1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
(** {1 Arrays} *)
(** {2 Generic Arrays}
The length is a non-mutable field, so that we get for free that
modification of an array does not modify its length.
*)
module Array
use int.Int
use map.Map
type array [@extraction:array] 'a = private {
mutable ghost elts : int -> 'a;
length : int
} invariant { 0 <= length }
function ([]) (a: array 'a) (i: int) : 'a = a.elts i
val ([]) (a: array 'a) (i: int) : 'a
requires { [@expl:index in array bounds] 0 <= i < length a }
ensures { result = a[i] }
val ghost function ([<-]) (a: array 'a) (i: int) (v: 'a): array 'a
ensures { result.length = a.length }
ensures { result.elts = Map.set a.elts i v }
val ([]<-) (a: array 'a) (i: int) (v: 'a) : unit writes {a}
requires { [@expl:index in array bounds] 0 <= i < length a }
ensures { a.elts = Map.set (old a).elts i v }
ensures { a = (old a)[i <- v] }
(** unsafe get/set operations with no precondition *)
exception OutOfBounds
let defensive_get (a: array 'a) (i: int)
ensures { 0 <= i < length a /\ result = a[i] }
raises { OutOfBounds -> i < 0 \/ i >= length a }
= if i < 0 || i >= length a then raise OutOfBounds;
a[i]
let defensive_set (a: array 'a) (i: int) (v: 'a)
ensures { 0 <= i < length a }
ensures { a = (old a)[i <- v] }
raises { OutOfBounds -> (i < 0 \/ i >= length a) /\ a = old a }
= if i < 0 || i >= length a then raise OutOfBounds;
a[i] <- v
function make (n: int) (v: 'a) : array 'a
axiom make_spec : forall n:int, v:'a.
n >= 0 ->
(forall i:int. 0 <= i < n -> (make n v)[i] = v) /\
length (make n v) = n
val make [@extraction:array_make] (n: int) (v: 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i:int. 0 <= i < n -> result[i] = v }
ensures { result.length = n }
val empty () : array 'a
ensures { result.length = 0 }
let copy (a: array 'a) : array 'a
ensures { length result = length a }
ensures { forall i:int. 0 <= i < length result -> result[i] = a[i] }
=
let len = length a in
if len = 0 then empty ()
else begin
let b = make len a[0] in
for i = 1 to len - 1 do
invariant { forall k. 0 <= k < i -> b[k] = a[k] }
b[i] <- a[i]
done;
b
end
let sub (a: array 'a) (ofs: int) (len: int) : array 'a
requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length a }
ensures { length result = len }
ensures { forall i:int. 0 <= i < len -> result[i] = a[ofs + i] }
=
if length a = 0 then begin
assert { len = 0 };
empty ()
end else begin
let b = make len a[0] in
for i = 0 to len-1 do
invariant { forall k. 0 <= k < i -> b[k] = a[ofs+k] }
b[i] <- a[ofs+i];
done;
b
end
let fill (a: array 'a) (ofs: int) (len: int) (v: 'a)
requires { 0 <= ofs /\ 0 <= len /\ ofs + len <= length a }
ensures { forall i:int.
(0 <= i < ofs \/ ofs + len <= i < length a) -> a[i] = old a[i] }
ensures { forall i:int. ofs <= i < ofs + len -> a[i] = v }
=
for k = 0 to len - 1 do
invariant { forall i:int.
(0 <= i < ofs \/ ofs + len <= i < length a) -> a[i] = old a[i] }
invariant { forall i:int. ofs <= i < ofs + k -> a[i] = v }
a[ofs + k] <- v
done
let blit (a1: array 'a) (ofs1: int)
(a2: array 'a) (ofs2: int) (len: int) : unit writes {a2}
requires { 0 <= ofs1 /\ 0 <= len /\ ofs1 + len <= length a1 }
requires { 0 <= ofs2 /\ ofs2 + len <= length a2 }
ensures { forall i:int.
