tt(%a@ =@ %a,@ %a)"
print_symbol v.vs_name (print_term info) t1 (print_term info) t2;
forget_var v
| Tif (f1,t1,t2) ->
fprintf fmt "$ite_t(%a,@ %a,@ %a)"
(print_fmla info) f1 (print_term info) t1 (print_term info) t2
| Tcase _ -> unsupportedTerm t
"TPTP does not support pattern matching, use eliminate_algebraic"
| Teps _ -> unsupportedTerm t
"TPTP does not support epsilon-terms"
| Tquant _ | Tbinop _ | Tnot _ | Ttrue | Tfalse -> raise (TermExpected t)
and print_fmla info fmt f = match f.t_node with
| Tapp (ls, tl) ->
print_app info fmt ls tl f.t_ty
| Tbinop (op, f1, f2) ->
let s = match op with
| Tand -> "&" | Tor -> "|" | Timplies -> "=>" | Tiff -> "<=>" in
fprintf fmt "(%a@ %s %a)" (print_fmla info) f1 s (print_fmla info) f2
| Tnot f ->
fprintf fmt "~@ %a" (print_fmla info) f
| Ttrue ->
pp_print_string fmt "$true"
| Tfalse ->
pp_print_string fmt "$false"
| Tquant (q, fq) ->
let q = match q with Tforall -> "!" | Texists -> "?" in
let vl, _tl, f = t_open_quant fq in
let print_vsty fmt vs =
if info.info_fmt = FOF then print_var fmt vs
else fprintf fmt "%a:@,%a" print_var vs (print_type info) vs.vs_ty in
fprintf fmt "%s[%a]:@ %a" q
(print_list comma print_vsty) vl (print_fmla info) f;
List.iter forget_var vl
| Tlet (t1,tb) ->
let v,t2 = t_open_bound tb in
fprintf fmt "$let_tf(%a@ =@ %a,@ %a)"
print_symbol v.vs_name (print_term info) t1 (print_fmla info) t2;
forget_var v
| Tif (f1,t1,t2) ->
fprintf fmt "$ite_f(%a,@ %a,@ %a)"
(print_fmla info) f1 (print_fmla info) t1 (print_fmla info) t2
| Tcase _ -> unsupportedTerm f
"TPTP does not support pattern matching, use eliminate_algebraic"
| Tvar _ | Tconst _ | Teps _ -> raise (FmlaExpected f)
let print_tvarg fmt tv = fprintf fmt "%a : $tType" print_tvar tv
let print_tvargs fmt tvs = print_iter1 Stv.iter comma print_tvarg fmt tvs
let star fmt _ = fprintf fmt " *@ "
let print_fmla info fmt f =
let tvs = t_ty_freevars Stv.empty f in
if Stv.is_empty tvs then print_fmla info fmt f else
fprintf fmt "![%a]:@ %a" print_tvargs tvs (print_fmla info) f;
Stv.iter forget_tvar tvs
let print_decl info fmt d = match d.d_node with
| Dtype _ when info.info_fmt = FOF -> ()
| Dtype { ts_def = Alias _ } -> ()
| Dtype { ts_args = _::_ } when info.info_fmt = TFF0 -> ()
| Dtype ts when query_syntax info.info_syn ts.ts_name <> None -> ()
| Dtype ts ->
let print_arg fmt _ = pp_print_string fmt "$tType" in
let print_sig fmt ts = match ts.ts_args with
| [] -> pp_print_string fmt "$tType"
| [_] -> fprintf fmt "$tType >@ $tType"
| tl -> fprintf fmt "(%a) >@ $tType" (print_list star print_arg) tl
in
fprintf fmt "@[<hov 2>tff(%s, type,@ %a:@ %a).@]@\n@\n"
(id_unique pr_printer ts.ts_name)
print_symbol ts.ts_name print_sig ts
| Dparam _ when info.info_fmt = FOF -> ()
| Dparam ls when query_syntax info.info_syn ls.ls_name <> None -> ()
| Dparam ls ->
let print_type = print_type info in
let print_val fmt = function
| Some ty -> print_type fmt ty
