File: algebra.mlw

package info (click to toggle)
why3 1.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 45,020 kB
  • sloc: xml: 185,443; ml: 111,224; ansic: 3,998; sh: 2,578; makefile: 2,568; java: 865; python: 720; javascript: 290; lisp: 205; pascal: 173
file content (216 lines) | stat: -rw-r--r-- 4,910 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

(** {1 Basic Algebra Theories} *)

(** {2 Associativity} *)

module Assoc

  type t
  function op t t : t
  axiom Assoc : forall x y z : t. op (op x y) z = op x (op y z)

end

(** {2 Commutativity} *)

module Comm

  type t
  function op t t : t
  axiom Comm : forall x y : t. op x y = op y x

end

(** {2 Associativity and Commutativity} *)

module AC

  clone export Assoc with axiom Assoc
  clone export Comm with type t = t, function op = op, axiom Comm
  meta AC function op

end

(** {2 Monoids} *)

module Monoid

  clone export Assoc with axiom Assoc
  constant unit : t
  axiom Unit_def_l : forall x:t. op unit x = x
  axiom Unit_def_r : forall x:t. op x unit = x

end

(** {2 Commutative Monoids} *)

module CommutativeMonoid

  clone export Monoid with axiom Assoc, axiom Unit_def_l, axiom Unit_def_r
  clone export Comm with type t = t, function op = op, axiom Comm
  meta AC function op

end

(** {2 Groups} *)

module Group

  clone export Monoid with axiom Assoc, axiom Unit_def_l, axiom Unit_def_r
  function inv t : t
  axiom Inv_def_l : forall x:t. op (inv x) x = unit
  axiom Inv_def_r : forall x:t. op x (inv x) = unit

(***
  lemma Inv_unit : forall x y:t. op x (inv y) = unit -> x = y
*)

end

(** {2 Commutative Groups} *)

module CommutativeGroup

  clone export Group with axiom .
  clone export Comm with type t = t, function op = op, axiom Comm
  meta AC function op

end

(** {2 Rings} *)

module Ring

  type t
  constant zero : t
  function (+) t t : t
  function (-_) t : t
  function (*) t t : t

  clone export CommutativeGroup with type t = t,
                                constant unit = zero,
                                function op = (+),
                                function inv = (-_),
                                axiom .

  clone Assoc as MulAssoc with type t = t, function op = (*), axiom Assoc

  axiom Mul_distr_l : forall x y z : t. x * (y + z) = x * y + x * z
  axiom Mul_distr_r : forall x y z : t. (y + z) * x = y * x + z * x

end

(** {2 Commutative Rings} *)

module CommutativeRing

  clone export Ring with axiom .
  clone Comm as MulComm with type t = t, function op = (*), axiom Comm
  meta AC function (*)

end

(** {2 Commutative Rings with Unit} *)

module UnitaryCommutativeRing

  clone export CommutativeRing with axiom .
  constant one : t
  axiom Unitary : forall x:t. one * x = x
  axiom NonTrivialRing : zero <> one

end

(** {2 Ordered Commutative Rings} *)

module OrderedUnitaryCommutativeRing

  clone export UnitaryCommutativeRing with axiom .

  predicate (<=) t t

  clone export relations.TotalOrder with
    type t = t, predicate rel = (<=), axiom .

  axiom ZeroLessOne : zero <= one

  axiom CompatOrderAdd  :
    forall x y z : t. x <= y -> x + z <= y + z

  axiom CompatOrderMult :
    forall x y z : t. x <= y -> zero <= z -> x * z <= y * z
  meta "remove_unused:dependency" axiom CompatOrderMult, function (*)

end

(** {2 Field theory} *)

module Field

  clone export UnitaryCommutativeRing with axiom .

  function inv t : t

  axiom Inverse : forall x:t. x <> zero -> x * inv x = one

  function (-) (x y : t) : t = x + -y
  function (/) (x y : t) : t = x * inv y

  lemma add_div :
    forall x y z : t. z <> zero -> (x+y)/z = x/z + y/z
  meta "remove_unused:dependency" lemma add_div, function (/)

  lemma sub_div :
    forall x y z : t. z <> zero -> (x-y)/z = x/z - y/z
  meta "remove_unused:dependency" lemma sub_div, function (/)

  lemma neg_div :
    forall x y : t. y <> zero -> (-x)/y = -(x/y)
  meta "remove_unused:dependency" lemma neg_div, function (/)

  lemma assoc_mul_div: forall x y z:t.
    (* todo: discard the hypothesis ? *)
     z <> zero -> (x*y)/z = x*(y/z)
  meta "remove_unused:dependency" lemma assoc_mul_div, function (/)

  lemma assoc_div_mul: forall x y z:t.
    (* todo: discard the hypothesis ? *)
     y <> zero /\ z <> zero -> (x/y)/z = x/(y*z)
  meta "remove_unused:dependency" lemma assoc_div_mul, function (/)

  lemma assoc_div_div: forall x y z:t.
    (* todo: discard the hypothesis ? *)
     y <> zero /\ z <> zero -> x/(y/z) = (x*z)/y
  meta "remove_unused:dependency" lemma assoc_div_div, function (/)

end

(** {2 Ordered Fields} *)

module OrderedField

  clone export Field with axiom .

  predicate (<=) t t

  clone export relations.TotalOrder with
    type t = t, predicate rel = (<=), axiom .

  axiom ZeroLessOne : zero <= one

  axiom CompatOrderAdd  : forall x y z : t. x <= y -> x + z <= y + z

  axiom CompatOrderMult :
    forall x y z : t. x <= y -> zero <= z -> x * z <= y * z

end

(***
 to be discussed: should we add the following lemmas, and where

  lemma InvMult : forall x y : t. (-x) * y = - (x * y) = x * (-y)
  lemma InvSquare : forall x : t. x * x = (-x) * (-x)
  lemma ZeroMult : forall x : t. x * zero = zero = zero * x
  lemma SquareNonNeg1 : forall x : t. x <= zero -> zero <= x * x
  lemma SquareNonNeg : forall x : t. zero <= x * x
*)