(0 <= i < ofs2 \/ ofs2 + len <= i < length a2) -> a2[i] = old a2[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len -> a2[i] = a1[ofs1 + i - ofs2] }
=
for i = 0 to len - 1 do
invariant { forall k. not (0 <= k < i) -> a2[ofs2 + k] = old a2[ofs2 + k] }
invariant { forall k. 0 <= k < i -> a2[ofs2 + k] = a1[ofs1 + k] }
a2[ofs2 + i] <- a1[ofs1 + i];
done
let append (a1: array 'a) (a2: array 'a) : array 'a
ensures { length result = length a1 + length a2 }
ensures { forall i. 0 <= i < length a1 -> result[i] = a1[i] }
ensures { forall i. 0 <= i < length a2 -> result[length a1 + i] = a2[i] }
=
if length a1 = 0 then copy a2
else begin
let a = make (length a1 + length a2) a1[0] in
blit a1 0 a 0 (length a1);
blit a2 0 a (length a1) (length a2);
a
end
let self_blit (a: array 'a) (ofs1: int) (ofs2: int) (len: int) : unit
writes {a}
requires { 0 <= ofs1 /\ 0 <= len /\ ofs1 + len <= length a }
requires { 0 <= ofs2 /\ ofs2 + len <= length a }
ensures { forall i:int.
(0 <= i < ofs2 \/ ofs2 + len <= i < length a) -> a[i] = old a[i] }
ensures { forall i:int.
ofs2 <= i < ofs2 + len -> a[i] = old a[ofs1 + i - ofs2] }
=
if ofs1 <= ofs2 then (* from right to left *)
for k = len - 1 downto 0 do
invariant { forall i:int.
(0 <= i <= ofs2 + k \/ ofs2 + len <= i < length a) ->
a[i] = (old a)[i] }
invariant { forall i:int.
ofs2 + k < i < ofs2 + len -> a[i] = (old a)[ofs1 + i - ofs2] }
a[ofs2 + k] <- a[ofs1 + k]
done
else (* from left to right *)
for k = 0 to len - 1 do
invariant { forall i:int.
(0 <= i < ofs2 \/ ofs2 + k <= i < length a) ->
a[i] = (old a)[i] }
invariant { forall i:int.
ofs2 <= i < ofs2 + k -> a[i] = (old a)[ofs1 + i - ofs2] }
a[ofs2 + k] <- a[ofs1 + k]
done
(*** TODO?
- concat : 'a array list -> 'a array
- to_list
- of_list
*)
end
module Init
use int.Int
use export Array
let init (n: int) (f: int -> 'a) : array 'a
requires { [@expl:array creation size] n >= 0 }
ensures { forall i:int. 0 <= i < n -> result[i] = f i }
ensures { result.length = n }
=
if n = 0 then empty ()
else begin
let a = make n (f 0) in
for i = 1 to n - 1 do
invariant { forall k. 0 <= k < i -> a[k] = f k }
a[i] <- f i
done;
a
end
end
(** {2 Sorted Arrays} *)
module IntArraySorted
use int.Int
use Array
clone map.MapSorted as M with type elt = int, predicate le = (<=)
predicate sorted_sub (a : array int) (l u : int) =
M.sorted_sub a.elts l u
(** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
is sorted w.r.t order relation `le` *)
predicate sorted (a : array int) =
M.sorted_sub a.elts 0 a.length
(** `sorted a` is true whenever the array `a` is sorted w.r.t `le` *)
end
module Sorted
use int.Int
use Array
type elt
predicate le elt elt
predicate sorted_sub (a: array elt) (l u: int) =
forall i1 i2 : int. l <= i1 < i2 < u -> le a[i1] a[i2]
(** `sorted_sub a l u` is true whenever the array segment `a(l..u-1)`
is sorted w.r.t order relation `le` *)
predicate sorted (a: array elt) =
forall i1 i2 : int. 0 <= i1 < i2 < length a -> le a[i1] a[i2]
(** `sorted a` is true whenever the array `a` is sorted w.r.t `le` *)
end
(** {2 Arrays Equality} *)
module ArrayEq
use int.Int
use Array
use map.MapEq
predicate array_eq_sub (a1 a2: array 'a) (l u: int) =
a1.length = a2.length /\ 0 <= l <= a1.length /\ 0 <= u <= a1.length /\
map_eq_sub a1.elts a2.elts l u
predicate array_eq (a1 a2: array 'a) =
a1.length = a2.length /\ map_eq_sub a1.elts a2.elts 0 (length a1)
end
module ArrayExchange
use int.Int
use Array
use map.MapExchange as M
predicate exchange (a1 a2: array 'a) (i j: int) =
a1.length = a2.length /\
M.exchange a1.elts a2.elts 0 a1.length i j
(** `exchange a1 a2 i j` means that arrays `a1` and `a2` only differ
by the swapping of elements at indices `i` and `j` *)
end
(** {2 Permutation} *)
module ArrayPermut
use int.Int
use Array
use map.MapPermut as M
use map.MapEq
use ArrayEq
use export ArrayExchange
predicate permut (a1 a2: array 'a) (l u: int) =
a1.length = a2.length /\ 0 <= l <= a1.length /\ 0 <= u <= a1.length /\
M.permut a1.elts a2.elts l u
(** `permut a1 a2 l u` is true when the segment
`a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`.