| None -> fprintf fmt "$o" in
let print_sig fmt ls = match ls.ls_args with
| [] -> print_val fmt ls.ls_value
| [ty] -> fprintf fmt "%a >@ %a"
print_type ty print_val ls.ls_value
| tl -> fprintf fmt "(%a) >@ %a"
(print_list star print_type) tl print_val ls.ls_value in
let print_sig fmt ls =
let tvs = List.fold_left ty_freevars Stv.empty ls.ls_args in
let tvs = oty_freevars tvs ls.ls_value in
if Stv.is_empty tvs then
print_sig fmt ls
else if ls.ls_args = [] then
fprintf fmt "!>[%a]:@ %a" print_tvargs tvs print_sig ls
else
fprintf fmt "!>[%a]:@ (%a)" print_tvargs tvs print_sig ls;
Stv.iter forget_tvar tvs
in
fprintf fmt "@[<hov 2>tff(%s, type,@ %a:@ %a).@]@\n@\n"
(id_unique pr_printer ls.ls_name)
print_symbol ls.ls_name print_sig ls
| Ddata _ -> unsupportedDecl d
"TPTP does not support algebraic datatypes, use eliminate_algebraic"
| Dlogic _ -> unsupportedDecl d
"Definitions are not supported, use eliminate_definition"
| Dind _ -> unsupportedDecl d
"TPTP does not support inductive predicates, use eliminate_inductive"
| Dprop (Paxiom, pr, _) when Mid.mem pr.pr_name info.info_syn -> ()
| Dprop (Paxiom, pr, f) ->
(*
Format.eprintf "Dprop for %s: rewrite rules:" pr.pr_name.id_string;
Spr.iter (fun pr -> Format.eprintf " %s" pr.pr_name.id_string) info.info_rules;
Format.eprintf "@.";
*)
let annotation = if Spr.mem pr info.info_rules then ",rewrite" else "" in
let head = if info.info_fmt = FOF then "fof" else "tff" in
fprintf fmt "@[<hov 2>%s(%a, axiom,@ %a%s).@]@\n@\n"
head print_pr pr (print_fmla info) f annotation
| Dprop (Pgoal, pr, f) ->
let head = if info.info_fmt = FOF then "fof" else "tff" in
fprintf fmt "@[<hov 2>%s(%a, conjecture,@ %a).@]@\n"
head print_pr pr (print_fmla info) f
| Dprop (Plemma, _, _) -> assert false
let print_decls fm nm =
(*
Format.eprintf "rewrite rules:";
Spr.iter (fun pr -> Format.eprintf " %s" pr.pr_name.id_string) rew_rules;
Format.eprintf "@.";
*)
let print_decl (sm,fm,rr,ct) fmt d =
let info = { info_syn = sm;
info_fmt = fm;
info_num = nm;
info_srt = ref ct;
info_urg = ref [];
info_rules = rr } in
try print_decl info fmt d;
(sm,fm,rr,!(info.info_srt)), !(info.info_urg)
with Unsupported s -> raise (UnsupportedDecl (d,s)) in
let print_decl = Printer.sprint_decl print_decl in
let print_decl task acc = print_decl task.Task.task_decl acc in
Discriminate.on_syntax_map (fun sm ->
Trans.on_tagged_pr Compute.meta_rewrite (fun rr ->
Trans.fold print_decl ((sm,fm,rr,Mty.empty),[])))
let print_task fm nm =
let print_decls = print_decls fm nm in
fun args ?old:_ fmt task ->
(* In trans-based p-printing [forget_all] is a no-no *)
(* forget_all ident_printer; *)
print_prelude fmt args.prelude;
print_th_prelude task fmt args.th_prelude;
let rec print = function
| x :: r -> print r; Pp.string fmt x
| [] -> () in
print (snd (Trans.apply print_decls task));
pp_print_flush fmt ()
let () =
register_printer "tptp-tff0" (print_task TFF0 TPTP) ~desc:"TPTP TFF0 format";