Values outside of the interval `(l..u-1)` are ignored. *)
predicate permut_sub (a1 a2: array 'a) (l u: int) =
map_eq_sub a1.elts a2.elts 0 l /\
permut a1 a2 l u /\
map_eq_sub a1.elts a2.elts u (length a1)
(** `permut_sub a1 a2 l u` is true when the segment
`a1(l..u-1)` is a permutation of the segment `a2(l..u-1)`
and values outside of the interval `(l..u-1)` are equal. *)
predicate permut_all (a1 a2: array 'a) =
a1.length = a2.length /\ M.permut a1.elts a2.elts 0 a1.length
(** `permut_all a1 a2 l u` is true when array `a1` is a permutation
of array `a2`. *)
lemma exchange_permut_sub:
forall a1 a2: array 'a, i j l u: int.
exchange a1 a2 i j -> l <= i < u -> l <= j < u ->
0 <= l -> u <= length a1 -> permut_sub a1 a2 l u
lemma permut_sub_trans:
forall a1 a2 a3: array 'a, l u: int.
0 <= l -> u <= length a1 -> permut_sub a1 a2 l u ->
permut_sub a2 a3 l u -> permut_sub a1 a3 l u
(** we can always enlarge the interval *)
lemma permut_sub_weakening:
forall a1 a2: array 'a, l1 u1 l2 u2: int.
permut_sub a1 a2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length a1 ->
permut_sub a1 a2 l2 u2
lemma exchange_permut_all:
forall a1 a2: array 'a, i j: int.
exchange a1 a2 i j -> permut_all a1 a2
end
module ArraySwap
use int.Int
use Array
use export ArrayExchange
let swap (a:array 'a) (i:int) (j:int) : unit
requires { 0 <= i < length a /\ 0 <= j < length a }
writes { a }
ensures { exchange (old a) a i j }
= let v = a[i] in
a[i] <- a[j];
a[j] <- v
end
(** {2 Sum of elements} *)
module ArraySum
use Array
use int.Sum as S
(** `sum a l h` is the sum of `a[i]` for `l <= i < h` *)
function sum (a: array int) (l h: int) : int = S.sum a.elts l h
end
(** {2 Number of array elements satisfying a given predicate} *)
module NumOf
use Array
use int.NumOf as N
(** the number of `a[i]` such that `l <= i < u` and `pr i a[i]` *)
function numof (pr: int -> 'a -> bool) (a: array 'a) (l u: int) : int =
N.numof (fun i -> pr i a[i]) l u
end
module NumOfEq
use Array
use int.NumOf as N
(** the number of `a[i]` such that `l <= i < u` and `a[i] = v` *)
function numof (a: array 'a) (v: 'a) (l u: int) : int =
N.numof (fun i -> a[i] = v) l u
end
module ToList
use int.Int
use Array
use list.List
let rec function to_list (a: array 'a) (l u: int) : list 'a
requires { l >= 0 /\ u <= a.length }
variant { u - l }
= if u <= l then Nil else Cons a[l] (to_list a (l+1) u)
use list.Append
let rec lemma to_list_append (a: array 'a) (l m u: int)
requires { 0 <= l <= m <= u <= a.length }
variant { m - l }
ensures { to_list a l m ++ to_list a m u = to_list a l u }
= if l < m then to_list_append a (l+1) m u
end
module ToSeq
use int.Int
use Array
use seq.Seq as S
let rec function to_seq_sub (a: array 'a) (l u: int) : S.seq 'a
requires { l >= 0 /\ u <= a.length }
variant { u - l }
= if u <= l then S.empty else S.cons a[l] (to_seq_sub a (l+1) u)
let rec lemma to_seq_length (a: array 'a) (l u: int)
requires { 0 <= l <= u <= length a }
variant { u - l }
ensures { S.length (to_seq_sub a l u) = u - l }
= if l < u then to_seq_length a (l+1) u
let rec lemma to_seq_nth (a: array 'a) (l i u: int)
requires { 0 <= l <= i < u <= length a }
variant { i - l }
ensures { S.get (to_seq_sub a l u) (i - l) = a[i] }
= if l < i then to_seq_nth a (l+1) i u
let function to_seq (a: array 'a) : S.seq 'a = to_seq_sub a 0 (length a)
meta coercion function to_seq
end
(** {2 Number of inversions in an array of integers}
We show that swapping two elements that are ill-sorted decreases
the number of inversions. Useful to prove the termination of
sorting algorithms that use swaps. *)
module Inversions
use Array
use ArrayExchange
use int.Int
use int.Sum
use int.NumOf
(* to prove termination, we count the total number of inversions *)
predicate inversion (a: array int) (i j: int) =
a[i] > a[j]
function inversions_for (a: array int) (i: int) : int =
numof (inversion a i) i (length a)
function inversions (a: array int) : int =
sum (inversions_for a) 0 (length a)
(* the key lemma to prove termination: whenever we swap two consecutive
values that are ill-sorted, the total number of inversions decreases *)
let lemma exchange_inversion (a1 a2: array int) (i0: int)
requires { 0 <= i0 < length a1 - 1 }
requires { a1[i0] > a1[i0 + 1] }
requires { exchange a1 a2 i0 (i0 + 1) }
ensures { inversions a2 < inversions a1 }
= assert { inversion a1 i0 (i0+1) };
assert { not (inversion a2 i0 (i0+1)) };
assert { forall i. 0 <= i < i0 ->
inversions_for a2 i = inversions_for a1 i
by numof (inversion a2 i) i (length a2)
= numof (inversion a2 i) i i0
+ numof (inversion a2 i) i0 (i0+1)
+ numof (inversion a2 i) (i0+1) (i0+2)
+ numof (inversion a2 i) (i0+2) (length a2)
/\ numof (inversion a1 i) i (length a1)
= numof (inversion a1 i) i i0
+ numof (inversion a1 i) i0 (i0+1)
+ numof (inversion a1 i) (i0+1) (i0+2)
+ numof (inversion a1 i) (i0+2) (length a1)
/\ numof (inversion a2 i) i0 (i0+1)
= numof (inversion a1 i) (i0+1) (i0+2)
/\ numof (inversion a2 i) (i0+1) (i0+2)
= numof (inversion a1 i) i0 (i0+1)
/\ numof (inversion a2 i) i i0 = numof (inversion a1 i) i i0
/\ numof (inversion a2 i) (i0+2) (length a2)
= numof (inversion a1 i) (i0+2) (length a1)
};
assert { forall i. i0 + 1 < i < length a1 ->
inversions_for a2 i = inversions_for a1 i };
assert { inversions_for a2 i0 = inversions_for a1 (i0+1)
by numof (inversion a1 (i0+1)) (i0+2) (length a1)
= numof (inversion a2 i0 ) (i0+2) (length a1) };
assert { 1 + inversions_for a2 (i0+1) = inversions_for a1 i0
by numof (inversion a1 i0) i0 (length a1)
= numof (inversion a1 i0) (i0+1) (length a1)
= 1 + numof (inversion a1 i0) (i0+2) (length a1)
= 1 + numof (inversion a2 (i0+1)) (i0+2) (length a2) };
let sum_decomp (a: array int) (i j k: int)
requires { 0 <= i <= j <= k <= length a = length a1 }
ensures { sum (inversions_for a) i k =
sum (inversions_for a) i j + sum (inversions_for a) j k }
= () in
let decomp (a: array int)
requires { length a = length a1 }
ensures { inversions a = sum (inversions_for a) 0 i0
+ inversions_for a i0
+ inversions_for a (i0+1)
+ sum (inversions_for a) (i0+2) (length a) }
= sum_decomp a 0 i0 (length a);
sum_decomp a i0 (i0+1) (length a);
sum_decomp a (i0+1) (i0+2) (length a);
in
decomp a1; decomp a2;
()
end
|