register_printer "tptp-tff1" (print_task TFF1 TPTP) ~desc:"TPTP TFF1 format";
register_printer "tptp-fof" (print_task FOF TPTP) ~desc:"TPTP FOF format"
let () =
register_printer "metitarski" (print_task FOF MetiTarski)
~desc:"MetiTarski TPTP format"
(** DFG input format for SPASS >= 3.8
(with the help of Daniel Wand)
TODO:
- type arguments for polymorphic functions and predicates
- data types
*)
let is_type info d = match d.d_node with
| Dtype ts -> query_syntax info.info_syn ts.ts_name = None
| Ddata _ -> unsupportedDecl d "no data types"
| _ -> false
let is_function info d = match d.d_node with
| Dparam ls ->
ls.ls_value <> None && query_syntax info.info_syn ls.ls_name = None
| _ -> false
let is_predicate info d = match d.d_node with
| Dparam ls ->
ls.ls_value = None && query_syntax info.info_syn ls.ls_name = None
| _ -> false
let ls_arity fmt d = match d.d_node with
| Dparam ls ->
let ntv = Stv.cardinal (ls_ty_freevars ls) in
let na = List.length ls.ls_args in
if ntv = 0 then fprintf fmt "(%a, %d)" print_symbol ls.ls_name na
else fprintf fmt "(%a, %d+%d)" print_symbol ls.ls_name ntv na
| _ -> assert false
let type_arity fmt d = match d.d_node with
| Dtype ts ->
let ntv = List.length ts.ts_args in
if ntv = 0 then print_symbol fmt ts.ts_name
else fprintf fmt "(%a, %d)" print_symbol ts.ts_name ntv
| _ -> assert false
let ls_type kind info fmt d = match d.d_node with
| Dparam ls ->
fprintf fmt "%s(@[%a" kind print_symbol ls.ls_name;
let tvs = ls_ty_freevars ls in
if not (Stv.is_empty tvs) then
fprintf fmt ", [%a]" (print_list comma print_tvar) (Stv.elements tvs);
begin match ls.ls_value, ls.ls_args with
| None, [] -> ()
| None, _ ->
fprintf fmt ", %a" (print_list comma (print_type info)) ls.ls_args
| Some ty, [] -> fprintf fmt ", %a" (print_type info) ty
| Some ty, _ ->
fprintf fmt ", (%a) %a" (print_list comma (print_type info))
ls.ls_args (print_type info) ty
end;
fprintf fmt "@]).@\n";
Stv.iter forget_tvar tvs
| _ -> assert false
let rec print_app info fmt ls tl oty =
match query_syntax info.info_syn ls.ls_name with
| Some s -> syntax_arguments s (print_term info) fmt tl
| None ->
print_symbol fmt ls.ls_name;
let sbs = ls_app_inst ls tl oty in
if not (Mtv.is_empty sbs) then
fprintf fmt "<%a>"
(print_iter2 Mtv.iter comma nothing nothing (print_type info)) sbs;
if tl <> [] then
fprintf fmt "(%a)"
(print_list comma (print_term info)) tl
and print_term info fmt t = match t.t_node with
| Tvar v ->
print_var fmt v
| Tapp (ls, tl) ->
print_app info fmt ls tl t.t_ty
| Tconst c ->
Constant.(print number_format unsupported_escape) fmt c
| Tlet _ -> unsupportedTerm t
"DFG does not support let, use eliminate_let"
| Tif _ -> unsupportedTerm t
"DFG does not support if, use eliminate_if"
| Tcase _ -> unsupportedTerm t
"TPTP does not support pattern matching, use eliminate_algebraic"
| Teps _ -> unsupportedTerm t
"TPTP does not support epsilon-terms"
| Tquant _ | Tbinop _ | Tnot _ | Ttrue | Tfalse -> raise (TermExpected t)
let rec print_fmla info fmt f = match f.t_node with
| Tapp (ls, tl) ->
print_app info fmt ls tl f.t_ty
| Tbinop (op, f1, f2) ->
let s = match op with
| Tand -> "and" | Tor -> "or"
| Timplies -> "implies" | Tiff -> "equiv" in
fprintf fmt "%s(%a,@ %a)" s (print_fmla info) f1 (print_fmla info) f2
| Tnot f ->
fprintf fmt "not(%a)" (print_fmla info) f
| Ttrue ->
pp_print_string fmt "true"
| Tfalse ->
pp_print_string fmt "false"
| Tquant (q, fq) ->
let q = match q with Tforall -> "forall" | Texists -> "exists" in
let vl, _tl, f = t_open_quant fq in
let print_vsty fmt vs =
fprintf fmt "%a:@,%a" print_var vs (print_type info) vs.vs_ty in
fprintf fmt "%s([%a],@ %a)" q
(print_list comma print_vsty) vl (print_fmla info) f;
List.iter forget_var vl
| Tlet _ -> unsupportedTerm f
"DFG does not support let, use eliminate_let"
| Tif _ -> unsupportedTerm f
"DFG does not support if, use eliminate_if"
| Tcase _ -> unsupportedTerm f
"DFG does not support pattern matching, use eliminate_algebraic"
| Tvar _ | Tconst _ | Teps _ -> raise (FmlaExpected f)
let print_axiom info fmt d = match d.d_node with
| Dprop (Paxiom, pr, _) when Mid.mem pr.pr_name info.info_syn -> ()
| Dprop (Paxiom, pr, f) ->
fprintf fmt "@[<hov 2>formula(%a, %a).@]@\n"
(print_fmla info) f print_pr pr
| _ -> ()
let print_dfg args ?old:_ fmt task =
forget_all ident_printer;
forget_all pr_printer;
fprintf fmt "@[begin_problem(why3).@\n@\n";
print_prelude fmt args.prelude;
print_th_prelude task fmt args.th_prelude;
fprintf fmt "list_of_descriptions.@\n";
fprintf fmt
"name({**}). author({**}). status(unknown). description({**}).@\n";
fprintf fmt "end_of_list.@\n@\n";
let info = {
info_syn = get_syntax_map task;
info_fmt = FOF;
info_num = TPTP;
info_urg = ref [];
info_srt = ref Mty.empty ;
info_rules = Spr.empty;
} in
let dl = Task.task_decls task in
let tl = List.filter (is_type info) dl in
let fl = List.filter (is_function info) dl in
let pl = List.filter (is_predicate info) dl in
(* arities *)
fprintf fmt "list_of_symbols.@\n";
fprintf fmt "functions [@[%a@]].@\n" (print_list comma ls_arity) fl;
fprintf fmt "predicates [@[%a@]].@\n" (print_list comma ls_arity) pl;
fprintf fmt "sorts [@[%a@]].@\n" (print_list comma type_arity) tl;
fprintf fmt "end_of_list.@\n@\n";
(* types *)
fprintf fmt "list_of_declarations.@\n";
List.iter (ls_type "function" info fmt) fl;
List.iter (ls_type "predicate" info fmt) pl;
fprintf fmt "end_of_list.@\n@\n";
fprintf fmt "list_of_formulae(axioms).@\n";
List.iter (print_axiom info fmt) dl;
fprintf fmt "end_of_list.@\n@\n";
fprintf fmt "list_of_formulae(conjectures).@\n";
let f = Task.task_goal_fmla task in
fprintf fmt "@[<hov 2>formula(%a, %a)@].@\n" (print_fmla info) f
print_pr (Task.task_goal task);
fprintf fmt "end_of_list.@\n@\n";
fprintf fmt "end_problem.@\n"
let () =
register_printer "dfg" print_dfg ~desc:"First-order monomorphic DFG format"
|